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Abstract—Optimizing the CPU frontend has become crucial for
modern processors with intricate instruction decoding logic, espe-
cially for efficiently running planet-scale data center applications.
Micro-operation (micro-op) cache is a key unit to help improve
the energy efficiency of the CPU frontend. Unfortunately, we find
that data center applications suffer from frequent micro-op cache
misses due to the lack of an effective micro-op cache replacement
policy. Developing micro-op cache-specific replacement policies
is challenging, as there currently does not exist an optimal
theoretical solution akin to Belady’s algorithm for conventional
caches. As a result, it is unknown by how much replacement
policies can be improved and how to get there.

To address these challenges, we introduce FLACK, a new
near-optimal offline policy that considers the key features of the
micro-op cache, such as variable and disproportional costs of
micro-op cache misses and partial hits. We show that FLACK
substantially outperforms Belady’s algorithm, thus establishing
a new baseline for micro-op cache replacement policies. We
then design FURBYS, a practical policy that mimics FLACK
via profile-guided methods. FURBYS has three key components
to perform cache replacement decisions: (1) it uses profiles
of the whole-execution hit/miss behavior, (2) it detects locally
(transiently) hot data, and (3) it selectively ignores data with
profiled low hit rates. We evaluate FLACK and FURBYS using 11
data center applications and find that FLACK demonstrates an
average bound of 30.21% miss reduction, achieving 4.46% greater
miss reduction than Belady’s algorithm. Our practical policy,
FURBYS, provides 14.34% average miss reduction compared to
LRU, which is 1.84× greater than the current state-of-the-art
replacement policy, contributing to 3.10% of performance-per-
watt improvement for the CPU core. On average, in terms of
miss reduction and IPC gain, FURBYS is equivalent to LRU
policy on 1.5× micro-op cache sizes (up to 2×), demonstrating
the effectiveness of the proposed replacement policy.

I. INTRODUCTION

Data centers are responsible for storing, managing, and
distributing a significant portion of the world’s data, result-
ing in notable energy demand and substantial carbon and
water footprints. Recent data indicates that between 196 to
400 terawatt-hours (TWh) of energy were consumed by data
centers in 2020, corresponding to 1% to 2% of the total annual
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energy consumption. As the data center industry expands, this
energy consumption is expected to increase [13], [31], [75].

Given the necessity to significantly improve the energy
efficiency (performance-per-watt, the number of instructions
executed per Joule of energy) of data center applications,
optimizing the CPU frontend has become a critical endeavor,
particularly for complex instruction set architectures (ISA).
ISAs such as x86 utilize variable length instructions that
require complex, deeply-pipelined decoding logic [19]–[21],
[51], [53], [58], [59], [83] which consumes significant power.
To address this challenge, Intel and AMD have deployed
micro-op caches, storing decoded instructions (micro-ops)
to reduce power consumption and improve performance. In
particular, micro-op caches enable clock-gating of the decoders
and L1 instruction cache (icache) to save power while provid-
ing a higher instruction fetch bandwidth [7], [81].

In Section III we show that an optimal micro-op cache
can provide an average performance-per-watt gain of 7.41%,
exceeding the potential benefits of other microarchitectural
structures such as the branch target buffer, the branch predictor
or even the icache. Furthermore, we find that due to the large
code footprint, more than 99% of micro-op cache misses are
due to insufficient capacity or set conflicts. The tight capacity
constraints call for a good replacement policy to keep micro-
ops in the cache selectively for higher hit rate.

To determine how the frontend’s performance-per-watt can
be increased, we investigate the existing state-of-the-art micro-
op cache replacement policies in Section III. We find that
existing policies (including Belady [22]) are inefficient as they
ignore the following key features of micro-op caches:

• Disproportionate cache miss costs. The micro-op cache
sends micro-ops to the processor at the granularity of a
Prediction Window (PW), while internally, it uses fixed-
sized entries as a storage unit. As a result, PWs can
consume multiple entries, while the last entry of a PW is
generally only partially filled. All entries of a PW must
be kept or evicted as a whole. As a result, the replacement
policy needs to consider both the value of a PW (number



of micro-ops) as well as the size of the PW (number of
entries) to minimize the miss cost.

• Partial hits. As PWs terminate on predicted taken
branches, multiple partially overlapping PWs can exist
if a terminal conditional branch is sometimes taken and
sometimes not. As PWs are looked up by their start
address, retrieved PWs may sometimes be “incomplete”
or only partially used. Such overlapping PWs need to be
considered by the replacement policy.

• Asynchronous lookup and insertion. The lookup and
insertion operations to micro-op cache may complete
out-of-order. For instance, one access a may miss in
the micro-op cache, causing an insertion via the decode
pipeline to happen several cycles later, while before
the insertion, access b may lookup the micro-op cache,
causing asynchronous lookup and insertion that is not
supported by existing variable-cost offline optimal re-
placement policies.

An optimal micro-op cache replacement policy needs to
consider the properties above that prior works have not con-
sidered so far. Even if impossible to implement in hardware,
developing such a policy is crucial, as it provides an upper
bound for performance and can guide the development of
new online policies. We devise FLACK, a novel policy that
approximates optimal replacement decisions for the micro-op
cache. It is only near-optimal, as prior works [41] have shown
that determining optimal replacement decisions in caches
with variable-cost and variable-size entries is an NP-complete
problem. Yet we show that by considering the three micro-op
cache properties above, FLACK can substantially outperform
policies such as Belady, approximating optimal replacement
for the micro-op cache. Our proposed FLACK policy (1)
addresses disproportionate cache miss costs, by considering
the number of cache entries and the number of micro-ops
for each PW, (2) manages partial PW hits by inserting and
keeping larger PWs in the cache while throttling bypassing to
increase the likelihood of partial hits when sufficient micro-op
cache space is available, (3) mitigates asynchronous lookups
and insertions by late evictions to maintain the micro-op cache
entries until the insertion completes.

While FLACK executes in polynomial time and hence can
be used to simulate near-optimal replacement decisions in an
acceptable time, it is infeasible to implement it in hardware.
Based on the insights obtained from FLACK, we then design
a new practical replacement policy, FURBYS, which outper-
forms all prior state-of-the-art replacement policies including
SRRIP [45], SHiP++ [93], GHRP [66], Mockingjay [77] and
Thermometer [82]. Our practical replacement policy reduces
micro-op cache misses and bypasses micro-op cache inser-
tions to increase performance-per-watt. FURBYS uses whole-
execution micro-op cache profiles obtained using FLACK to
group PWs by hit rate. Furthermore, FURBYS introduces
support for evicting PWs with a high average whole-execution
hit rate but a low temporary hit rate. Finally, FURBYS also
selectively bypasses PWs with low hit rates to prevent cold
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Fig. 1. A typical x86 frontend. The micro-op cache performs lookup (1) and
insertion (2) asynchronously and needs to accommodate different data units,
including micro-ops and PWs. Since the output of the micro-op cache is a
stream of micro-ops, we define micro-op cache misses in terms of micro-ops.

micro-ops from consuming micro-op cache capacity [26] and
reduces energy consumption.

We evaluate FLACK and FURBYS in the context of 11
data center applications to demonstrate their effectiveness.
In particular, we show that FLACK achieves an average
miss reduction of 30.21% over the baseline least-recently-
used (LRU) replacement policy, outperforming even Belady’s
“optimal” policy by 4.46%. Our online policy, FURBYS,
achieves an average miss reduction of 14.34% and 3.10%
performance-per-watt gain. To reach the same miss reduction
and performance of FURBYS, the LRU policy requires a
cache with almost twice the capacity for some applications.
On average, FURBYS provides the equivalent of a 50%
micro-op cache size increase while improving power efficiency
substantially. We cross-validate the usefulness of profiling
information with different inputs, showing its robustness. We
also conduct sensitivity analyses to investigate the impact of
configuration changes on FLACK and FURBYS.

In summary, we make the following contributions:
• We demonstrate the importance of the micro-op cache

and the necessity of optimizing the micro-op cache’s
replacement policy.

• We identify the shortcomings of state-of-the-art optimal
replacement policies such as Belady and flow-based of-
fline optimal (FOO) policies by providing a comprehen-
sive study of essential features of the micro-op cache.

• We devise FLACK, a new offline replacement policy for
approximating optimal behavior for the micro-op cache
by considering micro-op cache-specific properties.

• We propose FURBYS, the first online replacement policy
that is tailored for the micro-op cache.

II. MICRO-OP CACHE BACKGROUND

A. Overall Micro-op Cache Architecture

As demonstrated in Figure 1, a typical x86 processor fron-
tend contains the original legacy decode pipeline (icache path),
fetching CISC instructions from the icache and decoding them
into RISC-like micro-ops. The micro-ops are then fed into
the micro-op queue from where they can be provided to the
backend. As fetching and decoding instructions is complex and
power-consuming in variable-length ISAs such as x86 [65],
modern processors store decoded micro-ops in a micro-op



cache. Our model of micro-op cache is strictly included by the
L1 icache, i.e., every icache eviction will trigger the eviction
of corresponding items in the micro-op cache, following the
popular industry paradigms [7], [28], [79], [87]. Retrieving
micro-ops from the micro-op cache can improve performance
due to the lower latency and higher bandwidth, but more
importantly, it allows power down the decode pipeline and
the icache, leading to significant power savings [57]. Note that
due to these properties, even RISC-based architectures such as
ARM have introduced micro-op caches [5].

B. Lookup and Insertion

To populate the micro-op cache, the legacy decode pipeline
inserts decoded micro-ops into the accumulation buffer, form-
ing the content of a prediction window (PW), the basic
granularity of micro-op cache operations. A PW is similar to a
basic block in that it is terminated by a taken branch, however,
PWs are also terminated by the last instruction of a cache line.
After accumulation, the PW is inserted into the micro-op cache
and indexed by the starting address [57], [85]. If the same PW
is accessed later again, which frequently occurs in loops, the
system will switch to the micro-op cache for providing the
micro-ops. In this case, the decode pipeline and the icache
can be turned off via clock-gating, leading to substantial
energy savings. The switch can only happen at predicted taken
branches or icache cache block boundaries [7], [85]. However,
when a micro-op cache miss occurs, the frontend needs to
switch back to the legacy pipeline introducing a one-cycle
overhead [7], [8]. At this point, the next PWs are fetched
from the icache, and then decoded, causing a delay of several
cycles due to the deep decoder pipeline. It is possible that
while an earlier miss is still in the decode pipeline, later
addresses lookup (and hit) the micro-op cache. This introduces
the asynchronous lookup and insertion issue described in the
previous section, causing out-of-order insertion and lookup.

C. Micro-op Cache Entry Organization

The micro-op cache stores a fixed number of micro-ops per
line. However, as the length of a PW is determined by icache
cache line boundaries and predicted taken branches, PWs have
a variable number of micro-ops [56]. If the number of micro-
ops within a PW is smaller than the maximum number of
micro-ops per line, some capacity of the micro-op cache is
left unused. As the energy cost of looking up an entry in the
micro-op cache is unaffected by the number of valid micro-ops
in an entry, it is beneficial to preferably store fully populated
entries in the micro-op cache as the energy consumption of
the decode pipeline scales with the number of decoded micro-
ops. Therefore, we define the number of micro-ops of a PW
as its cost and accordingly, define the miss rate at the micro-
op level to reflect the performance-per-watt. The replacement
policy needs to consider this variable cost of a PW.

If the number of micro-ops of a PW is greater than the
number of micro-ops per entry, a PW needs to be distributed
across multiple micro-op cache entries. Therefore, the micro-
op cache reserves multiple entries within the same cache set
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Fig. 2. Per core performance-per-watt gain compared with LRU baseline
when using perfect structures. A perfect micro-op cache provides 7.41%
performance-per-watt benefit.

for a single PW and then tags those entries so that they
are fetched together on a lookup (during multiple cycles)
or evicted as a whole [57]. Both these aspects need to be
considered by the replacement policy. We define the number
of entries occupied by a PW as its size. The replacement policy
needs to consider both the size and cost of PWs to achieve
the best performance-per-watt.

D. Overlapping Prediction Windows

By determining predicted taken branches, modern decou-
pled frontend forms PW boundaries [73], where a PW starts
with the target of a control flow instruction and ends with
a control flow changing instruction or the boundary of an I-
cache line [57]. Predicted non-taken branches are considered
sequential instructions and hence do not terminate a PW,
introducing the partial hit issue. In particular, multiple PW
lookups may exist with the same start address (which is used
to index into the micro-op cache) but different sizes, resulting
in partially overlapping PWs. According to AMD [85], when
a larger PW is stored in the micro-op cache its entries may
contain multiple ”intermediate exit points” referring to smaller
PWs within the large one. As a result, on a lookup of a smaller
PW (same start address and smaller size), the micro-op cache
is capable of serving partial PWs from the large PW. This
behavior needs to be considered by the replacement policy.
There exists a second scenario in which the micro-op cache
stores only a smaller PW, and a larger PW is being looked
up. In this case, [85] states that only a partial PW is served
from the micro-op cache and then the frontend switches to the
legacy decode path to obtain the remaining micro-ops and form
a new PW to be inserted. This scenario must be considered,
and newly constructed windows must be handled accordingly.

III. CHALLENGES OF OPTIMIZING MICRO-OP CACHE
REPLACEMENT

In this section, we first motivate the importance of micro-
op cache replacement policies for data center applications
and then analyze the root cause of why existing replacement
policies fall short. We identify the key challenges of deriving
efficient micro-op cache replacement policies, which, to the
best of our knowledge, have been ignored by prior works.



A. Why is the micro-op cache important for data center
applications?

As fetching and decoding instructions become more and
more energy-consuming in modern processors, the micro-op
cache plays an important role in improving the performance-
per-watt of data center applications [81]. To quantify it, we use
McPat [61], which is widely used for power modeling [33],
[70], to measure the energy consumed per core by running
100M instructions for data center applications as described in
Table II. For each experiment, we change the configuration
of a single structure to be perfect (always hit). The result is
shown in Figure 2. The perfect micro-op cache provides the
largest energy efficiency improvement.

B. Why is the replacement policy of micro-op cache important
for data center applications?

Like other caches, when inserting to micro-op cache, a
replacement policy must be consulted for selecting an eviction
victim. While micro-op replacement policies have not been
thoroughly investigated in prior research, our results demon-
strate that the replacement policy has a significant impact
on performance due to the large instruction footprint of the
data center applications. We evaluate three different types of
misses, including cold, capacity, and conflict miss, of an 8-way
512-set micro-op cache under LRU and a near-optimal offline
replacement policy for 11 data center applications. With LRU
replacement policy, only 0.89% of total misses are cold misses,
while 88.31% of total misses are capacity misses, and the
remaining 10.8% are conflict misses. In contrast, with a near-
optimal offline policy, the capacity and conflict misses can be
reduced by 23.9% and 31.6% respectively, which contributes
to 24.5% miss reduction in total. This result demonstrates
that large code footprints put high pressure on the limited
capacity of the micro-op cache, motivating a high-performance
replacement policy to selectively keep the valuable objects,
minimizing conflict misses and maximizing the hit rate.

C. Why is Belady’s Algorithm Sub-Optimal for the micro-op
cache?

Despite the importance of the replacement policy for the
micro-op cache, existing offline optimal replacement policies,
which were designed for normal caches, do not perform
well in the micro-op cache. We first show why Belady’s
Algorithm [22], which is generally considered the optimal
cache replacement policy, is sub-optimal for the micro-op
cache due to its key characteristics.

(1) Variable disproportional costs. The micro-op cache has
variable-size PWs, which can span multiple cache entries. As
a result, the insertion of a multi-entry PW needs to evict poten-
tially multiple other PWs, which consist of different number of
micro-ops. We represent these properties by defining a PW’s
size as the number of entries occupied and the PW’s cost as
the total number of its micro-ops. However, Belady assumes
every object has the same size and cost, causing non-optimal
replacement decisions in the case of the micro-op cache.
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Figure 3 provides an example that illustrates this case. The
cache has a capacity of 2 and initially contains two PWs,
A (size=1, cost=1) and C (size=1, cost=4). If the lookup
sequence is BBBAAC with PW B (size=1, cost=1), Belady’s
algorithm chooses to evict C, as all PWs are treated equally.
However, since costs are different in our case, bypassing B
and evicting A is the optimal solution, with a cost of only 3
instead of 5.

(2) Partial hits and generation of new PWs. As PWs
are terminated on a taken branch, there may exist two PWs
with the same start address but different lengths causing
the partial lookup issue. Belady’s algorithm cannot handle
such cases. Despite their tight relationship, Belady’s algorithm
considers PWs with the same start address but different sizes
as entirely separate windows, which can lead to inefficiencies.
For instance, as is demonstrated in Figure 4, consider three
PWs: D′ (size=1, cost=3) containing (op1, op2, op3), D
(size=1, cost=1) containing only op1, and E (size=1, cost=1)
containing op4, with a cache capacity of 2 initially holding
D′ and E. If the access sequence is D, D, D, D, D′, E,
Belady will consider D and D′ as distinct and insert D to
replace E. However, keeping D′ and E in the cache would
be more efficient since D′ already allows D to hit, resulting
in 0 misses. This renders Belady’s decisions sub-optimal.

(3) Asynchronous lookup and insertion. As we discussed
in subsection II-B, the micro-op cache is a non-blocking cache,
that suffers from the asynchronous lookup and insertion issue.
This asynchrony causes inaccuracies in Belady’s algorithm.
Consider three PWs, A (size=1, cost=1), B (size=1, cost=1),
and C (size=1, cost=4), with a cache size of 2 initially
containing A and B. If we assume that lookup and insertion
are simultaneous (as naive Belady’s algorithm assumes), and
we have an access trace of CCBAC, Belady decides to evict



A to cache C, leading to a cost of 5. However, if the insertion
of C takes exactly three intervals right before A is looked up,
it is better to evict A after accessing it to achieve a lower cost
of 4. Belady must be modified to make decision at insertion
time to address the problem. However, we will demonstrate
that combined with variable cost and partial hit, asynchrony
cannot be easily dealt with in Section III-D.

D. Flow-based Offline Optimal (FOO) to the Rescue?

In the previous section, we showed that Belady’s algorithm
performs sub-optimal replacement decisions for the micro-
op cache, which motivates us to explore better alternatives.
Unfortunately, prior work [41] has shown that performing
optimal replacement in the presence of variable-sized data
elements is an NP-complete problem and hence cannot be
solved optimally in a practicable amount of time. To address
this issue, state-of-the-art algorithms leverage Flow-based Of-
fline Optimal [23] (FOO) mechanisms to approximate optimal
replacement with reasonable time complexity.

FOO is designed based on the observation that an optimal
replacement decision for a particular PW remains unchanged
between consecutive accesses. With FOO, the cache replace-
ment policy is transformed into a decision-making problem
determining whether to keep or evict a PW after each lookup,
subject to the constraint of the cache’s capacity.

For a PW, the FOO model offers two optimization goals.
Object-Hit-Ratio (OHR) minimizes the total number of missed
objects (PWs), regardless of the size of the object. Byte-
Hit-Ratio (BHR) optimizes the number of bytes missed. In
our case, it is equivalent to minimizing the missed entries.
Utilizing FOO, we can derive a near-optimal arrangement of
which PW should be bypassed and which ones should be kept
in the cache to achieve the optimization goal. This problem
can be solved efficiently using min-cost-flow solvers [23] in
O(n

3
2 ) time, where n is the length of the access sequence.

Although it has been shown that FOO successfully ap-
proximates optimal replacement decisions for caches with
variable size entries, it does not address the challenges of
asynchronous insertion or partial hits. Unlike Belady, which
handles asynchrony by making decisions at insertion time,
FOO cannot easily extend to this scenario. Belady’s strategy
involves greedily evicting the PW with the furthest future
access. As a result, Belady can efficiently recompute fu-
ture optimal decisions as needed when the insertion time is
changed due to asynchrony. In contrast, FOO relies on a
flow-based solution using a static lookup traces. This makes
managing asynchronous insertions challenging, as FOO cannot
efficiently recompute future decisions for every asynchronous
insertion due to its long runtime.

Moreover, the partial hits can also be affected by different
insertion times, which will change the future lookup and
insertion traces, making it impossible to derive the lookup
trace in advance. Therefore, the FOO falls short in terms of
asynchrony and partial hits.

Besides, while FOO only optimizes towards two cost met-
rics (OHR and BHR), in the micro-op cache, the cost of a
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Fig. 5. Miss rate reduction of existing replacement policies. Existing policies
do not provide considerable miss reductions over the LRU baseline. State-of-
art policy GHRP only achieves 31.52% miss reduction compared to FLACK,
which is a near-optimal policy we propose in Section IV.

missed PW is not directly proportional to its size. In particular,
the cost of replacing an entry depends on the number of
micro-ops (1-8) it contains. This disproportionality in costs
causes FOO to perform suboptimal replacement decisions. For
instance, for the example in Figure 3, FOO will still incorrectly
prioritize C for eviction as all PWs are treated equally.

In Section IV, we introduce FLACK, a replacement policy
that extends FOO to consider all essential properties of the
micro-op cache. We also evaluate its performance gain.

E. Why do existing online replacement policies fall short?

In the previous sections, we showed that offline policies
such as Belady’s algorithm fail to produce optimal replacement
decisions for the micro-op cache as they ignore important
architectural properties. Existing online practical cache re-
placement policies also ignore the micro-op cache proper-
ties discussed in Section III-C and hence we expect them
to perform sub-optimal replacement decisions as well. To
quantify their effectiveness, We investigate the micro-op cache
miss reduction of representative existing cache replacement
policies including SRRIP [45], SHiP++ [93], Mockingjay [77],
GHRP [66] and LRU. We also include Thermometer [82], a
state-of-the-art profile-guided policy.

SRRIP [45] uses 2 bits per cache entry to store one of 22 = 4
possible Re-reference Prediction Values (RRPV) to instruct
the replacement. SHiP++ [93] maintains a Signature History
Counter Table (SHCT), which contains a counter (SHCTR) for
each signature of each line (14-bit hash of the miss-causing
PC) and a reuse (R) bit. Mockingjay [77] aims to simulate the
optimal replacement policy [22] based on an access history.
GHRP [66] uses the history of past instruction addresses and
the reuse behaviors to predict dead blocks. Thermometer [82]
uses the profiled results to divide PWs into hot, warm, and
cold according to the PW hit rate.

Figure 5 shows the miss reduction over the LRU baseline for
different replacement policies. All studied replacement poli-
cies show only limited improvements over LRU, a fraction of
the 30.21% miss reduction achieved by our offline replacement
policy proposed in Section IV.

Existing replacement policies fall short due to the following
reasons. Firstly, the reuse distance for PW accesses is more
scattered compared to other caches, such as the icache or
BTB. For micro-op cache, over 20% of the PWs have a reuse



distance larger than 30, but only 10% and 2% lines have
such a long reuse distance for icache and BTB. Therefore,
the replacement policies designed for icache or BTB cannot
be simply migrated to the micro-op cache. Second, SRRIP and
SHiP++ aim to predict the re-reference interval for mimicking
Belady’s algorithm. GHRP tries to predict the object that will
be accessed furthest in the future, which also follows Belady’s
decision. However, we have shown that Belady’s algorithm
is not the optimal replacement policy for micro-op cache.
Both the cost and re-reference intervals should be considered
to make the replacement decision, unlike the greedy method
implemented by Belady’s algorithm. Mockingjay follows the
assumption that blocks accessed by the same PC will become
Dead at the same time, however, in the case of the micro-op
cache, this is not helpful since every PC is only associated
with one PW. Therefore, Mockingjay must sample all the
sets to achieve high accuracy causing a large space overhead.
Thermometer groups PWs according to the average hit rate
which captures holistic information, however, it lacks the
mechanism to adjust to the transient pattern.

To overcome the limitations of existing replacement poli-
cies, we propose a novel profile-guided replacement policy in
Section V, named FURBYS, based on the traces and design
of our improved optimal replacement policy FLACK.

IV. FLACK: AN OFFLINE NEAR-OPTIMAL REPLACEMENT
POLICY FOR THE MICRO-OP CACHE

In Section III, we have shown that Belady fails to generate
optimal replacement decisions in the presence of variable
length cache entries. The FOO replacement algorithm miti-
gates this shortcoming, however, it can neither handle asyn-
chronous lookups/insertions nor partial hits. We now describe
the design of FLACK (FOO-based seLectively-bypassing
Asynchronizing Cost-varying selective-data-Keeping), a new
offline near-optimal replacement policy that considers all of
the key characteristics of the micro-op cache.

Incorporate variable costs of PWs. FLACK extends the
original FOO design to consider the variable amount of
valid micro-ops per PW, respectively micro-op cache entry.
Specifically, instead of assigning a cost of 1/size (OHR)
or 1 (BHR) to each cache miss, we assign the unit cost as
cost/size, where the cost refers to the number of micro-ops
within a PW and size refers to the number of entries of the
PW. As a result, FLACK not only approximates optimal cache
replacement for a variable number of entries per PW but also
for a variable number of micro-ops per entry.

Selective bypass to handle partial hits. An optimal re-
placement policy for the micro-op cache needs to consider
partial hits. For instance, consider a large PW that contains
a non-taken branch and hence incorporates two small PWs.
The large PW can be either stored as a single PW yielding
more compact storage (in terms of required entries) or as
two separate PWs, enabling successful lookup (hit) for both
PWs independently. In the original FOO, PWs are eagerly
bypassed if not entirely used in the near future, which causes
unnecessary misses if only a part of the PW is referenced.

FLACK addresses this issue by keeping such bypassed PWs
in the cache if space is available and it finds a partial hit in
the near future, thus increasing the likelihood of partial hits
while reducing misses. When the newly accumulated window
and PWs in the cache have the same starting address, we will
prioritize keeping the larger window.

Lazy eviction to mitigate asynchronous lookup and
insertion. As discussed in Section III-C, FOO performs sub-
optimal replacement decisions in the presence of asynchronous
lookup and insertion. FLACK improves FOO by 1) approxi-
mate insertion time eviction and 2) safeguarding late inser-
tions. When FOO decides to evict one window already in
the cache, FLACK will keep the window in the cache until
another window is inserted. On the other hand, when FOO
decides to evict one window that is not present in the cache
due to the insertion delay, FLACK will use a buffer to queue
this eviction and directly bypass the insertion to meet cache
capacity constraints.

By combining the above techniques, FLACK closely ap-
proximates the optimal replacement policy. In Section VI-B,
we will show that FLACK significantly outperforms existing
optimal replacement policies, including Belady’s algorithm.
Therefore, we establish FLACK as a new upper-bound refer-
ence for micro-op cache replacement policies.

V. FURBYS: A PRACTICAL REPLACEMENT POLICY FOR
THE MICRO-OP CACHE

While FLACK enables near-optimal replacement decisions
in polynomial time, it is still infeasible to implement in real
systems at runtime. We now present FURBYS (FLACK-based
groUping-by-hit-Rate BYpassing-coldness detecting-miSses),
a practical replacement policy for micro-op cache leveraging
insights from our FLACK optimal replacement policy. At a
high level, FURBYS works as follows. We first profile an
application using Intel PT [1] to obtain a trace of executed
PWs. We then feed this trace to the FLACK mechanism to
generate a sequence of near-optimal replacement decisions.
Based on this sequence, we count the hit rate of each PW and
group the PWs into buckets according to the Jenks Natural
Breaks [46] algorithm. Then, we tag every PW with its
group information by injecting hints into the program binary
via a compiler pass. Finally, we modify the micro-op cache
replacement policy to consider such group hints. In particular,
we prioritize PWs with a higher global average hit rate, and
switch to SRRIP when we enter a phase in which some
globally cold PWs are hot for a short period of time. We also
bypass the PWs whose weight group is less than any other
PWs in the cache. The detailed process is described below.

Group by whole-execution hit rates. FURBYS aims to
mimic replacement decisions of FLACK by exploiting whole
execution information obtained in the profiling step. In par-
ticular, we track the lookup sequence to calculate the hit rate
of each address. Since FLACK provides near-optimal deci-
sions considering all micro-op cache features (asynchronous
lookup/insertion, disproportional size and cost, and partial
hits), the hit rate of the PWs produced by FLACK’s decision



sequence represents each PW’s importance. Therefore, for
each PW, we assign a static weight based on its average hit
rate. By providing the micro-op cache with these weights,
it can prioritize PWs with a high hit rate. We compute the
weights via the Jenks Natural Breaks [46] algorithm. Jenks
natural breaks determines the optimal arrangement of values
into certain distinct classes or groups by minimizing within-
class variance and maximizing between-class variance, which
aligns with our goals. We assign weights 0-7 to the 8 clusters
formed by the Jenks Natural Breaks, where 0 represents the
PWs with the lowest hit rate. As replacement decisions are
performed for each cache set individually, we compute the
weights for PWs at set granularity.

Identify local miss pitfalls. We observe that some PWs
achieve high hit rates in some program phases but low hit
rates in others, reducing the effectiveness of measuring the
average whole-execution hit rate and leading to non-optimal
replacement decisions. For instance, consider a 4-way cache
with the following lines in a target set (weight group in
parentheses, higher weight means higher hit rate): A (1), B
(20), C (20), D (10). Suppose PW I (2) is to be inserted.
Based on the weight, PW A has the smallest weight and will
be selected as the victim. However, if subsequent PWs are
accessed in the format: {A, I}n(n > N) (N is a large natural
number), this replacement decision can cause consecutive
misses. To address this issue, we implement a local pitfall
detector that detects whether a victim is repeatedly chosen in
a set. If similar entries are evicted repeatedly, which indicates
holistically hot PWs possibly become locally cold, FURBYS
degrades to the SRRIP [45] replacement policy. With a nor-
mally maintained status, SRRIP is able to make replacements
based on local information. After the locally cold PW is
evicted, FURBYS takes over for the following replacement
decisions. As shown in Section VI-C, this scenario occurs with
an average percentage of 11.32%. Therefore, for most cases,
FURBYS’s decisions are more beneficial than those of SRRIP.

Selective bypass of PWs with low weights. Besides
determining which PWs to evict, FURBYS also specifies PWs
that should be bypassed instead of inserted into the micro-
op cache. We bypass a new PW if its weight is lower than
the minimum weight of PWs residing in the cache minus K,
where K is a hyperparameter. We have empirically determined
K = 1 to be best. This approach reduces the risk of polluting
the cache. Moreover, bypassing PWs can greatly reduce the
insertion energy, which contributes to performance-per-watt.

To summarize, our practical replacement policy, FURBYS,
considers factors such as size, cost, partial hits, local effects,
and bypass opportunities. We present evaluation details in
Section VI, providing a comprehensive solution for designing
an effective and practical replacement policy.

A. Procedure of FURBYS

Based on the analysis, we have developed FURBYS, a
profile-guided micro-op cache replacement procedure whose
steps are shown in Figure 6.
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Fig. 6. FURBYS micro-op cache replacement procedure. STEP(1) collects
the execution trace using Intel PT, STEP(2) records the PW lookup sequence,
STEP(3) calculates the PW hit/miss decision using FLACK from the offline
behavior simulator, STEP(4) refines the FLACK decision to the micro-op gran-
ularity in the Scarab simulator, STEP(5) collects micro-op hit/miss decisions,
STEP(6) groups hit rates using Jenks natural breaks, and STEP(7) deploys the
actual online evaluation with grouping information. Steps STEP(2)-(6) are
performed offline, while STEP(1) and STEP(7) are online.

STEP(1): low-overhead execution trace collection. The
execution trace is collected by Intel PT [1]. Similar to prior
work [54], [82], Intel PT is chosen because of its low run-
time overhead (only up to 1% [48]–[50], [94]) and general
adoption in today’s data centers [30], [35]. The Intel PT trace
captures dynamically executed branch instructions, including
branch decisions and branch targets. We can reproduce the
micro-op sequence using the binary files. The trace serves as
the input for FURBYS.

STEP(2): record PW lookup sequence. As shown in
Figure 6, STEP(2) involves simulating the trace file with the
configuration where the micro-op cache size is set to 0 to
collect the PW lookup traces. With a micro-op cache size of
0, every lookup will result in a miss and will be accumulated
and inserted (even though the insertion will ultimately fail). By
observing the insertion behavior, we can learn the PW lookup
sequence independently of replacement operations.

STEP(3)-(5): obtain FLACK decision. The trace is then
executed on Scarab modeling a realistically sized micro-op
cache to obtain hit/miss rate information for each micro-op.
This information is stored in a file in STEP(5) for further use.

STEP(6): group micro-ops based on FLACK hit rate.
We calculate the hit rate of each micro-op based on the
Scarab simulation result obtained from FLACK. We then apply
Jenks natural breaks to group the micro-ops according to
their hit rate. We modify the binary file to insert the hint
into instructions using the reserved bits. For every occurred
PW, only one weight is needed. Since most PWs end with a
branch or contain at least a branch, similar to Thermometer,
we can use the reserved bits in branches [82] to inject
such information. The micro-op cache observes these hints
when accumulating PWs and sets their corresponding group
according to the encountered hint.

STEP(7): deploy executable with grouping information.
In the online application evaluation, the processor receives the
grouping information through decoding. In the hardware, each
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entry in the micro-op cache reserves 3 bits to keep track of
the hit rate for each micro-op and compare for replacement.
Additionally, a two-slot miss-pitfall detector is used for each
cache set to store recently evicted ways. When we evict the
same way twice, we will switch to SRRIP to evict hot PWs
that are temporarily cold. After that, we switch back to normal
FURBYS operations.

B. FURBYS architecture and replacement policy

When deploying the executable with grouping information
in STEP(7), modifications to the decode unit, accumulation
unit, and micro-op cache are needed to implement the FUR-
BYS architecture. Figure 7 illustrates these modifications.
The decoder is altered to extract group information from
binary instructions. When a marked instruction is encountered,
specific bits are interpreted as group information and sent
along with the micro-ops to the accumulator. The accumulator
retains the first group tag within the PW and, upon meeting the
end of accumulation, passes the PW, along with the weight,
to the micro-op cache for insertion. In the micro-op cache,
structures need to be modified to add 3 additional bits to each
entry to store the weight and 2 RRPV bits to store SRRIP
metadata for each entry. When a PW is inserted, its weight
is assigned during the copying of the PW content, and the
RRPV bits are initialized to 2. Three additional bits for each
cache set are added to record the most recently evicted way to
accommodate the metadata for the local miss-pitfall detector.

When searching for a victim in the micro-op cache, the start
address of the accumulated window triggers a set activation
(step 1). The minimum weight in the set and its cache location
is found using a min module (step 2). The minimum weight
is then compared with the pending PW to decide whether to
bypass it (step 3). Meanwhile, the selected way is compared to

the local miss-pitfall detector’s records to determine whether to
switch to SRRIP (SRRIP selection using max module is done
in step 2). A Mux is then used to select the final victim among
the SRRIP victim, FURBYS victim, and bypassing (step 4).
If we decide not to bypass the pending PW, the corresponding
victim is evicted, and the new PW is inserted.1

VI. EVALUATION

TABLE I
SIMULATION PARAMETERS

Parameter Value
CPU 3.2GHz, 6-wide Out-of-Order, 256-entry Re-

order Buffer, 96-entry Reservation Station
Decoder 4-wide decoder, 5-cycles latency
Branch Predictor 8192-entry 4-way BTB, 32-entry RAS, 64KB

TAGE-SC-L, 4096-entry IBTB
Micro-op cache 512-entry, 8-way, 8 micro-ops per entry, inclu-

sive with L1i, 1-cycle switch delay,
L1i 64B-line, 32KiB, 8-way, 1-cycle, LRU
L1d 64B-line, 32KiB, 8-way, 2-cycles, LRU
L2 64B-line, 512KiB, 8-way, 16-cycles, LRU
DRAM 8-GiB, 19.2-GiB/s, 100-cycles

A. Experimental methodology

Simulation parameters. We perform our evaluation utiliz-
ing a cycle-accurate and widely-used simulator, Scarab [14],
[33], [62], [70]. We adjust simulation parameters to resemble
the AMD Zen3 architecture, as listed in Table I. We implement
several reference offline micro-op replacement policies includ-
ing Belady’s algorithm [22] and flow-based offline optimal
(FOO) [23], as well as other existing online policies such as
SRRIP [45], SHiP++ [93], GHRP [66] and Mockingjay [77].
For comparison, we also implement a state-of-the-art profile-
guided replacement policy, Thermometer [82].

Data center applications. To perform analysis, we studied
data center applications with large instruction footprints. It
is critical to optimize the performance-per-watt of these ap-
plications due to their large planet-scale energy and carbon
footprint. As we do not have access to proprietary data center
workloads, we evaluate 11 widely-used, open-source data
center applications shown in Table II. We collect traces of the
applications using Intel PT [1] for trace-driven simulations
and showcase their frontend statistic. We change the input
data size (e.g, large vs small), the webpage requested
by the client (e.g, feed=rss2 vs p=37), the number of
client requests per second (e.g, 2 vs 10), random number
seeds (e.g, 1 vs 10), different query mapping styles (e.g,
imperative vs declarative), different database scaling
factors (e.g, 100 vs 8000), and different database queries (e.g,
oltp_read_only vs oltp_write_only) to get multiple
traces after warmup. We use one set of the traces to conduct
the majority of the experiments on miss reduction and energy
saving, while validates the adaptability of FURBYS using all
of the traces in Section VI-C.

1Insertion is not on the critical path of a non-blocking cache which can
process requests during insertion, thus easing timing constraints.
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Fig. 8. Miss rate reductions of FURBYS compared with existing replacement policies. We significantly outperform the existing replacement policy on every
application. FURBYS reaches 57.85% miss reduction of FLACK.
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cassa
ndra

clang
drupal

finagle-chirp
er

kafka
mysql

postg
res

python
tomcat

wordpress Avg
0

10
20
30

M
is

s
R

ed
uc

io
n

(%
)

FOO A only A+VC A+VC+SB(FLACK) Belady

Fig. 10. Miss reductions of different features we added to FLACK compared
with FOO and Belady’s algorithm over LRU. A: asynchrony considerations,
V C: variable cost, SB: selectively bypass. Every feature leads to consid-
erable performance gain, and our approximation to optimum beats Belady’s
algorithm by 4.46% miss reduction on average.

TABLE II
LIST OF THE DATA CENTER APPLICATIONS WE STUDY

Applications Description Branch
MPKI

Cassandra [2]
Kafka [3]
Tomcat [4]

From the Java DaCapo benchmark
suite [24]

1.78
1.77
4.45

Drupal [88]
Wordpress [90]
Mediawiki [89]

From Facebook’s OSS
performance benchmark suite [17]

1.89
2.35
5.64

PostgreSQL [11] Collected when used to serve pg-
bench [10] queries

0.41

MySQL [9] Collected while serving TPC-C
[29] queries

0.66

Python [16] Collected while running the pyper-
formance [12] benchmark suite

4.73

Finagle-chirper [15] Twitter’s microblogging service 4.76
Clang [6] Collected while building LLVM 1.86

B. FLACK: Near-optimal Replacement Policy

We conduct an ablation evaluation of cache miss reductions
by applying the features step by step from our proposed opti-

mization (FLACK) over the original FOO policy and compare
the results of Belady’s algorithm. To avoid the effect of icache
eviction on the micro-op cache due to the cache inclusiveness,
we evaluate them under perfect icache setups to show the
difference. The result is shown in Figure 10. We observe
that the original FOO implementation performs poorly in the
micro-op cache scenario, with results even worse than LRU for
some applications. After incorporating lazy eviction (A-only),
variable cost (A+VC) and selective bypassing (A+VC+SB),
our proposed FLACK significantly outperforms the original
FOO policy and reduces 14.34% misses compared to LRU,
which is 4.46% more effective than Belady’s algorithm. We
will demonstrate the effect of a better offline replacement
policy on the FURBYS in the Section VI-D.

C. FURBYS: Practical Replacement Policy

Miss Reduction. We employ LRU as our baseline and
compare the results of existing replacement policies with our
FURBYS. The outcomes are in Figure 8. As depicted, our
replacement policy reduces misses by an average of 14.34%
compared to LRU. Among the existing policies, GHRP [66]
performs best, yet it only reduces 7.81% of misses, while
FURBYS achieves 57.85% of miss reductions compared with
near-optimal offline FLACK.

Performance-per-watt gain. Our power modeling is based
on McPAT and CACTI, which are widely used frameworks
that take inputs including both static configurations (such
as architecture and circuit technology details) and dynamic
activity statistics (hardware utilization data during runtime) to
predict the power usage [61], [91]. In evaluation, we choose
22nm transistor technology, 3200MHz frequency, and 1.25
core Vdd as static configurations, and feed runtime information
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Fig. 11. IPC Speedup of FURBYS over LRU compared to existing replace-
ment policies on 11 applications. FURBYS achieves an average of 0.47%
IPC speedup, surpassing all baselines.
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Fig. 12. ISO-performance test. FURBYS operate on 512 entries micro-op
cache. The baseline is LRU operating on 512 entries. We enlarge the micro-
op cache for LRU policy to compare IPC and miss reduction. To achieve a
similar IPC gain or miss reduction as FURBYS, LRU need to on average
operate on 50% larger caches. For Postgres, FURBYS beats LRU on caches
with doubled sizes.

from Scarab including icache access, micro-op cache access,
decoder active cycles, backend usages, and other statistics, into
McPAT. As the micro-op cache is not modeled by CACTI by
default, we implement the power model following the same
structure of the icache but with micro-op cache parameters
including size, associativity, etc.

We cross-check our power modeling with existing
works [40], [65] and visualize the per-core power breakdown
of FURBYS with an example application, Clang. As shown
in Figure 13, the baseline without micro-op cache spends
12.5% and 7.7% per-core power on the decoder and icache.
Adding a micro-op cache with LRU provides 8.1% power
saving by bypassing the decoder and icache. FURBYS further
saves 2.2% power by reducing micro-op cache insertion via
the proposed dynamic bypass mechanism. We extend the
evaluation into all 11 applications, as shown in Figure 9.
FURBYS increases the performance-per-watt of the CPU core
by 3.10% compared with LRU, surpassing existing policies by
5.1×. We investigate the breakdown of the reduced energy. As
Figure 14 shows, around 7.75% of performance-per-watt gain
comes from reduced access of icache, 73.26% comes from
fewer insertions of micro-op cache and 16.35% from reduced
decoder usage.

To quantify the real-world impact, we further estimate the
practical benefit of improving 3.10% core performance-per-
watt. According to previous works [38], [39], cores can take
up to 86% of the CPU power. Therefore, 3.10 of core power

reduction can be equivalent to 2.7% of CPU power reduction.
To further convert the CPU power reduction to server power
reduction, prior work [27] reports that CPU power contributes
to 32% of the server power while the server accounts for 80%
of the total energy. Thus, 2.7% of CPU power reduction is
equivalent to 0.69% of the data center power. Given the large
scale of data centers, 0.69% of data center power reduction
can save 5 Twh of energy per year [13].

IPC speedup. We measure the IPC speedup of FURBYS
and baselines compared to LRU as shown in Figure 11. Note
that reducing micro-op cache cache misses only indirectly
improves IPC. While the micro-op cache has lower access
latency than the legacy decode pipeline, the benefit of this
low latency can only be translated into frontend throughput
when the frontend recovers from a branch miss [79]. Moreover,
since only one PW can be released for one cycle, the limited
length of PW hinders the effect of a higher (8 micro-ops
per cycle) fetch bandwidth. As a result, lower miss rates
only partially translate into performance gain. Nonetheless,
our FURBYS achieves 0.49% IPC speedup, which is 60% of
the near-optimal FLACK replacement policy, 28.48% of the
infinitely large micro-op cache and 1.65× to the state-of-the-
art GHRP which corresponds to 0.19% IPC speedup gain. This
improvement is comparable to prior works on profile-guided
icache replacement policies such as Ripple’s IPC gain, which
achieves 46.10% of the optimal replacement policy [54].

ISO-performance Evaluation. We also conduct an ISO-
performance investigation. We draw the miss rate and IPC
of differently sized micro-op cache using the LRU policy in
Figure 12 while comparing it to a 512 entry micro-op cache
with FURBYS. As shown, the size of the LRU-based micro-
op cache must be increased on average by 1.5× to achieve
comparable performance with FURBYS. On some workloads
(e.g. Postgres), FURBYS achieves a performance comparable
to an LRU-cache even with 2× larger entries.

Hardware and runtime overhead. To address concerns
about the additional hardware storage required for our FUR-
BYS replacement policy, we analyze the hardware overhead of
FURBYS. The overhead per set is FURBYS is 46 bits2. The
micro-op cache set size is 4608 bits3. Therefore, the overhead
is only 46 / 4608 = 1%. As on average we are equivalent to
40% cache size gain, 1% overhead is negligible. Furthermore,
Since data center applications have already routinely profiled
with Intel PT [21], [25], [30], [35], [68], [69], FURBYS will
not generate extra online costs from profiling. The first-phase
profiling on baseline configuration described in Section V is
performed in an offline manner.

Cross validation. To demonstrate the effectiveness of
our profile-guided approach, we evaluate whether profiling an
application using one set of inputs can improve performance
for different inputs. As outlined in Section VI-A, we collect PT
traces from data center applications using diverse inputs. These

2(3 bits weight + 2 bits srrip) × 8 way + 2 × 3 bits pitfall detector = 46
bits.

3(56 bits per uop × 8 uop per entry + 32 bits per immediate number × 4
imm per entry ) × 8 way = 4608 bits
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Fig. 14. Average energy reduction breakdown of different applications.
FURBYS reduces significantly more energy from the decoder and micro-op
cache compared with other replacement policies.

traces are then divided into a training set and a testing set.
We profile the training set, group PWs based on their average
hit rates, and generate merged hints for FURBYS. Next, we
simulate the testing set traces to measure the miss reduction
achieved by FURBYS, comparing it to the miss reduction
observed when applying FURBYS to the training set. The
results of this cross-validation analysis are presented in Figure
18. 4 The results show that our approach can achieve 94.34%
of the same-input result, resulting in an average reduction
in misses of 13.51% compared to LRU surpassing the best
performing online policy GHRP.

Replacement coverage. We conducted an experiment to
evaluate the percentage of victim selection made by FURBYS.
When the local miss-pitfall detector detects repetitive evictions
of a PW, it degrades the replacement policy to SRRIP. After
one replacement decision made by SRRIP, it switches back to
FURBYS. Our experiment shows that our FURBYS policy is
responsible for selecting the victim over 88.68% of the time
on average, which showcases the effectiveness of FURBYS.

Bypass coverage. We evaluated the effectiveness of the
dynamic bypass mechanism by showing the miss reduction
difference when enabling/disabling the bypassing in Figure 21.
The results demonstrate that, on average, the bypass mech-
anism can help us reduce 4.33% more misses. We further
check the percentage of bypasses. We show that we can bypass
nearly 30% of total insertions, which contributes to per core

4For MySQL, we need to derive the combined profile considering all oper-
ations, including insert, delete, and other operations, to get good performance.
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Fig. 15. Miss reduction of FURBYS over LRU when using different offline
policies as profile traces. FURBYS gets 3% more miss reduction on average
with FLACK, showing the effectiveness of our FLACK policy.
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Fig. 16. Miss reduction of FURBYS over LRU with various cache sizes
(number of cache entries) and associativities. FURBYS surpasses existing
replacement policies under all configurations.

performance-per-watt gain as shown in Figure 14.

D. Sensitivity Tests

Input traces of offline policies. As discussed in earlier sec-
tions, our FLACK policy exhibits a significant improvement
in performance compared to Belady’s and FOO’s policies,
with an increase in miss reduction of 4.46% and 17.93%,
respectively. In Figure 15, we compare the performance of our
online FURBYS policy using the decisions made by Belady,
FOO, and FLACK. It shows that using our FLACK policy
results in approximately 3.47% fewer misses compared to
using Belady as the profile source and 4.39% fewer misses
compared to using FOO policy. This finding highlights the
effectiveness and importance of using FLACK policy decision
as the training input.

Numbers of weight groups. We conducted an experiment
to determine the optimal balance between the number of
bits grouped by Jenks natural breaks and miss reduction. We
varied the number of representative bits from 1 to 8 (resulting
in total group counts ranging from 2 to 256) to monitor
the changes in miss reduction. As illustrated in Figure 19,
using 3 bits strikes a suitable balance between overhead and
miss reductions. Increasing the number of representative bits
beyond this point does not result in significant performance
gains while increasing the hardware overhead.

Depth of local pitfall detector. To optimize the eviction of
inactive high-hit rate PWs, we use local miss-pitfall detectors
to record previous evictions and change eviction decisions
accordingly. The depth of the detector indicates the number of
previous evictions recorded for potential degradation. In our
experiment, we varied the depth of the detector to evaluate its
effect on performance. The results shown in Figure 20 indicate
that depth 2 is the best choice that we picked.
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Fig. 17. Performance-per-watt gain of FURBYS over LRU with a micro-op
cache of AMD Zen4 configuration. FURBYS surpasses existing replacement
policies under all configurations, with an average 2.41% improvement.

Micro-op cache size and associativity. To demonstrate that
the proposed method generalizes to different micro-op cache
configurations besides AMD Zen3, we evaluate FURBYS
under varying cache sizes and associativities. For simplicity,
we only present the comparison results between our replace-
ment policy and the best existing policy, GHRP. Figure 16
shows that FURBYS consistently outperforms GHRP across
all configurations. As the micro-op cache size increases, the
performance gap between FURBYS and GHRP shrinks due to
the decrease of capacity misses.

CPU frontend configurations. To showcase the effec-
tiveness of FURBYS on energy efficiency for other frontend
configurations(BP, BTP, I-cache, issue width, etc.), we collect
performance-per-watt of different policies on 11 application
with AMD Zen4 configuration as shown in Figure 17. FUR-
BYS acheives 2.41% performance-per-watt gain, surpassing all
other replacement policies. The miss reduction of FURBYS on
Zen4 is also included in the previous sensitivity test of cache
size and associativity.

VII. DISCUSSION

Hardware configurations. This work focuses on the
hit/miss behavior of the micro-op cache. Therefore, we do not
model hardware modules that are not strongly related to the
micro-op cache miss rate, such as FDIP and LLC. However,
precise simulation of these configurations is crucial for future
research on IPC performance. A proper warmup would also
benefit the simulation accuracy. We leave the development of
a more detailed hardware simulator for future work.

Interplay between icache and micro-op cache. Following
current industry standards, we model the micro-op cache as
inclusive of the icache, based on which we find that the
miss reduction of micro-op cache does not proportionally
translate into IPC speedup. However, with a non-inclusive
micro-op cache, FURBYS achieves an average IPC speedup
of 2.5%, surpassing the 0.48% IPC gain observed in the
inclusive setup. This substantial performance improvement is
primarily due to the equivalent increase in icache size enabled
by the non-inclusive micro-op cache and thus reduces the
expensive access to L2 cache. Despite these gains, the non-
inclusive cache design complicates the invalidation of cache
lines for self-modifying code. We leave this trade-off between
performance and hardware complexity for future research.

Better micro-op cache replacement policy. To pinpoint
potential improvement of the micro-op cache replacement pol-
icy, we analyze the performance gap between online policies
and FLACK. We classify all PWs into three categories—hot,
warm, and cold—based on their total access counts. Addi-
tionally, we measure the hit rates of different replacement
policies across these PW categories. As shown in Figure 22,
the performance gap between FURBYS and FLACK mostly
lies in warm and cold PWs. This suggests that a better policy
should consider more globally cold but locally hot PWs.

VIII. RELATED WORK

Micro-op cache study. Despite the fact that micro-op
caches significantly contribute to frontend efficiency, there is
not much work focusing on the study of micro-op cache.
Some works [32], [56], [74] focus on the security issue
of micro-op caches, and on the performance side, CLASP
and compaction [57] solve the fragmentation to increase the
utilization. Besides, [79] investigates how to use prefetch
to boost performance, with energy overhead introduced by
additional decoder. We focus on the replacement policy of the
micro-op cache, which is complementary to previous works.

Replacement policies. Cache replacement policies have
also been extensively studied by the community. Some works
are based on heuristics, for example, [45], [47], [60], [67],
[71], [80] use the recent accesses to predict the future reuse
distance. Others [34], [36], [64] make decisions based on
protecting distance to protect cache lines until reuse. There are
other prediction-based replacement policies [18], [37], [42],
[55], [72], [76], [84], [86]. Some of them use history accesses
to classify cache blocks [44], [52], [92], and others [43], [63],
[78] mimic Belady’s algorithm [22] to generate learning data.
However, all of the above replacement policies are designed
for regular caches and do not incorporate essential features of
micro-op caches. Therefore, we proposed FURBYS for micro-
op cache replacement.

Frontend optimizations. There is a significant body of
work that focuses on improving the frontend efficiency through
optimizations on different microarchitectures. [20], [51], [53],
[58], [59] are recent works that focus on improving perfor-
mance through icache or BTB prefetching. Others [19], [83]
improve performance by optimizing BTB or BP accuracy. We
complement these works by optimizing the energy efficiency
of frontend with a specific target on the micro-op cache.

IX. CONCLUSION

Our study demonstrates that cache replacement policies
hold significant potential for enhancing CPU energy efficiency.
However, existing offline optimal and online practical policies
do not fit the key characteristics of the micro-op cache,
including disproportionate cost, partial hits and asynchrony.
To fill this gap, we propose a new offline replacement policy,
FLACK, tailored for the micro-op cache, which achieves a
higher theoretical miss reduction of 4.46% than Belady. Build-
ing on this new theoretical model, we present FURBYS, which
leverages both whole-execution and transient information to
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Fig. 18. The result of cross-validation. We utilize half of the traces to generate a combined profile and use this profile to evaluate the remaining traces. Our
FURBYS policy achieves a significant portion of the performance compared to using the same-input profile, demonstrating its robustness.
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the number of bits (groups). We chose 3
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Fig. 20. Miss reduction with various
depths of local pitfall detector. We can
see that depth 2 provides the best miss
reduction performance.
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Fig. 21. FURBYS’ bypass mechanism helps reduce 4.33%
more misses compared to the LRU baseline.
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Fig. 22. Hit rate of different PWs with various replacement policies on Kafka.
We first sort PWs based on the access counts, based on which we classify all
PWs into hot, warm, and cold ones. For example, PWs within 10% to 20%
represent ones having top 10% to 20% access times. Results show that all
policies work well on the hot PWs, with less than 1% difference in hit rate.
FURBYS significantly surpasses other online replacement policies for warm
PWs, which explains its overall better miss reduction. The gap between online
replacement policies and FLACK mainly lies in the cold PWs.

mimic FLACK. FURBYS achieves a 1.84× greater reduction
in miss rate than the state-of-the-art replacement policy and
3.10% performance-per-watt gain for CPU cores.
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APPENDIX

A. Abstract

In the artifact, we provide materials and instructions that en-
able the community to reproduce our main experiment results.
This artifact includes our customized CPU simulator scarab
that implements FLACK, FURBYS, and other baselines. We
include the traces collected from data center applications
used for performance evaluation. We also include scripts for
environment setups and evaluations. We provide the required
environments in a docker image for reproducibility and use
Google Drive to share large files like traces and images.

B. Artifact check-list (meta-information)
• Algorithm: cache replacement policy
• Program: Scarab
• Compilation: g++
• Data set: included traces of data center applications
• Run-time environment: Ubuntu 22.04 docker image
• Hardware: High performance CPU machines
• Metrics: miss reduction, performance-per-watt gain
• Experiments: FURBYS and FLACK miss reduction and PPW

gain, perfect structure PPW gain, cross-validation, etc.
• How much disk space is required (approximately)?: 1TB
• How much memory (DRAM) is required?: 512GB
• How much time is needed to prepare workflow?: 0.5h
• How much time is needed to complete experiments?: 36h
• Publicly available?: Yes, via Google Drive
• Code licenses (if publicly available)?: Apache-2.0 license
• Data licenses (if publicly available)?: Apache-2.0 license

C. Description

1) How to access: We provide a docker image with a ready
runtime environment, which can be obtained from the provided
link. The traces can be downloaded from google drive.

2) Hardware dependencies: The artifact does not have
strict requirements for hardware. We recommend using multi-
core CPUs (around 256 cores) and around 500GB of memory
to speed up the simulation.

3) Software dependencies: The artifact includes a docker
for runtime. To reproduce the result, we recommend using
Linux with docker.

4) Data sets: The dataset is provided via Google Drive.

D. Installation

The installation can be divided into several steps:
1) Container setup. First download provided image from

Google Drive and decompress using tar.

1 tar -xvzf uop-ae-image-v1.tar.gz
2 docker load -i uop-ae-image-v1.tar
3 docker run -it uop-ae-image-v1

2) Trace setup: download traces from Google Drive and
decompress it to /code/datacenterTrace.

3) Environment variables setup:

1 cd /code/script
2 source source.sh

4) Simulator setup:
1 bash 1-simulators/run.sh
2 bash 3-power-model/run.sh

5) Profile-guided traces setup:

1 bash 2-prepare-traces/run.sh
2 bash 10-prepare-cross-traces/run.sh
3 bash 5-prepare-belady-traces/run.sh

E. Evaluation and expected results

PPW gain of perfect structures (Figure 2) We com-
pare the performance per-watt (PPW) assuming different
micro-architectures are perfect. The result is located in
4-perfect-arch/power.csv. This should align with
the numbers shown in the figure.

1 bash 4-perfect-arch/run.sh

FURBYS miss reduction, PPW gain (Figure 8, 9) This
experiment shows the main results of the paper. We compare
the miss reduction of performance per-watt (PPW) of FLACK
and FURBYS against existing techniques. The PPW results
are in power.csv and the miss reduction is plotted in folder
plot under 6-furbys-main-evaluation.

1 bash 6-furbys-main-evaluation/run.sh

FLACK ablation study (Figure 10) This experiment shows
the FLACK ablation study. We incorporate different compo-
nents of FLACK to see their impact on performance. The result
is in the plot folder.

1 bash 7-flack-ablation/run.sh

FURBYS cross-validation (Figure 18) We derive FUR-
BYS hints using a set of traces and use the trace to evaluate
the performance of FURBYS on the rest of the traces to
demonstrate the generalization of FURBYS. The result is
visualized in the plot folder.

1 bash 11-cross-validation/run.sh

FURBYS with different input traces (Figure 15) We use
FLACK, FOO and Belady to generate traces for FURBYS and
evaluate its performance. The result is in the plot folder.

1 bash 9-furbys-different-traces/run.sh

ISO-IPC test (Figure 12) We compare the miss reduction
and IPC speedup of FURBYS against LRU with various cache
sizes. The result is in the plot folder.

1 bash 8-iso-ipc/run.sh

https://drive.google.com/file/d/1ZlozJV488WF7rKh4CZHXW0FyhS52Ksh5/view?usp=sharing
https://drive.google.com/file/d/1WUCpIfnjEReiMrH792JfiVDEfHUOUK59/view?usp=drive_link
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