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ABSTRACT
Flash-based solid state drives lack support for in-place up-
dates, and hence deploy a flash translation layer to absorb the
writes. For this purpose, SSDs implement a log-structured
storage system introducing garbage collection and write-
amplification overheads. In this paper, we present a machine
learning based approach for reducing write amplification
in log structured file systems via death-time prediction of
logical block addresses. We define death-time of a data el-
ement as the number of I/O writes before which the data
element is overwritten. We leverage the sequential nature
of I/O accesses to train lightweight, yet powerful, temporal
convolutional network (TCN) based models to predict death-
times of logical blocks in SSDs. We leverage the predicted
death-times in designing ML-DT , a near-optimal data place-
ment technique that minimizes write amplification (WA) in
log structured storage systems. We compare our approach
with three state-of-the-art data placement schemes and show
that ML-DT achieves the lowest WA by utilizing the learnt
I/O death-time patterns from real-world storage workloads.
Our proposed approach results in up to 14% reduction in
write amplification compared to the best baseline technique.
Additionally, we present a mapping learning technique to
test the applicability of our approach to new or unseen work-
loads and present a hyper-parameter sensitive study.
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1 INTRODUCTION
Modern flash-based solid-state drives (SSDs) present as a
high-performance and cost-effective storage solution, pro-
viding terabytes of capacity, over a million I/O operations
per second (IOPS), and sub 100𝜇s read latency [24, 31]. How-
ever, SSDs suffer from limited endurance due to wear out. In
particular, the existing 3D NAND and quad-level-cell-based
SSDs support between 5K-50K write/erase cycles [43], which
if exceeded, may result in data loss. Thus, it is imperative to
minimize the number of writes applied to a flash cell.
Unfortunately, SSDs suffer from the problem of write-

amplification due to lack of support for in-place updates. In-
stead of overwriting the data directly in-place, SSDs need to
first perform an erase operation, before another program op-
eration (erase-then-write) can occur. Furthermore, erase op-
erations are performed at the granularity of blocks, whereas a
block can hold multiple 4K pages (the unit of writes). As a re-
sult, SSDs support updates by implementing a log-structured
storage mechanism [35, 39], where overwritten pages are
appended to an open block. A logical-to-physical (L2P) trans-
lation table maps logical block addresses (LBA) to physical
locations in the flash chips. When an LBA is overwritten, the
L2P is updated so that the LBA points to the new physical
location of the page, invalidating the old physical location
of the LBA. When an SSD exhausts its blocks, garbage col-
lection (GC) cleans up the blocks by moving valid pages to
other free blocks, inducing write amplification in the process.
Write amplification is problematic for two reasons. First, by
introducing additional writes, the lifetime of the SSDs is re-
duced. Second, the extra GC writes introduce performance
interference by delaying the regular user reads.
The magnitude of write amplification (WA) in SSDs de-

pends on two factors, particularly, the mapping mechanism
deployed by the flash translation layer (FTL) and the write
patterns. For applications that exhibit sequential write pat-
terns with uniform write frequencies across LBAs, WA tends
to be low, as there is a high probability that LBAs within
the same block are overwritten with temporal proximity.
However, for most applications, the write frequency of LBAs
follow a highly skewed distribution, as shown in Figure 1 for
a virtual desktop trace (VDI) application. As a result, prior
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Figure 1: LBA write frequency distribution for VDI

work [12, 23, 26, 30, 34, 38, 50, 51] focused on reducing WA
by optimizing the data placement policy within FTL. For
instance, by separating the frequently written LBAs (hot)
from rarely written LBAs (cold) and placing them into dif-
ferent blocks, write amplification can be reduced. The key
idea behind these techniques is that placing the LBAs with
similar write frequencies on the same block increases the
likelihood that all LBAs within that block will be overwritten
by the user-writes with temporal proximity.

We observe that while temperature-based techniques can
reduce write amplification, they cannot eliminate it. We
propose Oracle-DT , a novel mechanism that utilizes the
death-times of LBAs to eliminate write amplification in log-
structured storage, such as in SSDs.Hereby, the death-time
of an LBA is defined as the number of I/O writes before said
LBA is overwritten. By allocating the LBAs with consecu-
tive death-times into the same block, write amplification can
be eliminated. Proposed Oracle-DT requires perfect future
knowledge about death-times and a potentially large number
of concurrently opened blocks. As these requirements are im-
practical, we also propose ML-DT , a mechanism leveraging
machine learning to predict the future death-times of LBAs.
We evaluate ML-DT using VDI, TPC-H, and RocksDB appli-
cation traces and show that it can reduce write amplification
by up to 14% over prior work.

To sum up, this paper makes the following contributions:
• Oracle-DT , a data placement strategy that eliminates
write amplification

• ML-DT , a practical approach leveraging death-time
information to minimize write amplification

• Evaluation of machine learning techniques to predict
LBA death-times

• Experimental evaluations showing up to 14% improve-
ment over prior work

• Exploration of mapping learning techniques to gener-
alize machine learning models across applications

2 BACKGROUND
In this section, we first introduce the write amplification
problem in log structured storage systems and then discuss
prior techniques for reducing write amplification.

2.1 Write Amplification Problem
In log-structured storage systems such as an SSD, data is
not updated in-place, but instead, appended to a log. The log
maintains multiple versions of the same data. To bound the
storage capacity of log-structured storage systems, GC needs
to be performed to remove the overwritten data elements
from the log. Furthermore, a level of indirection (mapping
table) is required to map logical data elements to their most
recent physical location in the log. The most recent version
of a logical data element is considered as valid, whereas all
other versions are considered as invalid. In SSDs, the log is
constructed of blocks which hold multiple pages referring
to the unit size of a write. As a result, garbage collecting a
block requires all valid pages to be moved to a new block,
and only then the cleaned block can be erased. Moving pages
during this process induces write amplification. There exist
two common techniques to choose a victim block for GC.
Greedymechanisms [11, 14] choose the blockwith the lowest
number of valid blocks. Cost-benefit mechanisms [14, 15]
consider the future writes that may invalidate additional
pages before choosing a victim block. In a fresh SSD, all
blocks start out as free-blocks. Written pages are appended
to an open-block and when the block is fully written, it is
regarded a closed-block. As pages are overwritten, closed-
blocks contain an increasing number of invalid pages. When
the GC mechanism has cleaned a block, it is added back to
the list of free-blocks.

2.2 Hot-Cold Separation
Temperature-based techniques such as hot-cold separation,
have been proposed to alleviate the write amplification prob-
lem. These techniques maintain multiple logs (open blocks
in an SSD) and map LBAs to blocks based on their update
frequency. These approaches distinguish between the user-
writes issued by the application and the GC-writes issued
internally by the GC mechanism for cleaning blocks. These
mechanisms group frequently written pages into the same
block to reduce the average number of valid blocks within a
hot block, thus reducing GC inducedWA. This technique can
be extended bymaintainingmore than two open blocks repre-
senting the temperature of its contained pages. For instance,
when a hot page is garbage collected, it is first demoted to a
warm block and if a page is garbage collected from a warm
block, it is further demoted to a cold block. Temperature-
based methods do not incur any metadata storage overheads
besides tagging each block based on its temperature.
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2.3 Frequency-Based Approaches
Frequency-based approaches [26, 34, 43, 50] differ from hot-
cold separation, as they measure the update frequency of
LBAs directly, instead of inferring the temperature from
the block in which the LBA is currently residing in. These
approaches map each LBA to a specific stream and then
assign an open block to each stream. Frequency-based ap-
proaches can react faster to workload changes compared to
temperature-based techniques, however, they induce extra
overheads for learning the update frequency of a given LBA.
Multi-stream SSDs [20] have been deployed to leverage this
technique.

3 DEATH-TIME TECHNIQUE
We propose a novel placement mechanism for log-structured
stores that minimizes write amplification. While in this sec-
tion, we focus on SSDs, our technique can be applied to
other log-structured stores as well. Our approach leverages
death-time of an LBA, defined as the number of I/O writes
before said LBA is overwritten. By grouping LBAs with sim-
ilar death-times into the same block and assuming there are
sufficient number of concurrently opened blocks, a write-
amplification of 1 can be achieved, which represents an ideal
data placement strategy. The idea of grouping blocks using
death-times has been proposed before for the application
layer [17]. In contrast to this work, we leverage death-time
within the FTL, transparently to the user, for minimizing
write-amplification. We introduce the basic operating prin-
ciple of our death-time aware placement technique with an
example shown in Table 1. In this example, we assume an
SSD where each block can contain only two LBAs and we
observe writes to three different LBAs, A, B and C. In Table 1,
the first row shows the elapsed time, the second row shows
the write sequence of LBAs, and the third row shows the
absolute death-time for each LBA write. Rows 4 through 6
show three different allocation policies and how they place
LBAs into blocks. Every unique block being used is repre-
sented by a color. Furthermore, the rows show the number
of blocks in use at every time step. The policies strive to uti-
lize as few blocks as possible to minimize overprovisioning,
respectively write-amplification.
The fourth row shows how a conventional baseline FTL

that applies writes sequentially to a single open block absorbs
the write sequence. The first two blocks are written into the
orange block. At time 3 the orange block is closed and the
blue block is opened. At time 5, the orange and blue closed
blocks still contain valid LBAs (based on death-time infor-
mation on 2nd row). As a result, the green block is opened
absorbing the next writes. At time 7, the blue block can be
reused as all LBAs within it have been overwritten. This
policy requires three blocks to absorb the write sequence.

Time 1 2 3 4 5 6 7 8
LBA C A B B C B A A
Death-Time 5 7 4 6 97 98 8 99
Baseline 1 1 2 2 3 3 3 3
Frequency 1 2 2 3 3 3 3 3
Oracle-DT 1 2 2 2 2 2 2 2

Table 1: Baseline vs. Frequency vs. Oracle-DT Policy

The fifth row in Table 1 shows the operation of a hot-cold
frequency-based allocation policy. LBA C is considered a cold
LBA, whereas A and B are considered hot LBAs. As a result,
at time 1, C is placed into the orange block, whereas A and B
are placed into the blue block at times 2 and 3 respectively. At
time 4, the blue block is closed and a new hot block (green)
is opened. At time 7, both A and B within the blue block
have been overwritten, enabling to reuse the blue block at
time 7. This policy requires three blocks to absorb the write
sequence.

The sixth row of Table 1 shows how the death-time alloca-
tion policy places LBAs into blocks. LBA C, written at time 1,
and LBA B, written at time 3, have have similar death-times
of 5 and 4 respectively and are hence placed into the orange
block. The LBAs written at time 2 and time 4 are placed
into the blue block. At time 5, the death-times of all LBAs
in the orange block have elapsed and hence it can be reused.
Oracle-DT minimizes the number of blocks currently in use
requiring two blocks to absorb the write sequence.
Frequency-based policies suffer from the fact that they

classify hot and cold blocks in advance. Oracle-DT on the
other hand, ignores the write frequency of individual LBAs,
potentially placing hot and cold LBAs into the same block
as long as they share a similar death-time. In Section 5, we
show that a death-time policy with perfect future knowledge
(Oracle-DT ) and sufficient concurrently opened blocks can
provide an ideal write amplification of 1.

3.1 Death-Time Analysis
While Oracle-DT eliminates write amplification, it is imprac-
tical, as it requires perfect knowledge of future writes. It
also requires a large number of open blocks at the same
time to capture the variability of death-times. This is illus-
trated in Figure 2 showing the LBA death-times for a write
access sequence for the VDI application. Death-times vary
significantly and hence a large number of concurrently open
blocks is required to capture all active death-times. To ad-
dress these limitations, we devise a practical solution, by
predicting the death-times of LBAs with a machine learning
technique and then mapping the death-time ranges to a fixed
number of open blocks. Our proposal is based on the analysis
of over 700 million written LBAs from 10 real-world traces
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from the SNIA repository (VDI [49], RocksDB [49], and tpc-h
benchmark (MonetDB)) [29, 44], from which we make the
following observations.
(1) Real-world workloads exhibit skewed write patterns

(see Figure 1) where a significant number of I/O write
accesses are covered by only a few LBAs. As a result,
the distribution of LBAs has a long tail.

(2) The death-times of LBAs vary widely, from a few I/Os
to thousands of I/Os (see Figure 2). Separating I/O
streams based on death-times enables the invalidation
of pages within a block solely via user-writes.

(3) User-writes originating from similar locations and
time tend to have similar death-times in line with prior
work [46], [50]. Hence, the LBAs of I/O writes can be
used to separate streams of data with similar death-
times together within the same open block.

(4) Real-world workloads often contain multiple jobs run-
ning in parallel, causing interleaved write patterns
[2, 3, 8, 16] and death-times.

(5) For a given LBA, death-times change over time. There-
fore, using prior history of assigning LBAs to blocks
can be inefficient, resulting in higher WA.

(6) The requested I/O sizes for the analyzed real-world
applications range from 4KB to several MBs, with up
to 10,000 different I/O sizes for an individual applica-
tion, motivating a technique that considers I/O size for
computing death-times [8].

Figure 2: Death-time variation over time

3.2 Learning Death-Time Patterns
Based on the observations above, we developed a machine
learning based technique to predict future LBA death-times.
As shown earlier, the death-time patterns follow a skewed
distribution which depends on both the spatial and temporal
properties of I/O write accesses. Furthermore, I/O accesses
are sequentially dependent on each other and follow a sparse
distribution. Sequence models for time-series data have been
shown to be effective in leveraging the spatial and temporal

patterns. Some sequence models, such as LSTMs [18] and
GRUs [1], also have an attached memory which allows the
models to look at recent previous writes to generate effec-
tive predictions. We train the machine learning models on
real-world trace data. The traces were pre-processed by first
removing all the read operations and then determining the
death-time for each write operation. Without loss of gener-
ality, we express death-time as a monotonically increasing
counter that is incremented at every write. We express the
problem of predicting the next death-time of an LBA (Next-
DT) as a sequence learning problem utilizing three main
features: (1) the logical block address, (2) the I/O size, and (3)
the previous death-time (Prev-DT) of an LBA.

Next-DT. The goal of ML-DT is to accurately predict the
death-time of a written LBA. As an SSD block contains mul-
tiple (e.g., 64) LBAs, each block covers a death-time range.
Furthermore, as the number of open blocks in a practical SSD
is limited, we cannot assign an open block to each existing
death-time range. As a result, we partition the death-times
into 𝑁 ranges where 𝑁 reflects the number of open blocks.
Instead of predicting the exact death-time for each LBAwrite,
we only predict the death-time range, corresponding to the
block that the LBA should be written to. The number of out-
put labels (next-DT) is hence equal to the number of open
blocks offered by an SSD.

Logical Block Address. The LBA range supported by
modern terabyte sized SSDs is large (exceeding 30 bits) and
sparse (applications cover only a subset of LBAs), and hence
is difficult to learn for a machine learning model. To address
this challenge, we first partition the LBA into a high and a low
part. This not only reduces the number of bits of the feature
vector but also exploits the fact that different streams within
an application can be often identified via the high order bits
of an LBA. We experimented with more than two LBA range
partitions, however, we did not see additional benefits. The
raw LBA values were normalized between 0-1, which allowed
the model to learn the locality and sparsity of the I/O write
accesses. To address sparsity, we leverage an embedding
layer [33] of 500 neurons to map the sparse LBA inputs
to a dense internal feature vector. As the distribution of IO
writes follows a sparse pattern (most I/O accesses target a few
LBAs), we represented it by a sparse vector (embedding layer)
as they can represent the input more effectively using less
data. The key to this approach is the concept of using a dense
distributed representation for each input value. Embedding
captures semantic similarities between data points places
them close to each other in the embedding space.

I/O Size. Applications can update the same LBA using
different I/O sizes, writing multiple LBAs in the process
with a single I/O operation. We explored two techniques to
handle this. In the first approach, we split every multi-LBA
write into multiple single-write LBAs and then predict the
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death-time for each single LBA write individually. In the
second approach, we leverage I/O size as another feature to
enable the ML model to capture the I/O size internally. Both
techniques provided equal performance, and hence we opted
for the second simpler technique.

Prev-DT. Our model leverages the previous death-time
of an LBA as feature. Similarly, next-DT and prev-DT also
reflect death-time ranges, instead of precise death-times.
Hence, the model prediction is based on the open block
to which the LBA was written. The storage overhead for
maintaining prev-DT for each LBA is hereby bounded by
the number of open slots. Prev-DT of an LBA can be derived
from the block ID that the LBA is currently located in (be-
fore the overwrite) and hence does not introduce significant
meta-data storage overheads.

Embedding

Embedding

Embedding

Embedding

LBA normalized (t)

LBA high n/2 bits (t)

LBA low n/2 bits (t)

IO Size (t)

Death Time (t)

Embedding

Concat
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u
t

TCN              
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Figure 3: Model Architecture

Model Architecture. The proposed model architecture
is shown in Figure 3. The inputs to the model are categori-
cal, one-hot representation of the input features, each being
fed to a separate embedding layer for dimensionality re-
duction. The sparse embedding vectors are concatenated
and fed through a Dropout [42] of 0.2 to prevent overfit-
ting of the model. Death-time prediction is performed by
a temporal convolutional network (TCN) [28], a variant of
convolutional neural network (CNN) [36], employing causal
convolutions [4] and dilations [52] to learn from sequential
data with temporality. As TCNs implement memory (causal
dilated convolutions), it considers recent data to differen-
tiate between interleaved I/O accesses, enabling effective
death-time predictions. TCNs also track the behavior of I/O
accesses and how they evolve over time to enable accurate
predictions based on the current state of the system.

We empirically observed that two hidden TCN layers are
sufficient, where each layer includes 500 neurons. The final
output layer is a dense layer consisting of Softmax [13] nodes.
The number of neurons in the output layer is set to the
number of open blocks available in the SSD. Our proposed
machine learning model is application-specific and needs
to be trained on relevant traces. To improve the generality
of our technique and to alleviate the deployment in a real
system, Section 4.4 introduces a mapping learning technique
that enables reusing of the samemodel across different traces.

We also explored different machine learning models such
as LSTM [18], SVM [19], and Random Forest [48] to perform

death-time prediction, however, TCNs turned out to be supe-
rior. In particular, TCN allows parallelism of the computed
convolutions since the same filter is used in each layer. The
convolutions in the architecture are causal, which means
that there is no information “leakage” [10] from future to
past. TCNs also consume less resources for training and can
take in inputs of arbitrary lengths by varying the 1D convolu-
tional kernels [47]. TCNs are capable of effectively capturing
very long history sizes (i.e., the ability for the networks to
look very far into the past to make a prediction) by using
a combination of deep networks (augmented with residual
layers) and dilated convolutions [52]. LSTM is chosen as a
baseline as it is a popular DNN based technique used in time
series forecasting in multiple applications [19], and it also
has a memory to look at recent data for handling sequential
time series data. Random Forest [48] and SVMs [19] are two
popular ML classification algorithms which do not take into
account the time series nature of the data. We also use a ran-
dom classifier which randomly picks a block, as a baseline.
We replace the LSTMs with TCN in our model architecture
and RF and SVM models are fed 2-dimensional data as input.

3.3 ML-DT Flash Translation Layer
To leverage ML-DT , our model needs to be integrated into
an FTL. We assume a flash based system supporting 𝑁 +1 ap-
pend points or open blocks, where 𝑁 > 1 and 𝑁 open blocks
are assigned for servicing user-writes and one open block is
assigned for servicing GC-writes. Although Oracle-DT does
not need a GC block by eliminating write amplification, ML-
DT cannot provide such a strict guarantee, and hence there
needs to exist a block to absorb rare GC-writes. Each one of
the open user-write blocks is assigned a death-time range and
for each user-write, the block with the closest death-time
range is chosen for placing the write. For instance, LBAs
within the range 0 − 100 are directed to the first open block,
LBAs within the range 101 − 300 are directed to the sec-
ond open block, et cetera. For a system with 𝑛 open blocks,
the ranges are set according to the 𝑛𝑡ℎ-percentile of death-
times. Each open block keeps track of the start LBA of the
block, valid pages bitmap, write pointer, death-time origi-
nal, death-time counter, and a status flag. When the write
pointer reaches the maximum pages per block, the block
is closed and a new block is requested, initialized with the
death-time of the block that was just closed. The death-time-
original is set to the upper limit for the death-time range for
the particular block. The death-time counter is initialized as
death-time-original and is decremented after every I/O. Each
block maintains a death-time counter which is initialized as
maximum value for the range, and is decremented for each
I/O. If the death-time range of a block is chosen optimally,
the death-time counter reaches 0 only when the block is full.
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However, as the ML model is imperfect and the number open
blocks is limited, we need to handle the case of non-optimal
death-time assignments. In particular, in the case where the
death-time counter of a block reaches 0 and the block is not
full, it will be assigned incoming pages from the adjacent
(nearest) two death-time ranges to close the block as quickly
as possible. For instance, assuming the SSD has 10 open
blocks for user writes, if block 2 (range 11 − 20𝑡ℎ percentile)
is not full while the death-time counter reaches zero, pages
usually assigned to to the 1𝑠𝑡 and 3𝑟𝑑 percentile will be tem-
porally assigned to block 2. For edge cases, block 1 (0 − 10𝑡ℎ

percentile) and block 10 (91 − 100𝑡ℎ percentile), we use the
nearest two open blocks. Hence, by increasing the death-time
range of the block, it will absorb more writes, getting closed
faster. By absorbing other block’s writes, additional non-full
blocks are generated with a death-time of zero. To address
this challenge, whenever a non-full block reaches a death-
time of zero, the death-times are re-computed for all the
three blocks using the following formula:𝑑𝑒𝑎𝑡ℎ_𝑡𝑖𝑚𝑒_𝑛𝑒𝑤 =

(𝑝𝑎𝑔𝑒_𝑝𝑒𝑟_𝑏𝑙𝑜𝑐𝑘 −𝑤𝑟𝑖𝑡𝑒𝑝𝑜𝑖𝑛𝑡𝑒𝑟 )/100 ∗ 𝑑𝑒𝑎𝑡ℎ_𝑡𝑖𝑚𝑒_𝑜𝑙𝑑 . If
after a programmable amount of time, the block still does
not get closed, all future incoming I/Os, referred to as prior-
ity writes are redirected to said block. We keep track of the
number of user-writes (UW), GC-writes (GW), and priority-
writes (PW) required to store our data and compute WA as
𝑊𝐴 = 𝑈𝑊 /(𝑈𝑊 +𝐺𝑊 + 𝑃𝑊 ).

4 IMPLEMENTATION
4.1 Datasets and Data Preparation
We leverage traces from ten real-world workloads from three
different sources for our experiments. We parse the traces to
transform LBA and I/O size into numeric features. We sepa-
rate each LBA into two parts: the upper and lower significant
half of the bits are separated and hashed into values in the
range 0 − 100. This allows the model to distinguish between
the interleaved I/O write accesses using the higher bits while
predicting in a stream using the lower bits. In addition, the
full LBA is normalized to a value between 0 − 𝑙 , where 𝑙
is the LBA size. The requested I/O sizes for the examined
real-world applications ranges from 4KB to several MB with
up to 10,000 different I/O sizes for individual applications. In
order to reduce the number of possible I/O size values, we
round-off each observed I/O size,𝑚, to the nearest number,
𝑠 = 2𝑚 , and use 𝑠 as an I/O size class. This reduces the num-
ber of possible I/O sizes to 16 while still supporting requests
of sizes of up to 64MB. We remove the I/O accesses that do
not have a death time towards the end of the trace.

4.2 Machine Learning Models
Training of machine learning models was performed on a
NVIDIA Titan-X GPU. For each incoming I/O, we examine
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SSDSSD
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Figure 4: Mapping Learning Architecture

the input features (LBA, LBA-high, LBA-low, and I/O_size)
to predict the LBAs death-times. The training time for one
epoch for TCN based models ranged between 84 and 192
seconds, depending on the trace. Here, we observed that the
deployed TCN [28] models were significantly faster to train
than comparable LSTMs [5], while providing higher perfor-
mance. The inference was performed on one Intel Xeon CPU
core running at 1.7 GHz, and the inference times ranged be-
tween 102 and 315 𝜇s. Data to the model was fed in batches
of 64. We used 𝑡𝑎𝑛ℎ activation function [22] and Adam op-
timizer [53]. The models were trained for 10 to 32 epochs
until convergence [37]. Each class predicted by the model
represents a range of death-times based on the percentile
value of death-times observed in 10% of the randomly se-
lected subset of the trace file. The number of classes (open
blocks), representing the death-time ranges, is adjustable
during training time. In Section 5, we show that 20 open
blocks are sufficient to minimize WA for ML-DT .

4.3 FTL Simulator
In order to compute WA for each workload using different
data placement schemes, we developed a FTL simulator that
uses virtual SSDs, where the SSD size can be adjusted for each
trace. The SSD size can be computed based on the number
of unique LBAs in the trace, and the number of open blocks
available can be varied. Whenever the number of free blocks
is lower than a threshold value (0.1% of total free blocks,
a.k.a. GC Threshold), the simulator picks the block with least
number of valid pages for recycling. We use a page size of
4K, where each block contained 64 pages and has a size of
256K. The trace simulation was performed on a single Intel
Xeon CPU core running at 1.7 GHz with 16 GB RAM.

4.4 Mapping Learning
To support dynamically changing workloads and to sup-
port previously unseen workloads, we propose a mapping
learning technique to determine whether models can learn
generalized death-time patterns from complex I/O write pat-
terns. Different workloads show similar I/O write patterns
due to shared design patterns and commonly used data struc-
tures [8]. For example, array-based data structures used by
applications generally entail sequential I/O access patterns.
Furthermore, as applications generally leverage the same un-
derlying file system, it is likely that I/O writes show common
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patterns. An ideal model would need to be be trained once on
a varied set of applications, and yet accurately predict death-
times for unseen applications. Such a model architecture is
also likely to be more robust with respect to dynamically
changing data inputs or code changes to the original ap-
plication. To test the idea that applications share common
write patterns that can be learned, we trained the model on
traces from one dataset (source) and evaluated the model’s
performance on another dataset (recipient). The number of
prediction classes are kept same in the two workloads and a
1-1 label mapping is done in sequential order. For instance,
Class 1 from the first workload corresponds to Class 1 of
second workload. We call the process of training the model
on source dataset, and using it to predict death-times for the
recipient dataset as Mapping Learning, and present a block
diagram of this process in Figure 4.

5 RESULTS
In this section, we first analyze the performance of ML mod-
els for predicting death-time ranges. Then, we evaluate ML-
DT via trace-driven simulation using real-world cloud stor-
age traces collected at the block level. Then, we compare
our approach with three existing data placement schemes
and two baselines (DT-FTL-Greedy and Oracle-DT ). We also
perform sensitivity studies determining the impact of the
number of available open blocks on WA, and finally present
the results of our proposed mapping learning technique.

5.1 Evaluation of ML Models
We utilize four baselines to compare our ML approach: Ran-
dom forest (RF) [48], support vector machines (SVM) [19],
DNN based LSTMs [18], and a Random predictor (RP). To
evaluate the performance of LSTMs, we replaced the TCN
layers in our model with LSTMs layers. RF and SVM mod-
els were fed 2-D data as input, as they cannot take in 3D
embedding layers as input. Table 2 shows the comparative
performance of our ML based approach against the four
chosen baselines when using 19 death-time classes, as one
class is reserved for GC-writes. Note that each class rep-
resents a death-time range that is computed by equally di-
viding the death-times into 19 groups, each representing
the (100)/19*p𝑡ℎ percentile of the data in each class where
p=[1,2,3..19]. The table provides detailed characteristics of
the traces [27, 29, 41, 49], including trace name, number of
I/Os in the dataset, and the accuracy of the four chosen base-
lines for predicting death-times. The LBAs without death-
time information are excluded from the training data and we
train our models using the first 50% of data in the trace and
evaluate it on the second 50% of the trace. The size of the
input traces ranged between 0.47 GB and 43 GB, depending
on the source. All the workloads used in this study were

write-heavy, with read-write ratios less than 0.5, as can been
seen in Table 2. For this experiment, we used block size of 𝑁 ,
assuming that the system has 𝑁 +1 blocks, as one open block
is reserved for GC-writes. We show the impact of using dif-
ferent number of open blocks later in Section 5.3. The results
in Table 2 show that TCN-based approach consistently out-
performs other baseline techniques. The random predictor
performs the worst, achieving lowest accuracy (3.6 - 5.6%).
Results from the LSTM-based approach are comparable with
our approach (within 5% of accuracy). However, TCN-based
models train faster and can support higher dimensional data
without prohibitive compute resources. TCN based models
train 10× faster and reduce inference latency 2× compared to
LSTM based models. RF and SVM based approaches perform
significantly worse, achieving highest accuracy of only 61%
and 56%, respectively, on real-world traces. We also used
three synthetic traces as baselines to test our ML approach
for predicting death-time ranges. The first two traces con-
tained only sequential I/O writes and random I/O writes,
respectively, and the third trace contained a mix of the 50%
synthetic and 50% random workloads.

5.2 Comparison with Baselines
The predictions from ML models are leveraged by the FTL
for assigning pages to open blocks. Here, we compare our
approach with three existing data placement policies pro-
posed in prior work that are based on update frequency,
hot/cold separation, and block update interval. We also used
two baselines, DT-FTL-Greedy and Oracle-DT , the later of
which have perfect knowledge of future death-times. We
provide a description of these five baselines below.

(1) DT-FTL-Greedy: Utilizes a single open block for servic-
ing both user and GC writes. When the FTL runs out
of free blocks, GC greedily picks the block with the
fewest number of valid pages for cleaning.

(2) Oracle-DT : Has perfect knowledge of future death-
times and uses the same placement policy as ML-DT .

(3) Dynamic Data Clustering (DAC) [12]: Maintains multi-
ple open blocks, and each one assigned a temperature.
Whenever an LBA is overwritten by a user-write, it is
promoted to a hotter block, and whenever an LBA is
moved by GC it is demoted to a colder block.

(4) WARCIP [51]: Writes blocks into segments based on
the block update interval, i.e. the elapsed time since
the last write to the same LBA, in order to reduce the
variance of update intervals of pages within a block.

(5) AutoStream (AS) [50]: Leverages both write frequency
and recency to determine the block temperature, for
writing pages into the blocks of different temperature
levels, and demotes aged LBAs into cold blocks.
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Trace Source Trace Size File Name No. of IO
(millions)

R-W
ratio

No_unique
_LBA

Coverage
_Top 100

Coverage
_Top 1K

Coverage
_Top 10K

Accuracy
TCN (%)

Accuracy
LSTM (%)

Accuracy
RF (%)

Accuracy
SVM (%)

synthetic_sequential 4.7 GB synthetic_A 1.3 0 1310721 0.07 0.7 7.6 99 99 91 83
synthetic_random 5.0 GB synthetic_B 1.04 0 262145 0.27 3.6 4.5 21 17 6 2
synthetic_mixed 5.0 GB synthetic_C 1.14 0 12145 0.21 2.1 6.6 47 41 39 19
VDI 0.7 GB 2016030917.csv 2.47 0.45 832659 22.1 57.7 63.6 64 57 47 33

1.64 GB 2016031115.csv 2.4 0.15 430365 21.04 72.6 79.7 65 56 41 37
1.16 GB 2016030918.csv 4.5 0.44 1370898 24.9 62.2 65.9 66 58 38 29
1.84 GB 2016030819.csv 2.9 0.27 677630 17.5 69.8 74.4 64 59 33 47
0.47 GB 2016030916.csv 3.75 0.35 1049707 22.4 61.4 66.5 66 60 49 48

RocksDB 1 GB ssd-trace00 1.95 0.22 223168 7.5 30.1 36.3 70 59 43 51
22 GB ssd-trace0-15 112.3 0.19 1562176 4.8 9.6 11.1 64 57 49 35
21 GB ssd-trace16-37 116.4 0.22 1332712 9.2 14.6 16.1 64 59 41 38
17 GB ssd-trace-add. 97.2 0.33 1123568 8 16.5 17.9 69 59 43 33

TPC-H (MonetDB) 12 GB tpc-h-monet 66 0.5 1332176 5.1 25.7 33.3 83 73 61 66

Table 2: Comparison of machine learning approaches for death-time range prediction.

We evaluate the performance of our proposed ML-DT ap-
proach against the five baselines in Figure 5. For each FTL,
we count the number of user-writes and GC-writes for com-
puting the WA. The SSD size used for performing the exper-
iments is based on the number of unique LBAs in the trace
such that the user capacity of the SSD equals the number of
unique LBAs. The over-provisioning ratio was assigned to
20% and hence, the number of available blocks equals 1.2×
the number of user blocks. The GC threshold, defined as
the minimum number of available free blocks before GC is
enabled, was chosen as 0.1% of total number of blocks avail-
able initially. For each trace, we note the range of unique
LBAs (A-B) and create 𝑍 number of blocks determined by
the range computed as : (B-A)*page_size where page_size =
4K and each block contained 64 pages. The coverage of top
100, 1K, and 10K LBAs is also reported showing the skewed
nature of write I/O accesses in the traces.
For this experiment, we used 20 open blocks for all base-

lines as well as ML-DT , except for DT-FTL-Greedy which
only uses one. Figure 5 shows that ML-DT consistently out-
performs the baselines for every trace both in terms of GC
overhead and WA. Our approach reduces the number of GC
writes due to effective placement and the priority write over-
head is minimal, which causes less than 1% overhead. On the
other hand, DAC performs the worst while WARCIP and AS
perform the best among the baselines, achieving compara-
ble performances on TPC-H benchmarks and lower number
of open blocks, however they perform much worse on VDI
based workloads. Oracle-DT achieves near optimal WA for
RocksDB and VDI traces and as expected performs best.
Our approach works best for VDI and RocksDB traces,

where the I/O write patterns are non-uniform and I/O ac-
cesses are concentrated more on a few frequently occurring
LBAs. The performance is comparatively worse for traces
which have more uniform distribution of LBAs in the trace
(e.g., TPC-H). Higher coverage workloads helps in stream
prediction due to greater density of input vectors fed in for
training, and hence can make more accurate predictions.

5.3 Impact of number of open blocks
In this section, we study the impact of the number of open
blocks available on WA. Figure 6 compares the performance
of our proposed approach with the baselines by varying the
number of open blocks available. As DAC does not differ-
entiate between user-written and GC-written LBAs, all 𝑁
open blocks are made available for both write types. Since
AutoStream and WARCIP focus on separating only the user-
written pages, we configure 𝑁 − 1 classes for user-written
pages and one class for GC-written pages. These results show
that our approach is comparable to baselines when using a
small number of open blocks (<3-5), however, as the number
of blocks are increased to between 10 and 30, our approach
outperforms the baselines by up to 19%, demonstrating the
generalizability of our approach with varying number of
open blocks. Future SSD designs are expected to support an
increasing number of open blocks. However, albeit outper-
forming the baselines, increasing the number of open blocks
to beyond 20 increases WA due to decreased predictive per-
formance and priority writes overhead. As the data gets more
fragmented, that is, separated into multiple streams, more
cases arise where the death-time counters of the blocks reach
zero. In such scenarios, as described earlier, our approach
merges blocks by assigning pages to the closest block with
similar death-times, and closing some of the blocks earlier.

5.4 Sensitivity Study on Open Blocks
In this section, we perform a sensitivity study to evaluate
the impact of varying the number of open blocks on WA. For
each trace, we vary the number of open blocks between 5 and
30. We see that increasing the number of blocks increases
the WA initially due to better data organization within the
SSD, however, as we increase the number of open blocks to
over 25, we see a decrease in WA due to decreased predic-
tive performance and fragmentation of data. This is due to
fragmentation, the DT_counter of blocks reaches 0 without
the block being full resulting in the priority write overhead.
The trend can be seen in Figure 7.
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Figure 5: FTL comparison with baselines
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Figure 6: Impact of number of open blocks
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Figure 7: Sensitivity Study (ML-DT )

5.5 Evaluation of Mapping Learning
In this section, we evaluate whether our MLmodels can learn
common patterns across workloads to predict death-times
of previously unseen applications. In the previous sections,
we obtained the training and test datasets from different
portions of the same workload and trace file. In this section,
we define two types of dataset sources. Similar sources are
those where the training and test data are from the same
application, however, with different data inputs, different
execution times, and only small run-time modifications in

applications. Dissimilar sources are those where the train-
ing and test data are from completely different applications.
Figure 8 shows the performance overhead of the mapping
learning technique. We show a comparison of write amplifi-
cation between themodel that is trained and tested on similar
source traces (WA_original) and the model that is trained
and tested on the dissimilar source traces (WA_mapped). The
model is trained on the Source (S) trace and tested on the
Recipient (R) trace. For instance, when training the model on
ssd-trace-01-15 and evaluated on ssdtrace-16-33 trace files,
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the WA of our mapping learning approach is 1.44, which is
4% less compared to training and evaluating the model on the
same ssdtrace-16-37 trace file. Note that when the model is
trained and tested on dissimilar sources, our approach does
not make any assumptions about the sequence of LBAs in the
recipient source, and during inference on the recipient trace,
the number of classes as well as the death-time ranges based
on percentile values were kept same as the source (S). The
effectiveness of Mapping Learning depends on the frequency
distribution of data within each class of the two datasets.
Results in Figure 8 show that our approach is applicable to
diverse workloads, as long as they show similar characteris-
tics. This increases the practicality of our approach, as we
can train specific models for a variety of workloads, and
expect at least a moderate increase in performance.

1.39 1.38

1.23 1.21 1.19

1.46 1.44

1.29
1.24

1.44

1

1.1

1.2

1.3

1.4

1.5

S: ssd-trace0-15
R: ssd-trace16-37

S: ssd-trace16-37
R: ssd-trace0-15

S: 2016030917.csv
R: 2016031115.csv

S: 2016031115.csv
R: 2016030917.csv

S: 2016030917.csv
R: ssd-trace16-37

W
ri

te
 A

m
p

lif
ic

at
io

n

WA_original WA_mapped

Figure 8: Mapping Learning Technique

6 RELATEDWORK
Prior works on reducing WA proposed a greedy reclaiming
policy [14, 15] for selecting the block with least number of
valid pages for GC, reducing live data migration. Our work
follows Greedy to select a block for GC, however, it addi-
tionally minimizes the number of valid pages within a block.
Multi-Stream SSDs [20] have been introduced to expose mul-
tiple open blocks enabling applications to explore different
placement policies. Prior work on different data placement
policies can be broadly classified into two categories: data
separation based on the access frequency of LBAs and those
based on clustering. SFS [34] writes blocks into large seg-
ments in batches based on the write counts of an LBA divided
by the block age. LOCS [45] follows a similar approach of
using longer segments optimized for LSM-tree based work-
loads, however, their performance is limited on real-world ap-
plications, where smaller write units dominate I/O accesses.
PCStream [23] automatically selects open blocks based on
program counters in the Linux kernel. Extent-based identi-
fication (ETI) [40] tracks the number of writes to each LBA
and separates hot blocks as those whose write counts ex-
ceed a pre-defined threshold. Fading Average Data Classifier
(FADaC) [26] uses write frequency and recency to allocate
incoming writes to open blocks by maintaining a fading aver-
age write frequency for each block. Our placement strategy,

on the other hand, is based on the knowledge of death-times
of the incoming writes, thereby, reducing WA over prior
techniques. Dynamic data Clustering (DAC) [12] allocates
LBAs to blocks based on their temperature. User-writes pro-
mote an LBA to a hotter segment while GC-writes demote
an LBA to a colder segment. Multi-Log [43] follows the same
approach leveraging the update frequency of each LBA to
assign it to an open block. AutoStream [50] uses write fre-
quency and recency to compute the temperature of incoming
writes and assigns them to open blocks based on tempera-
ture levels. Each block is assigned a different temperature
level and old blocks are demoted to cold segments. Group-
ing LBAs by their death-time was first proposed by He [17].
WARCIP [51] uses the rewrite interval (time elapsed since
last write to the LBA) to allocate incoming writes to open
blocks in order to reduce the variance of update intervals
of LBAs in a block. InferBIT [46] uses inferred the block
invalidation time to minimize WA in log-structured storage
by placing blocks with similar estimated BITs into the same
group. As shown in Section 3, Oracle-DT reduces WA over
prior works by leveraging death-time instead of write fre-
quency. Several other works have applied ML to optimize
storage systems [6, 7, 9, 21, 25, 32].

7 CONCLUSION
In this paper we introduced ML-DT , an ML-based approach
to reduce write amplification (WA) in log-structured file
systems by predicting the death-time of logical block ad-
dresses. We leverage time series data in of I/O accesses to
train lightweight, TCN-based models to predict death-time
ranges of LBAs. Additionally, we propose a near-optimal
data placement technique based on death-time which results
in minimal write amplification in log-structured file systems.
Using the proposed data placement scheme, we present the
design ofML-DT and compare our approach with three state-
of-the-art data placement schemes. We show that ML-DT
achieves lowest WA by leveraging the learned I/O write
patterns from real-world storage workloads. Our approach
results in up to 14%WA reduction compared to the best base-
line technique while providing better scalability for large
numbers of open blocks. We provide insights on the type of
workloads benefiting the most using our approach. Finally,
we present mapping learning to test applicability of our ap-
proach on new unseen workloads and present a feasibility
study to demonstrate the applicability of our work to unseen
workload traces.
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