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Abstract-So far, large computing clusters consisting of
several thousand machines have been constructed by
connecting nodes together using interconnect technolo-
gies as e.g. Ethernet, Infiniband or Myrinet. We pro-
pose an entirely new architecture called Tightly
Coupled Cluster (TCCluster) that instead uses the
native host interface of the processors as a direct net-
work interconnect. This approach offers higher band-
width and much lower communication latencies than
the traditional approaches by virtually integrating the
network interface adapter into the processor. Our tech-
nique neither applies any modifications to the processor
nor requires any additional hardware. Instead, we use
commodity off the shelf AMD processors and exploit
the HyperTransport host interface as a cluster inter-
connect. Our approach is purely software based and
does not require any additional hardware nor modifica-
tions to the existing processors. In this paper, we
explain the addressing of nodes in such a cluster, the
routing within such a system and the programming
model that can be applied. We present a detailed
description of the tasks that need to be addressed and
provide a proof of concept implementation. For the
evaluation of our technique a two node TCCluster pro-
totype is presented. Therefore, the BIOS firmware, a
custom Linux kernel and a small message library has
been developed. We present microbenchmarks that
show a sustained bandwidth of up to 2500 MB/s for
messages as small as 64 Byte and a communication
latency of 227 ns between two nodes outperforming
other high performance networks by an order of mag-
nitude.

Keywords-Low latency, interconnect, high bandwidth,
HPC, HyperTransport, AMD, Opteron

I.     INTRODUCTION

In High Performance Computing (HPC) there still exist
Grand Challenges that demand for more powerful, less
expensive and less power consuming machines than cur-
rently available. Since Roadrunner [1] has broken the

petascale barrier in 2008, the HPC industry and scientists
from all over the world are competing to build the first
exascale computer. Analyzing the last ten TOP500 lists [2]
a trend for HPC platforms can be observed. They are mov-
ing from big symmetric multiprocessor (SMP) machines
towards large clusters consisting of thousands of intercon-
nected nodes. The main reasons for this trend are that clus-
ters scale better and that they can use commodity off the
shelf components (COTS) which provide a much better
price/performance ratio than specifically developed SMPs. 

Almost all clusters are x86 CPU based and utilize pro-
cessor hardware from either Intel or AMD. A cluster con-
sists of several nodes which are comprised of one or more
processors, memory and input/output (I/O) devices. To
form a cluster out of such nodes a network interconnect is
required. The traditional technology is Ethernet which is
more and more getting replaced by faster and more effi-
cient interconnects like Infiniband and Myricom. While
network interconnect technology has been improved signif-
icantly over the years in terms of latency and bandwidth, it
still represents the bottleneck of a cluster for many applica-
tions. For example, one of the fastest currently available
implementations, namely the ConnectX Infiniband adapt-
ers from Mellanox [10] achieve a bandwidth of 1.4 GB/s
and an end-to-end latency of about 1.4 us. This is only a
fraction of the amount that modern processors are able to
deliver at their chip interface. In an SMP system, multiple
processors are interconnected by their native host interface
like HyperTransport (HT) in the case of AMD or Quick
Path Interconnect (QPI) in the case of Intel. Such interfaces
are one order of magnitude faster delivering bandwidths of
10 GB/s and access latencies of as low as 50ns [4].

In an SMP machine, threads can communicate very effi-
ciently via shared memory. This requires a cache coher-
ency mechanism [5] like MESI which guarantees data
consistency in the system at all times. While such a coher-



ency model facilitates programmability of shared memory
systems it dramatically limits their scalability. The coher-
ency mechanism requires the exchange of cache state infor-
mation between the processors, which limits the
performance gain. The shared memory approach performs
well for small scale systems of up to 8 or 16 nodes, how-
ever, as the coherency overhead grows with the number of
nodes it cannot be applied to large clusters.

To overcome the disadvantages of the current
approaches we have developed a fundamentally new clus-
ter architecture which we refer to as Tightly Coupled Clus-
ter (TCCluster). TCCluster uses the processor’s host
interface as an interconnection network leveraging its high
bandwidth and low latency characteristics while providing
scalability of up to thousands of nodes without cache
coherency. The key idea we present in this paper is to
divert the coherent host interface between the processors
from its intended use by operating it in a non-coherent
fashion. 

The original use of non-coherent interfaces is to access
I/O devices like southbridges or coprocessors. Our pre-
sented technique, however, enables the use of that interface
as a cluster interconnect to circumvent the scalability limi-
tation of coherent shared memory systems. Instead of being
limited to a small number of nodes our approach allows to
interconnect thousands of machines with the bandwidth
and latency characteristics normally only an SMP can pro-
vide. 

For the implementation of our ideas we chose the AMD
Opteron processor over an Intel based system. The main
advantage of AMD is that their processors use HyperTrans-
port (HT) as their host interface which is an open protocol.
Furthermore, AMD provides comprehensive publicly
available processor documentation in the form of the BIOS
and Kernel Developers Guide (BKDG). AMD also sup-
ports the coreboot project which has the goal of developing
a generic open source BIOS firmware for x86 platforms.

II.     RELATED WORK

Research on high performance interconnects to enable
scalable parallel computer systems has a long history in
computer science. Most approaches apply the message
passing programming model which uses explicit messages
for inter process communication. One of the very first
milestones in this area was the Transputer [6] developed in
the 1980ies. It was specifically designed for parallel sys-
tems and combined the processor with four serial links on a
single chip. The in-built network allowed for very efficient
communication between multiple Transputers which could
be interconnected to form a so called computing farm. In
many aspects our approach is similar to the Transputer
approach, however, we have applied it to modern x86

based systems which dramatically differ from the old
Transputer design. Since then, processor builders like Intel
and AMD have abandoned the idea of incorporating net-
work interconnects directly into their processors, although
this would offer a dramatic increase in performance. 

In [7] Joerg and Henry analyze the benefits of a tightly
coupled processor-network interface which is realized
through additional processor registers. Although this
approach performs well, in contrast to our technique, it
requires a modification of the processor hardware. This is
well known to be very different endeavour. 

More recent approaches like Infinipath [8], Cray’s
XT3’s seastar interconnect [9] and VELO [11] focus on
optimizing the interface between the processor and the net-
work interface. In all three approaches, AMD’s processor
host interface HyperTransport is used to reduce latency and
to increase bandwidth. Although, HyperTransport allows
for a direct connection between the network adapter and
the processor without intermediate bridging, the three
approaches still have a significantly higher latency than our
approach which completely eliminates the additional
latency introduced by the network hardware in traditional
approaches. The network interface which currently (2010)
can be regarded as the state-of the art as it offers very good
performance is the ConnectX Infiniband adapter manufac-
tured by Mellanox. It provides bandwidths of up to 40Gbit
per link and a latency as low as 1.4 us [3].

In addition to the message passing based systems, a lot
of research activities focus on scalable coherent shared
memory based systems. Such systems offer a very good
performance for small systems as they employ a much
faster interconnect in the form of the host interface. Their
biggest disadvantage, however, is their limited scalability.
There exist various approaches which address this issue,
like the virtual shared memory architecture by Li [12], or
the scalable coherent interconnect by Gustavson [13].
More recent approaches, like Horus [14] and 3-Leaf [15],
target modern x86 based systems. They enable large cache
coherent non uniform memory architectures (ccNuma) by
extending AMD’s HyperTransport protocol. By applying a
directory based coherency mechanism they can moderately
increase the scalability to 32 nodes.

All approaches have been focused on either increasing
the performance of the network interconnect or increasing
the scalability of shared memory systems. Neither has been
able to combine the best of the two worlds and to develop a
truly scalable tightly coupled architecture. In order to over-
come these shortcomings, we present the TCCluster mech-
anism which offers the same bandwidth and latency
performance of a shared memory based system while scal-
ing to much larger systems.



III.     BACKGROUND

Most related work as well as our approach targets AMD
instead of Intel processors which provide a significant
advantage. AMD employs an open host interface protocol
called HyperTransport, which is maintained by the Hyper-
Transport consortium. Therefore, before presenting our
approach, an analysis of the AMD Opteron architecture
and the HyperTransport protocol will be provided. The cur-
rent AMD processor family, named K10 [16][17], imple-
ments several components on a single chip. In addition to
the processing elements itself called cores, a processor
node comprises memory controllers, several levels of
cache memory, up to four outgoing HyperTransport links
and a crossbar that interconnects the different components. 

Figure 1.   AMD Opteron Chip Architecture: Multiple modules 
including memory controllers and a crossbar switch are inte-

grated on a single processor chip

Figure 1 shows the AMD Opteron chip architecture of a
processor codenamed Shanghai that implements four cores
that have their individual L1 and L2 caches and a large
shared L3 cache that the cores can use to share data with
each other. Furthermore, it contains an I/O bridge that con-
verts between coherent and non-coherent HyperTransport
packets, a DDR2 memory controller and four HyperTrans-
port links. Those can be used to communicate with off-chip
devices as other processors or as I/O devices.

HyperTransport is a packet based protocol that offers
low latency (approximately 50 ns per hop) and a unidirec-
tional bandwidth of 12.8 GByte/s per link. It has low over-
head, uses multiple virtual channels for deadlock
avoidance and defines fault tolerance mechanisms on the
link level. HyperTransport links can be operated either in a
coherent (cHT) or non-coherent (ncHT) fashion. Coher-

ency is required for multi socket configurations which are
available in two, four and eight socket configurations. The
system shown in Figure 2 combines the physical memory
modules which are connected to each processor to form a
single shared memory address space. Such a system
requires a mechanism like the MESI protocol to ensure
cache consistency. The cache consistency guarantees for
multiple cores that work on the same data values that each
core has the same value in its cache at any point in time.
Every time a data value is modified in a cache or loaded
from main memory the other cores that participate in the
coherent domain have to be informed and probed for a
response. The transaction can only be completed if all
nodes have responded to the probing. While this technique
allows multiple nodes to a share a common memory
address space, its scalability is limited. By increasing the
number of nodes, the number of probe messages is
increased proportionally which costs bandwidth and
latency as the last incoming response pivotal. Furthermore,
as the Opteron processor only contains four links, fully
connected systems are only possible for two and four pro-
cessor configurations. Larger systems have to utilize multi-
hop topologies which increases the latency even further. 

Figure 2.   AMD Based Multiprocessor System: The proces-
sors nodes are interconnected by coherent HyperTransport 
links while the IO devices are attached over non-coherent 

links 

To connect IO devices like southbridges or HyperTrans-
port based accelerators [11] the links are operated in non-
coherent mode. The non-coherent HyperTransport protocol
defines a reduced set of commands which are used to trans-
port data via Programmed I/O (PIO) or Direct Memory
Access (DMA). A typical system that is comprised of mul-
tiple CPUs, two southbridges and a HyperTransport Exten-
sion (HTX) slot is shown in Figure 2. All four CPUs are
directly connected via coherent HyperTransport links. In
addition, the system features two southbridge chips that are
connected to the CPUs via non-coherent links. These chips
allow to attach PCI-Express, USB and SATA I/O devices to
the system, for example network interface adapters. The
HTX slot is a PCI like connector that can be used to attach
ncHT devices [17] with very low latency directly to the
CPUs without any intermediate bridging.
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IV.     APPROACH

AMD based multiprocessor systems are restricted to a
maximum number of eight nodes. The reason for this
restriction is the limited scalability of cache coherency pro-
tocols. To overcome this issue and to enable a much higher
scalability, our approach abandons cache coherency. Multi-
ple nodes are connected via a non-coherent interface that
uses message passing for node to node communication. In
contrast to other approaches like Ethernet or Infiniband,
however, we rely on the system’s host interface directly. As
will be shown later, this provides a dramatic improvement
in terms of bandwidth and latency over the existing
approaches.

Connecting multiple nodes over a non-coherent inter-
face which have their own independent address spaces is a
common method to create large clusters or networks of
computers. The traditional approach uses network interface
cards (NIC) that offer various services to the host. The
most important capability is the routing mechanism which
ensures that a network packet is delivered to the correct
node in the system. Furthermore, a NIC often provides
DMA functionality to retrieve data from the sender and to
deliver it into the receiver’s main memory. Besides data
packetization and sending the packet over the network,
modern NICs often support fault tolerance mechanisms to
ensure reliability and processing of packets in hardware by
offloading certain tasks.

Unlike previous approaches our presented solution does
not require any intermediate NIC hardware and, therefore,
offers superior performance at a reduced cost. Connecting
multiple processors directly with HyperTransport, how-
ever, raises the several challenges. First of all, the commu-
nication mechanisms that can be realized over an ncHT
link have to be analyzed to develop a suitable program-
ming model. Second, it has to be discussed how the links
between two Opteron processors can be operated in a non-
coherent fashion. Third, it has to be analyzed how packets
can be sent over such an interface and how the routing of
packets is performed. Fourth, it is necessary to discuss how
the address mapping is done in such a system. Fifth, sev-
eral issues regarding the operating system which is exe-
cuted on the nodes have to be addressed and it has to be
analyzed how the initial configuration, namely the boot
sequence, can be performed. Sixth, the physical constraints
of a possible implementation have to be defined to enable
the development of a prototype. 

It will be shown that a working proof-of-concept can be
realized utilizing two Opteron nodes with a custom BIOS
firmware, a modified Linux kernel and specific driver soft-
ware. Both nodes are interconnected through a cable
plugged into a HyperTransport Extension (HTX) connector
that can be found on various server mainboards. 

A. Programming Model

To develop a suitable programming model for TCClus-
ter the capabilities of a non-coherent HyperTransport link
have to be analyzed. HT defines three main types of mes-
sage transactions: posted writes, non-posted reads and
responses. While posted writes are completed as soon as
they are sent, non-posted requests require some sort of
book keeping. In HyperTransport read requests are realized
using split phase transactions whereas the read requests are
routed identically to write requests, however, the response
to the request is not. Each read request creates an entry in
the response matching table located in the northbridge and
receives a tag. A matching response will carry the same tag
and can be thereby routed without having to carry an
address. The number of these tags is, however, limited and
they are always mapped to a specific NodeID. This fact
makes it impossible for our approach to route responses
which means that the software can only communicate via
writes and may not use read accesses. While this limitation
sounds critical at first, it is not. It prohibits load/store com-
munication, however, relying on remote stores is perfectly
sufficient to implement the message passing or the global
address space programming model. Also, as our approach
cannot exploit additional hardware DMA, CPU offloading
and interrupts are not supported.

Our approach supports both Message Passing as well as
the PGAS programming model by utilizing remote stores.
To support a Message Passing Interface (MPI) protocol like
MVAPICH [18] an underlying application programming
interface (API) is required that enables sending and receiv-
ing of messages. Within TCCluster, sending is performed
by writing to a specific address that is mapped to a remote
node. The message is delivered via the HyperTransport
interface and written to a ring buffer in main memory at the
target node. Receiving of messages is implemented by
polling the corresponding address on the target node. As
soon as the change in main memory is observed the API
can extract the data from the buffer and copy it into main
memory. It then has to overwrite the slot to free it for fur-
ther use. Periodically, the APIs on the endpoints have to
exchange pointer information to communicate buffer fill
levels and to implement flow control. As there exists no
hardware support for managing messages it is impossible
to share receive buffer space between multiple endpoints.
Therefore, each node has to allocate a 4 KB ring buffer for
each endpoint it want to communicate with. While this lim-
itation prohibits unlimited scalability the approach is suffi-
cient to support hundreds of endpoints. Remote stores can
also be utilized to implement one-sided rendezvous like
communication. In this case data is written directly to the
final destination on the remote node and an additional
queue is used for synchronization and management.



TCCluster is compatible with PGAS implementations
like UPC over GASNet. Whereas the data transfer (relaxed
consistency operations) is straightforward, global synchro-
nization messages implemented through remote stores are
used to enforce strict sequential consistency. They can be
realized through API managed software barriers. The
HyperTransport fabric guarantees in-order delivery for
packets within a single virtual channel throughout the net-
work whereas the Sfence operation can be used as a serial-
ization instruction to enforce sequential consistency in the
processor. A detailed discussion of the software implemen-
tation on top of TCCluster is out of scope of this paper and
we will focus on the mechanism itself in the following.   

B. Non-coherent Configuration

HyperTransport links between two processors are gener-
ally configured as coherent. As soon as the Opteron proces-
sor emerges from its reset state it enters the low level
initialization and begins to configure its HyperTransport
links. Therefore, it drives some specific data patterns on
the wires trying to detect another device that may reside on
the other side of the link. If both endpoints conform to that
sequence the link connection is established. Then, both
endpoints identify themselves as a coherent or non-coher-
ent device to determine the type of the link. In the case of
two Opterons the link type will be coherent and the boot
strap processor (BSP) can now use this link to configure
itself and all other devices in the fabric.

TCCluster requires non-coherent links between the pro-
cessors. While this mode is not intended nor referenced in
any of the processor or HyperTransport specifications it is
still possible to enforce such a behavior. The processors
implement a specific register for debug purposes enabling
non-coherent operation. This possibility is exploited by our
approach. After the initialization phase the HyperTransport
links are configured coherent which enables the BSP to
access and set the debug register. The modifications
become effective at the next warm reset which causes a re-
initialization of the link, at which time, the processors iden-
tify themselves as non-coherent devices. This technique
allows to enforce a non-coherent link between processors.

C. Routing

The Opteron northbridge performs different routing
tasks depending on the source and the destination of a
packet. If the packet was received from an IO link and tar-
gets main memory it is forwarded to the IO bridge which
converts the non-coherent packet into a coherent packet. A
coherent packet is either forwarded to the on-chip memory
controller or to an outgoing HyperTransport link if the
physical memory address resides on another node. Coher-

ent packets that target an IO link are also forwarded to the
IO bridge which converts it into a non-coherent packet and
forwards it to the corresponding IO link. Non-coherent
packets originating at an IO link that target another IO link
are simply forwarded without bridging. 

The routing process itself is split into two stages. The
first step is to compare the address of every packet against
the DRAM and MMIO address ranges which are defined
by base/limit registers. This lookup returns the NodeID
which defines the home node of the requested DRAM or
I/O address. This NodeID then indexes the routing table
which returns the corresponding HyperTransport link to
which the packet should be forwarded. MMIO accesses
which target an IO device that is connected to the local
node are treated different. In this case the destination link is
directly provided by the base/limit registers without the
need of indexing the routing table. This fact is exploited by
our approach which assigns NodeID zero to every node in
the TCCluster and which maps every MMIO address range
to NodeID zero as well. With this setup every northbridge
believes to be the home node of any packet, thereby,
directly forwarding it to the outgoing HyperTransport link.

D. Address Mapping

A regular Opteron based shared memory system con-
sists of multiple processors with individual physical mem-
ory modules attached to each processor. The complete
physical memory is aggregated to form a single shared
physical address space and each processor has an identical
memory map. In a TCCluster parts of the local physical
memory are made accessible for remote nodes. This mem-
ory area can then be used to exchange messages between
the nodes. In TCCluster local memory is treated as DRAM
and remote memory is treated as MMIO space. This
requires a different and unique address map for each node
as depicted in Figure 3.   

Figure 3.   TCCluster Address Map: Both nodes have a differ-
ent view of the TCCluster address space. 
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Write accesses from Node0 to the address range 1000-
1FFF result in a local physical memory access. The same
address range accessed by Node1, however, results in a
network package that is transmitted over a non-coherent
TCCluster link towards Node0. One can see that the
address map presented in Figure 3 shows a contiguous glo-
bal address space ranging from 1000 to 6FFF. A contigu-
ous address space is necessary as the northbridge
implements interval routing mechanism which can only
map single contiguous address intervals to each outgoing
HyperTransport link. Memory holes within a node specific
address space are, therefore, impossible. If a system desires
to provide only parts of the local memory to remote nodes,
the driver has to restrict the address ranges that can be
mapped into user space by remote nodes. Current Opteron
processors support a physical address space of 48 bits.
Therefore, the combined global address space in TCCLus-
ter is currently limited to 256 Terabyte. Future AMD pro-
cessors will increase the supported physical address space
to 52 bit and beyond.

E. Initialization

Before computer systems are able to execute software
and to run an operating system, they have to be initialized
through BIOS firmware. Therefore, code that resides in
non-volatile flash memory is executed by the processor to
setup all devices in the system. In an AMD environment
the code is retrieved via the southbridge which is con-
nected to the BSP via a non-coherent HyperTransport link.
In a multiprocessor setup one processor is assigned the
Boot Strap Processor (BSP) which configures itself at first
and then traverses its HyperTransport links to find the other
Application Processors (APs) and I/O devices. Before the
BSP is able to configure the routing tables in the processors
it has to determine the topology of the system. This can be
done either in a static way by passing the topology descrip-
tion to the firmware at compile time or dynamically at runt-
ime. Therefore, the processor performs a depth-first search
for all APs. After system reset each NodeID register in
each AP is initially set to seven. If the NodeID register is
still seven, the BSP knows that it hasn’t visited that specific
node yet, so it assigns a new NodeID to the AP and config-
ures its routing table entries accordingly. The final topol-
ogy then consists of a structure of all nodes and the
HyperTransport links interconnecting them.

TCCluster introduces a new system type where multiple
processors are interconnected via HyperTransport I/O
links. In principle, each individual processor resides in its
own coherent domain and, therefore, represents its own
bootstrap processor. An individual southbridge for each
processor is undesirable as it is costly and occupies a
HyperTransport link which could be otherwise used as a

network link. To approach this problem we introduce the
notion of Supernodes. A Supernode consists of four or
eight processors which are interconnected through coherent
HyperTransport links and form a shared memory system.
Figure 4 shows how multiple Supernodes can be connected
via non-coherent TCCluster links to other Supernodes. A
Supernode defines a single combined remote MMIO space
which is spread over the different processors inside the
Supernode. Therefore, a Supernode is addressed as a single
entity making it completely transparent to the TCCluster.    

Figure 4.   Four Interconnected Supernodes: Each Supernode 
contains a southbridge connected to the BSP which config-

ures the other application processors.

Within such a system each Supernode is configured
individually by its BSP. Therefore, each BSP needs a topol-
ogy description and its rank within that topology to be able
to configure the address map registers accordingly. In addi-
tion the Supernodes have to implement a common clock
and a synchronized warm reset. A possible solution is to
distribute the clock over each link and to use a PLL in each
Supernode to build a truly synchronous system. This can be
realized through a backplane which interconnects the vari-
ous Supernodes.

F. Physical Implementation

Our proposed approach enables tightly coupled clusters
from commodity off the shelf hardware. All main compo-
nents including processor, memory and I/O are available,
however, it is necessary to develop a proper mainboard and
backplane which provides the processor interconnect. In
contrast to traditional systems where nodes are connected
via network cards, cabling and switches, TCCluster utilizes
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the processor internal links directly. A possible TCCluster
implementation therefore consists of several multi proces-
sor mainboards that act as Supernodes which are intercon-
nected via TCCluster links through a backplane. 

There exist two physical constraints that aggravate the
design of such a backplane. First, AMD Opteron proces-
sors that communicate via HyperTransport require a meso-
chronous link clock that is derived from the same
oscillator. Second, physical trace length of the links
between two processors is limited to 24 inches. 

A solution for the first issue is relatively simple. As the
input clock of all processors has to be mesochronous (same
frequency) but not synchronous (same frequency and
phase) it is sufficient to employ a single clock for the com-
plete system which is then fanned out to the different pro-
cessors via clock distribution ICs. Jitter cleaners can be
applied to compensate for the jitter that is introduced by the
backplane traces.

To solve the second issue it is required to match the
topology of TCCluster with the location of the Supernodes
within the system. For an nxn mesh the distribution that
minimizes trace length between the Supernodes would be
to employ n Supernodes in the horizontal axis and n Super-
nodes in the vertical axis. A blade type rack server where
the nodes are arranged vertically next to each other and
then stacked in multiple rows provides a very balanced dis-
tribution of nodes in the x and y axis. Furthermore, the
trace length limitation is specified for copper traces on FR4
PCB material. Coaxial copper cables can provide much
better signal integrity and fewer resistive loss enabling
longer trace lengths as defined by the specification. 

V.     PROOF-OF-CONCEPT

The discussion in the previous paragraphs motivates a
real world implementation of TCCluster. However, design-
ing a complete mainboard and backplane interconnect is an
extremely challenging and cost intensive task. Thus, we
opted for a proof-of-concept implementation which can
prove the merit of our work. This approach allows us to
focus on developing the required firmware and software for
implementing TCCluster which is already a very complex
task. In particular, we built two different prototype sys-
tems. 

The first consists of a single Tyan S2912E mainboard
which provides two processor sockets, both populated with
AMD quad core Shanghai processors. The mainboard pro-
vides two HyperTransport links between processor Node0
and processors Node1 which can be aggregated to a dual
link. A third HyperTransport link is routed from Node0 to
the southbridge chip which interfaces to I/O and provides
the BIOS firmware. A forth link is routed from Node1 to an
HTX slot. Using this setup we configured one of the HT

links between the processors as a TCCluster link and the
other as a regular coherent HT link. The coherent link
allowed us to access the Node1 from BIOS firmware which
is required to modify the processor registers and to execute
code. As a TCCluster link is write only the coherent link
allowed us to check whether our approach actually works
and whether we can successfully transfer data over the
TCCluster link.   

The second prototype consists of two Tyan S2912E
motherboards interconnected via an external TCCluster
link as shown in Figure 5. Therefore, we designed a cable
which plugs into the HTX slots on both boards intercon-
necting them via a direct HT link. For this installation it is
required to run the modified firmware on both machines
and power them up simultaneously. This can be achieved
by short-circuiting both reset and power up signals from
the two machines. For both approaches the BIOS firmware
we developed is nearly identical. 

Figure 5.   TCCluster Prototype consisting of two Tyan 
machines interconnected by our HTX cable adapter.

As a foundation for our code we use coreboot, also
referred to as LinuxBIOS, which is an open source BIOS
firmware project that already supports many AMD and
Intel platforms. We first applied modifications to support
the new Shanghai processors and then rewrote most part of
the coherent and non-coherent link enumeration code to
implement the following sequence which configures an HT
link as a TCCluster link.

• Cold Reset: Both platforms come out of cold reset
simultaneously and perform their HyperTransport low
level link initialization. The TCCluster link gets con-
figured as coherent.

• Coherent Enumeration: Both platforms perform the
usual boot sequence including coherent link enumera-
tion. At this point the TCCluster links are still config-
ured as coherent which would cause the regular



firmware to perform a search for all coherent links
thereby building the system topology. The modified
TCCluster firmware avoids this by ignoring such links
and only performs coherent link enumeration for the
nodes within a Supernode.

• Force Non-Coherent: Each TCCluster link in the sys-
tem is forced into non-coherent mode. Furthermore,
the link speed is increased from 400 to 4.800 Mbit/s.

• Warm Reset: Both platforms or nodes issue a warm
reset, which results in another low level link initializa-
tion. The modified settings now become effective and
the TCCluster link gets configured as non-coherent.

• Northbridge Init: Both platforms configure their north-
bridge including nodeID, DRAM address range,
MMIO address range registers and routing registers as
described in the previous paragraphs. For the first pro-
totype, reconfiguration is performed via the coherent
link between Node0 and Node1, in the second setup
each machine configures itself individually.

• CPU MSR Init: The Memory Type Range Registers
(MTRR) on both nodes are reconfigured to map a
large uncachable address space to the TCCluster
MMIO link. This causes the processor’s system
request queue to generate non-coherent posted HT
packets which are required for TCCluster.

• Memory Init: The machines initialize their memory
controllers and report the size and type of memory
which is attached to the processors.

• EXIT CAR: Until now the firmware is executed in
cache as RAM (CAR) mode which means that the
code is fetched from the firmware ROM and the L3
cache is treated as memory. At this point the system is
comparatively slow as the performance is limited by
the read bandwidth of the ROM. To exit CAR, the
firmware is copied into main memory and the program
counter gets pointed to main memory.

• Non-Coherent Enumeration: The processors intercon-
nected by a TCCluster link appear as non-coherent
devices which causes regular firmware to perform I/O
device enumeration for this link. This needs to be dis-
abled for each TCCluster link.

• Post Initialization: The firmware performs TCCluster
independent tasks and loads the operating system

• Loading Operating System: After the firmware config-
uration is completed the operating system, in our case
Linux, can be loaded. The OS also switches the system
from 32 bit protected mode into 64 bit user mode. 

• Enabling Remote Access: The device driver maps the
remote address range as memory mapped IO and pro-
vides access to the API.

• Data Transmission: The API requests page wise mem-
ory mapping of remote addresses into user space. User
software can now access remote memory.

• Data Reception: On the remote node the same physical
memory address, which is DRAM based in this case
has to be mapped into user space which allows receiv-
ing data from remote nodes.

VI.     EVALUATION

To evaluate the TCCluster interconnect we provide soft-
ware microbenchmarks that show the latency and band-
width performance of our technique. We developed a
Linux driver which can map remote TCCluster memory
addresses into the user space and a rudimentary message
library which can be used to send and receive messages. As
the operating system we run Linux with a custom 2.6.34
kernel. We needed to compile our own Kernel to comply
with a limitation of TCCluster caused by interrupts. Within
the HyperTransport fabric interrupts are broadcasted to
inform coherent and non-coherent devices within the sys-
tem about specific events. It is required to avoid broadcast-
ing of interrupts over TCCluster as interrupts have to be
handled within the system and must not be send over the
network. Therefore, all system management calls (SMC)
need to be disabled which can be only achieved with a cus-
tom kernel. 

The user space message library provides the following
functionality. It can open local and remote memory
addresses by calling the TCCluster device driver. The send
function can then be used to transfer data to remote mem-
ory addresses. The receive function is called on the remote
side to receive data from local memory. TCCluster transac-
tions cannot generate cache invalidation requests on the
receiver side. Therefore, the receiver needs to map the
local memory which is accessible by the remote nodes as
uncachable. This guarantees that all reads to remote node
accessible memory bypass the cache and directly target
main memory. Although, this approach generates addi-
tional processor-memory bus overhead when polling the
memory it is the only way to guarantee that incoming data
is seen by the processor.

The message library will offer support for synchroniza-
tion primitives using the Sfence machine instruction.
Sfence enforces a strict ordering between store transactions
which can be utilized by the library to implement a syn-
chronization mechanism. The message library provides the
basis for higher level middleware. In principle, partitioned
global address space (PGAS) implementations like GAS-
Net or message passing protocols like MPI can be realized
on top of our library, although, their support is out of scope
of this paper.

In the following we present the latency and bandwidth
performance of a two node system interconnected by a sin-
gle bidirectional TCCluster link as shown in Figure 5. We
used four Shanghai quadcore Opterons with 4 MB L3



cache running at 2.8 GHz and equipped with 8 GByte of
main memory per node. Although, the processors, support
16 bit wide links with up to 5.2 Gbit/s per lane, due to sig-
nal integrity issues of our cable based approach we support
only frequencies of up to 1.6 Gbit/s per lane. Future imple-
mentations that offer better cabling or routing the TCClus-
ter links over a backplane will support higher frequencies
and increased performance. Our approach makes intensive
use of the write combining capability to generate maxi-
mum sized HyperTransport packets which reduce the com-
mand overhead. Therefore, multiple 64 bit store
instructions are collected in the write combining buffer and
sent out as a single packet. 

Figure 6.   TCCluster Bandwidth 

Figure 6 shows the bandwidth of a 16 bit wide TCCLus-
ter link running at HT800 which equals 1.6 Gbit/s per lane.
Our message library supports two different send mecha-
nisms which are both shown in the graph. The first mecha-
nism guarantees strictly ordered data transport by flushing
the write combining buffers immediately. Therefore, after
each cache line sized store operation an Sfence instruction
is triggered. Sfence performs a serializing operation on all
store instructions that were issued prior the Sfence instruc-
tion which introduces overhead limiting the write perfor-
mance to 2000 MB/s. Higher bandwidth can be achieved
with weakly ordered writes. In this case no fence operation
is issued and the write combining buffers are flushed auto-
matically in the case of a buffer overflow. In this case
TCCluster provides a sustained bandwidth of 2700 MB/s.
The peak bandwidth of 5300 MB/s that can be observed at
256K leverages caching structures within the Opteron and
does not reflect the bandwidth performance of the TCClus-
ter link. The Opteron provides eight write combining buff-
ers which support a very high data rate. As we trigger no

Sfence instructions the store queue can fill all write com-
bining buffers before the outgoing TCCluster link becomes
the bandwidth bottleneck. Weakly ordered writes as pro-
vided by the second mechanism are sufficient for most pro-
gramming models as long as a serialization function as
Sfence exists. For many data transfers ordered delivery of
the message segments is not required as long as the a syn-
chronization operation exists that can finalize the transac-
tion.

As a baseline, the Infiniband ConnectX network adapter
from Mellanox can be referenced [10]. It provides an MPI
bandwidth of 2500 MB/s for 1 MB messages, 1500 MB/s
for 1K messages and 200 MB/s for cacheline sized mes-
sages. Although, our evaluation does not include the over-
head of the MPI middleware it can be seen that TCCluster
provides a significant performance edge over Infiniband
especially for small messages.

In the second microbenchmark we measured the com-
munication latency that can be achieved with our approach.
We used a standard ping pong kernel whereas the receive
node polls a specific memory location and sends back a
response as soon as the first message arrives. As shown in
Figure 7, TCCluster provides a very low half-round-trip
latency for 64 byte packets between two nodes of 227 ns.
Even for 1 KByte messages the latency is still below 1 us.
Other high performance networks like Infiniband currently
achieve end-to-end latencies of around 1 us for minimal
sized packets which leads to a 4X performance advantage
for TCCluster. We also measured multi-hop latencies by
binding the benchmark process to different processor sock-
ets using numactl and comparing the results. It could be
observed that each hop increases the end-to-end latency by
less then 50 ns. This low latency guarantees scalability of
TCCluster as networks consisting of many nodes can still
communicate with low end-to-end latency. 

Figure 7.   TCCluster Latency 
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VII.     CONCLUSION AND OUTLOOK

We presented a novel technique named TCCluster for
interconnecting large cluster systems by utilizing the pro-
cessor host interface as a direct network interconnect. By
virtually placing the network interface into the processor
we achieve much higher bandwidths and lower latencies
than traditional interconnects as Ethernet and Infiniband.
Our approach does not require any hardware modifications
and is realized entirely through firmware and software
modifications. In particular, the HyperTransport host inter-
face implemented in any AMD Opteron processor is
exploited and reconfigured as a network interface. Our
solution achieves an outstanding software-2-software net-
work latency of 227 ns and a bandwidth of more than 2500
MByte/s for 64 Byte messages.

The next step in our work will be to port a middleware
software layer like MPI or GASNet on top of our simple
message library. This will enable to run more complex
applications on the TCCluster system and to benchmark
their performance.
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