
RIFS: Run-Time Invariant Function Specialization
Saba Jamilan

University of California at Santa Cruz

Santa Cruz, USA

sjamilan@ucsc.edu

Snehasish Kumar
Google

Mountain View, USA

sneaky@google.com

Heiner Litz
University of California at Santa Cruz

Santa Cruz, USA

hlitz@ucsc.edu

Abstract

Compilers apply optimizations such as function specializa-
tion and constant propagation to eliminate redundant work
at compile time. However, because compilers must prove that
values are constant, many pro!table optimization opportu-
nities remain unrealized. In this paper, we propose run-time
invariant function specialization (RIFS), a pro!le-guided com-
piler technique that specializes functions based on runtime
invariant call-site-speci!c argument values. RIFS introduces
a novel value-pro!ling LLVM pass to identify runtime invari-
ant arguments, even though they cannot be proven constant
statically. A subsequent LLVM transformation pass generates
specialized function variants tailored to these value pro!les.
To e"ciently select among potentially thousands of special-
ization candidates, we develop a predictive cost model that
estimates the performance bene!t of each candidate prior
to code generation. We integrate our passes seamlessly into
the existing PGO-enabled LLVM toolchain. We evaluate RIFS
across 11 real-world applications, demonstrating substantial
improvements over state-of-the-art optimization techniques.
RIFS achieves an average speedup of 6.3% and an instruction
reduction of 2.5% over the LLVM -O3+PGO baseline.

CCS Concepts: • Software and its engineering→ Source
code generation.

Keywords: Compiler Analysis, Function Specialization

ACM Reference Format:

Saba Jamilan, Snehasish Kumar, and Heiner Litz. 2026. RIFS: Run-
Time Invariant Function Specialization. In Proceedings of the 35th
ACM SIGPLAN International Conference on Compiler Construction
(CC ’26), January 31 – February 1, 2026, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 13 pages. h!ps://doi.org/10.1145/3771775.
3786274

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CC ’26, Sydney, NSW, Australia
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2274-5/2026/01
h!ps://doi.org/10.1145/3771775.3786274

1 Introduction

The demise of Dennard Scaling [25] and the deceleration of
Moore’s Law [49] has caused a slow down of general-purpose
processor performance improvements. As emerging datacen-
ter workloads and applications in arti!cial intelligence and
mobile demonstrate an insatiable demand for higher perfor-
mance, optimizations across the compute stack become a
necessity. Enhancing compiler techniques is an attractive
solution to this challenge as it does not require application
or hardware changes while improving both performance and
energy consumption. In particular, compilers leverage code
transformation and optimization techniques such as constant
propagation [41, 56] and function specialization [10, 14] to
reduce the instruction count of applications, improving e"-
ciency. We observe that existing techniques miss substantial
performance opportunities by neglecting to optimize run-
time value invariant function calls. In particular, we !nd that
applications frequently execute functions with the same ar-
guments, which can be leveraged for function specialization.
Existing compiler techniques miss these opportunities, as
value invariant arguments are unknown at compile time.

There exists a large body of work on compiler optimiza-
tions, including function inlining [24], function specializa-
tion [10, 14], constant value propagation [41, 56], and many
others [9, 16, 18, 22, 29, 31, 34, 45, 48]. Most of these tech-
niques have been successfully implemented by compiler
suites such as LLVM [37] and GCC [1], however, they all rely
on compile-time information. For instance, to determine the
bene!t of function inlining, compilers traditionally consider
static information, such as the size of the function, limit-
ing the potential optimization opportunities. To address this
challenge, pro!le-guided optimization (PGO) [39, 44] tech-
niques have been proposed, leveraging runtime information
to expose additional optimization opportunities. For instance,
PGO can monitor the dynamic execution frequency of each
function, improving the e#ectiveness of function inlining.
Research has shown that fully automated PGO techniques
such as AutoFDO [20] can improve performance by up to 30%.
Link-time Optimization (LTO) [2, 17, 32], BOLT [42], and
Propeller [51] are pro!ling-based tools that enable additional
optimizations such as function and basic-block reordering,
further optimizing instruction cache performance.

40

https://orcid.org/0000-0003-2259-6426
https://orcid.org/0000-0002-6871-8962
https://orcid.org/0000-0001-5181-9639
https://doi.org/10.1145/3771775.3786274
https://doi.org/10.1145/3771775.3786274
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3771775.3786274
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

Figure 1. Percentage of function calls with at least one value
invariant argument with value predictibility of 100% com-
piled with LLVM -O3 and PGO

.
Ali [8] and Perianayagam[43] have proposed runtime tech-
niques to specialize functions, however, these techniques lack
generalizability and have not been implemented in any com-
piler framework. Ali proposes to instrument hot functions
withmonitors, allowing the execution of specialized function
calls based on speci!c arguments. The proposed technique
utilizes fat-binaries supporting limited machine-speci!c opti-
mizations [55] while introducing substantial code-bloat. The
proposed monitors introduce large lookup tables to deter-
mine the target function at runtime while relying on simple
heuristics to determine function optimization candidates.
Perianayagam et al. [43] proposes a function specialization
technique based on PLTO binary rewriting [50] to optimize
system calls within the Linux kernel. The proposed technique
is limited to speci!c functions within the Linux kernel. We
observe signi!cant opportunties to improve over prior work.
First, we !nd that to improve coverage, a much more exhaus-
tive analysis is required to determine function specialization
candidates. Second, we observe that choosing the right opti-
mization candidate is non-trivial as many seemingly good
candidates cause performance regression. To address these
challenges we propose a new pro!ling system leveraging
LLVM instrumentation to obtain comprehensive pro!ling
data enabling high coverage to generate thousands of op-
timization candidates per application. We then introduce a
novel cost-model based on low-overhead machine learning
models to select the right function specialization candidates
for a given application. Our cost model predicts the perfor-
mance gain provided by a speci!c optimization including its
e#ect on downstream passes in the LLVM pipeline and se-
lects con!gurations that outweigh the overheads introduced
by function cloning.

To motivate our work, we devise an experiment to determine
the opportunities provided by optimizing invariant function
calls, i.e., functions that are always called with the same pa-
rameter values at runtime. We analyze a set of applications
from the SPEC CPU2017(rate) Integer and Floating points
benchmarks [4], Parsec-3.0 [59], and Rodinia Benchmark

Suite 3.1 [19], compiled with LLVM and optimization level
"-O3" to determine invariant arguments for all function calls.
In particular, we measure the ratio of function calls for each
call site, in which at least one function parameter is always
the same. As Figure 1 shows, for some applications such
as 531.deepsjeng_r, over 90% of all function calls utilize the
same argument for a given call site. Such functions should
be amenable for specialization as the generated code can be
optimized for a particular constant argument value. Further-
more, we analyze whether existing pro!le-guided techniques
such as PGO can already optimize and eliminate such value-
invariant function calls. As can be seen, the opposite is the
case, as for some applications such as 531.deepsjeng_r and
freqmine, PGO further increases the ratio of invariant func-
tions. This is because PGO inlines additional function calls,
leading to a higher ratio of unoptimized value-invariant calls.
Although applications like bfs, hotspot3D, and kmeans have
a low percentage of value-invariant function calls compared
to their total number of function calls, specializing even
this small subset of function calls can yield to considerable
performance gains and instructions reductions.

To exploit the existing function specialization opportuni-
ties explored above, we propose run-time invariant function
specialization (RIFS), an application-independent, generic
technique implemented as an LLVM-IR level pass that can be
seamlessly integrated into existing pro!le-guided optimiza-
tion pipelines. Our technique introduces an LLVM-based
function-level value pro!ling pass, operating at the inter-
mediate representation (LLVM IR) [37] layer, that captures
the values passed to function parameters at runtime dur-
ing a pro!le run. RIFS then analyses the collected pro!les
to identify specialization candidates and generates a list of
functions that should be specialized. This list is processed
by a new LLVM transformation pass emitting specialized
function variants for each candidate and the necessary safety
code path to ensure the correctness of the transformation.
Our pass leverages existing constant propagation, inlining,
and dead code elimination passes to maximize its utility.

To avoid performance regression, the speedup provided by
function specialization needs to be weighed against the over-
heads caused by code replication (function cloning) and ad-
ditional checks to ensure correctness. We introduce a pro!le-
guided data-driven machine learning model that predicts the
performance bene!ts of specializing individual function can-
didates, as well as the overall e#ect of enabling specialization
for a set of candidates. The model is trained on thousands
of samples and leverages static program features extracted
from the program IR before and after function specializa-
tion as well as dynamic pro!ling information. These features
include control $ow information such as basic block sizes
and function execution frequencies, the opcodes (and types)
eliminated by our pass, and the data dependencies of elimi-
nated function arguments. We show that our new invariant

41

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

function argument pro!ling and cost model techniques out-
perform prior work Ali [8] by 6.625 times, Perianayagam[43]
by 4.81 times, and 6.3% over LLVM leveraging O3 and PGO.
Furthermore, RIFS reduces the total number of dynamically
executed instructions by 2.5% over LLVM leveraging O3 and
PGO improving power e"ciency. In summary, this work
provides the following contributions:

• A novel technique to improve performance via value in-
variant function specialization

• An LLVM function-level pro!ling pass to capture value
invariant behavior of function call parameters

• A new LLVM function specialization pass for automatic
and safe code transformations

• An analysis showing that existing techniques such as
Ali [8], O3, and PGO are insu"cient for exploiting value
invariant functions

• A data-driven supervised learning-based cost model, lever-
aging static and dynamic pro!ling data, for identifying the
best function specialization candidates

• Substantial improvements in execution time (up to 18.5%)
and reduction in dynamically executed instructions (up
to 22.8%) over PGO across applications from SPEC2017,
PARSEC, and Rodinia Benchmark Suite 3.1 [19].

2 Background

Compilers apply many optimizations to generate more e"-
cient executables. This section discusses static and pro!le-
guided optimization techniques most relevant to RIFS.

2.1 Static Compilation Optimization Techniques

Constant Propagation. Constant Propagation [56] respec-
tively constant folding [36] is a compiler optimization tech-
nique that simpli!es constant expressions at compile time.
For instance, the expression int pi = 22/7; can be simpli!ed
at compile time to int pi = 3;, eliminating costly division
instructions from the binary. This optimization can be ap-
plied transitively by propagating pi to other code sequences
that consume it. The technique is particularly useful for con-
ditional branches computed solely on constant values, in
which entire code branches can be eliminated.

Function Inlining. Function inlining [24] is a compiler tech-
nique that replaces the call-site (caller) of a function with the
function body (callee) itself. As a result, function call over-
head, including the call/jump and return instructions as
well as the register spilling code to save and restore registers
to the stack, are eliminated. While reducing the instruction
count and, in particular, branches from the code is bene!cial
for performance, function inlining increases the static code
footprint, which may increase instruction cache misses. As

a result, function inlining is generally only applied to small
functions.

Function Specialization. Function specialization [10, 14] is
an optimization technique that generates multiple optimized
implementations of a given function based on static func-
tion parameters. For instance, a function frequently called
with the same parameter value, such as malloc(k) where
k is a constant, can be specialized into a version that only
handles that particular parameter. This technique e#ectively
transforms function parameters into constants, enabling ad-
ditional opportunities for constant propagation.

2.2 Pro!le-Guided Optimization Techniques

All techniques above perform optimizations based on static
compile-time knowledge. In particular, the compiler must
"prove" that a given transformation is safe and does not
change the program’s behavior. Unfortunately, static behav-
ior is often unknown at compile-time motivating pro!le-
guided techniques.

Pro!le-Guided Optimizations (PGO). Pro!le-guided op-
timizations such as AutoFDO [20] can improve the perfor-
mance of applications by increasing the e#ectiveness of op-
timizations such as function inlining, basic block reordering,
and register allocation. Therefore, PGO executes compiled
binaries and collects pro!ling data. PGO then recompiles the
program again using the obtained pro!le, enabling additional
optimization opportunities. For instance, it may reverse the
branch direction for inversely biased branches.

Post Link Optimizations (PLO). PLO is applied after link
time to enable additional across-!le and across-library op-
timizations. LLVM BOLT [42] and Propeller [51] are two
well-known tools for performing post-link optimizations
supported by the Clang compiler. The optimized binary by
RIFS over LLVM O3 and PGO pipelines can then use llvm-
bolt [7] to utilize the collected sampling data with Intel’s
Processor Event-Based Sampling pro!ler [47] for further
optimizations.

2.3 LLVM Compiler Infrastructure

LLVM [37] is a collection of modular and reusable compiler
and toolchain technologies. LLVM’s Clang compiler converts
source code to an Intermediate Representation (IR) on which
all further code transformations are applied. Compiled LLVM
IR code is organized into functions (matching those on the
source code level), which contain a collection of basic blocks
(BBL), de!ned as a sequence of sequential instructions that
end with a branch or other control $ow changing operation.
Optimizations, referred to as Transform Passes, are applied
on an input IR, generating a new output IR. After applying

42

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

various passes, the back-end of LLVM generates the machine
code, such as x86 instructions, from the optimized LLVM IR.

3 Analysis

In this section, we perform an analysis to determine the per-
formance opportunities provided by value-invariant func-
tion specialization. We !rst explore the existence of value-
invariant function call arguments in applications; then, we
show that utilizing constant value propagation can reduce
the instruction count of applications.

3.1 Are Value-Invariant Arguments Common?

To study whether value-invariant function arguments fre-
quently exist in applications, we develop an LLVM function-
level pro!ling pass that tracks every function call and its
arguments. The tool instruments dynamic function calls,
tracking the function itself (callee), the call site (caller), and
the arguments provided to the call. We will provide a more
detailed description of the tool in Section 4. We classify the
value-invariant behavior of function arguments into two
main groups: fully-invariant functions have at least one ar-
gument that is always identical for a given call site, whereas
semi-invariant functions have at least one argument that
re$ects the same value at least 10% of the time. To perform
our analysis, we compile all workloads with LLVM’s opti-
mization level "-O3" and PGO enabled. Table 1 illustrates
the number of call sites and dynamically executed function
calls with fully and semi-invariant arguments. The Function
column lists the number of all static functions de!ned in the
source code of an application that are executed at least once.
The Call Sites column shows the number of static source-
code locations that call a function, and the Dynamic Calls
column shows the total number of dynamically executed call
instructions. The following columns shows the total number
of fully and semi-invariant integer-typed function-call pa-
rameters across all call sites in the application. We consider
these parameters as potential optimization candidates. For
example, the same function and argument (index 1) may be
fully invariant at call site A but only semi-invariant at call
site B; we count both instances as optimization candidates.
While for some applications, including 502.gcc_r, the number
of optimization candidates are large around 907, there exist
applications such as Motion Estimation and kmeans that the
number is small, but these functions can still be worthwhile
to optimize as they are either frequently executed (Motion
Estimation) or contain a large number of instructions that
can possibly be eliminated (kmeans). This shows that even
after applying pro!le-guided optimizations, there still exists
a considerable number of function calls that utilize the same
arguments for a given call site. Based on these insights, we

Figure 2. Data type of fully value invariant function call
parameters in real applications.

will now explore whether specializing such value-invariant
function calls can be bene!cial for performance.

3.2 Which Argument Types to Optimize?

We now analyze the common data types of value invariant
arguments as they determine the optimization opportunities
of function specialization. There exist three main data types
including (1) integer data, (2) $oating point data, and (3) in-
teger pointer. While many opportunities exist for compilers
to optimize integer data (we will show several examples in
Section 3.3), invariant $oating point variables and pointers
provide fewer optimization opportunities. For instance, we
found that LLVM does not apply constant propagation for in-
variant $oating point values evenwhen utilizing -ffast-math.
Figure 2 analyzes the data type for each of the invariant ar-
guments pro!led in Section 3.1. While some applications,
such as 531.deepsjeng_r, exhibit frequent invariant $oating-
point and pointer arguments, integers are the most common
invariant data type.

3.3 Does Function Specialization O"er Optimization
Opportunities?

To demonstrate the performance improvement opportunities
enabled by value invariant arguments, Listing 1 shows a can-
didate function from the swaptions benchmark. Here, the iN

argument of the HJM_SimPath_Forward_Blocking function
is fully invariant for the call site in line 5. Assuming iN to be
constant enables several optimization opportunities. First,
the division operation dYears/iN (line 12) can be replaced for
a shift operation if iN is known to be a power of two. Second,
the calculation of iN-BLOCKSIZE-1 (line 14/15/23/24) can be
performed at compile-time as all terms are constant. Third,
the loop for (j=1;j<=iN-1;++j) (line 19) can be perfectly
unrolled, and the branch can be eliminated if iN is known
in advance. To enable compilers to perform these optimiza-
tions automatically, we can generate a specialized version

43

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

Table 1. Value Pro!ling results for function calls with integer type parameters after enabling -O3 + PGO

Application #Function #Call Sites #Dynamic #Dynamic #Fully Invariant #Semi Invariant
Calls (Fully & Semi) Invariant Arguments Arguments

Calls (IR-Level) (IR-Level)
500.perlbench_r 1878 3553 6237660225 681937046 349 455
502.gcc_r 6005 23745 706076011 105630518 2610 3048
505.mcf_r 36 82 55307358 54633708 11 19
525.x264_r 490 1500 185276674 137304959 449 960
531.deepsjeng_r 96 222 202015158 201993118 106 264
538.imagick_r 1948 1107 24028576 23865137 15 35
swaptions 24 53 474601748 3000061 8 8
freqmine 42 114 116915328 52962897 6 10
hotspot 7 28 8408632 20002 6 6
hotspot3D 8 31 11681808 5 17 17
bfs 3 37 7200026 1 1 1
kmeans 5 45 264000103 2 7 7

1 int HJM_Swaption_Blocking(FTYPE *pdSwaptionPrice, FTYPE dStrike, int iN, int
iFactors , FTYPE dYears, FTYPE *pdYield, ..) {

2 ...
3 // Simulations begin:
4 for (l=0; l<= lTrials -1 ; l+=BLOCKSIZE) {
5 iSuccess = HJM_SimPath_Forward_Blocking(ppdHJMPath,iN, iFactors, dYears,

pdForward, pdTotalDrift ,ppdFactors , &iRndSeed, BLOCKSIZE); /∗ GC: 51% of
the time goes here ∗/

6 if (iSuccess != 1)
7 return iSuccess ;
8 ...
9 }
10 int HJM_SimPath_Forward_Blocking(FTYPE **ppdHJMPath,
11 int iN , int iFactors , FTYPE dYears, FTYPE *pdForward, ...) {

12 ddelt = (FTYPE)(dYears/iN) ;
13 sqrt_ddelt = sqrt (ddelt) ;
14 pdZ = dmatrix(0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);

15 randZ = dmatrix(0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);
16 // sequentially generating random numbers
17 for (int b=0; b<BLOCKSIZE; b++){
18 for (int s=0; s<1; s++)
19 for (j=1; j<=iN-1;++j)
20 for (l=0; l<=iFactors -1 ;++l)
21 randZ[l][BLOCKSIZE*j + b + s] = RanUnif(lRndSeed);
22 ...
23 free_dmatrix (pdZ, 0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);

24 free_dmatrix (randZ, 0 , iFactors -1 , 0 , iN*BLOCKSIZE -1);
25 ...
26 }

Listing 1. An example function from swaptions in which
the IN argument is always 11 for one call site.

of HJM_SimPath_Forward_Blocking that the iN argument is
de!ned as a local constant variable iN = 11; in its function
body. We then add additional runtime checks in the call site
to ensure the transformation is safe. Existing compiler passes
can then apply existing optimizations, including constant
propagation, to facilitate the techniques above.

4 Design of RIFS

Our analysis showed that applications exhibit signi!cant
invariant function calls, which can be exploited through
function specialization. We now provide a detailed expla-
nation of RIFS, including its value-pro!ling mechanism, its
cost model to identify pro!table function-specialization can-
didates based on static and dynamic analysis. We then de-
scribe the LLVM transformation pass that inserts specialized
functions for the candidates selected by the cost model, and

!nally discuss how RIFS integrates into existing compilation
pipelines.

4.1 Pro!le Collection

Identifying value-invariant arguments and turning them to
constant values enable additional opportunities for optimiza-
tion passes such as constant propagation, dead-code elimi-
nation, and inlining, resulting in instruction and execution
time reduction. Our pass instruments each IR-level function
to record its argument values and call site. By capturing this
data directly at IR call site, eliminates the fragile program-
counter–to–IR mapping required by sampling-based pro!l-
ing tools [39]. RIFS performs value pro!ling on the baseline
IR of the application, compiled with all available -O3 and
PGO optimizations. To reduce the overhead of value pro-
!ling, our tool currently only considers the most valuable
argument types (integers), andwe only enable value pro!ling
for functions that have been called frequently (correlating
with cpu cycle time). Focusing on hot functions is essen-
tial, since specializing cold code rarely delivers performance
improvement while causing unnecessary code bloat.

For each call instruction located in the hot functions, the
pass captures caller/callee identity, the location of the call in
the source code (!le/line/col), and runtime values of integer-
typed parameters. We collect these into per-call site his-
tograms and organize arguments as fully invariant or semi-
invariant based on their observed values. Since integer argu-
ments map inherently to constant propagation than $oating
point types, and do not have the aliasing complexities of
pointer-based arguments, they provide more compile-time
optimization oportunities, e.g. for inlining. While the frame-
work can be extended to pro!le non-integer types, to balance
pro!ling cost and optimization impact, RIFS limits value pro-
!ling to integers. The collected value pro!les are attached
to the baseline IR as organized metadata including the ar-
gument index, top-K most frequent values with their occur-
rence counts, invariance $ags, and a call site identi!er.

44

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

4.2 Pro!le-Guided Function Specialization Pass

In the second phase, RIFS utilizes the metadata obtained in
Section 4.1, to automatically perform function specialization
for value invariant functions. For this purpose, we imple-
ment a new function-level code transformation LLVM pass
named FunctionSpecializationPass, that can be provided to
the LLVM optimizer and analyzer via the opt command. The
LLVM pass takes the -O3 optimized baseline IR as input and
generates an improved output LLVM IR. In particular, RIFS
performs the following steps. (1) It uses metadata attached
to the IR to determine call sites and functions in the IR level
that need to be specialized. (2) It replicates the body of all
specialized functions (3) It replaces the function argument
with a constant local variable in the replica, (4) It splits the
call site and inserts a new path to select between the origi-
nal and replica function based on the actual runtime value
provided as argument. The key algorithm implemented by
RIFS’s LLVM pass is shown in Algorithm 1.

Algorithm 1 The proposed pro!le-guided LLVM Function
Specialization Pass of RIFS (pseudo-code)
Require: Input: MatchedPro!les (IR MD)
1: procedure F!"#S$%#P&’’(F!"#()*" F)
2: 𝐿𝑀𝑁𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈𝑉𝑊𝑂 ↑ G+*!$P+*,)-%’B.S$%#)&-)/&()*"(𝑋)
3: for all (CallB, 𝐿𝑁𝑉𝑂𝑄𝑅𝑇𝑂) in 𝐿𝑀𝑁𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈𝑉𝑊𝑂 do
4: 𝐿𝑀𝑁𝑁𝑅𝑅 ↑ 0%(C&--%1F!"#()*"(CallB) ;
5: if ¬𝐿𝑀𝑁𝑁𝑅𝑅 or decl then continue
6: (𝑌𝑉𝑍𝑎𝑇𝑏𝑂𝑐𝑑𝑒𝑀𝑁𝑁𝑂𝑃𝑄𝑅,𝑓𝑇𝑈 𝑔 𝑃𝑁𝑅𝑂) ↑ R%&1IRMD(CallB)
7: if ¬C*’(M*1%-A##%$(’(CallB, 𝐿𝑀𝑁𝑁𝑅𝑅,𝑓𝑇𝑈 𝑔 𝑃𝑁𝑅𝑂) then continue
8: if |𝐿𝑁𝑉𝑂𝑄𝑅𝑇𝑂 |=1 ↓ |𝑌𝑉𝑍𝑎𝑇𝑏𝑂𝑐𝑑𝑒𝑀𝑁𝑁𝑂𝑃𝑄𝑅 |=1 then 𝐿 Case A: 1 cluster, 1 arg
9: (𝑕𝑅𝑖, _) ↑ the single cluster 𝐿 𝑕𝑅𝑖 ↔ (𝑀𝑇𝑏𝑐𝑗𝑘 ↗→ 𝑀𝑇𝑏𝑙𝑀𝑁)
10: 𝑋𝑚 ↑ C-*"%W)(2C*"’((𝐿𝑀𝑁𝑁𝑅𝑅,𝑕𝑅𝑖) ; S$-)(A((CallB)
11: if (𝑀𝑇𝑏[𝑀𝑇𝑏𝑐𝑗𝑘]=𝑀𝑇𝑏𝑙𝑀𝑁) then call 𝑋𝑚 else call original
12: R%$&)+PHI’A"1CFG()
13: else if |𝐿𝑁𝑉𝑂𝑄𝑅𝑇𝑂 |>1 ↓ |𝑌𝑉𝑍𝑎𝑇𝑏𝑂𝑐𝑑𝑒𝑀𝑁𝑁𝑂𝑃𝑄𝑅 |=1 then 𝐿 Case B: many clusters, 1

arg
14: 𝑃 ↑ the single specialized arg; 𝑚 ↑ {𝑛 | (𝑃 ↗→𝑛) ↘ 𝐿𝑁𝑉𝑂𝑄𝑅𝑇𝑂 }
15: for all 𝑛 ↘ 𝑚 do
16: 𝑋𝑚𝐿 ↑ C-*"%W)(2C*"’((𝐿𝑀𝑁𝑁𝑅𝑅, { (𝑃, 𝑛) })
17: S$-)(A((CallB); B!)-1S3)(#2O"A+0(𝑀𝑇𝑏[𝑃], {𝑛→𝑋𝑚𝐿 }, default = orig)
18: R%$&)+PHI’A"1CFG()
19: else 𝐿 Case C: many clusters, many args
20: I ↑ sorted arg indices in 𝐿𝑁𝑉𝑂𝑄𝑅𝑇𝑂 ; ≃𝑃 ↘ I : 𝑚𝑀 ↑ domain from 𝐿𝑁𝑉𝑂𝑄𝑅𝑇𝑂
21: for all 𝑄 ↘ ∏

𝑀↘I 𝑚𝑀 do
22: 𝑋𝑚𝑁 ↑ C-*"%W)(2C*"’((𝐿𝑀𝑁𝑁𝑅𝑅, { (𝑃, 𝑄 [𝑃]) }𝑀↘I)
23: S$-)(A((CallB); 𝑕𝑅𝑖 ↑ PT!$-%O+1)"&-’(𝑀𝑇𝑏[I], {𝑚𝑀 })
24: B!)-1S3)(#2O"K%.(𝑕𝑅𝑖, {𝑄→𝑋𝑚𝑁 }, default = orig) ; R%$&)+PHI’A"1CFG()

(1) LLVM IR lookup of candidate functions. In this step,
RIFS !nd the function specialization candidates in the LLVM-
IR by exploring the MatchedProfiles metadata attached to
each callsite. In particular, for each hot call instruction, the
metadata reports the runtime value-invariant arguments
together with their specialization signature including ar-
gument indices, the top K values taken by the argument, and
the frequency of each value. Then, the pass groups call sites
that share the same callee and the same set of specialized
arguments indices in their specialization signatures into
a single cluster. RIFS then consults a cost model to estimates
the bene!t score for each candidate based on the predicted
speedup and code-size increase (lines 1-10). We provide more
information about the cost model in Section 4.3.

(2) Function Specialization Prototype Selection. To in-
crease coverage, RIFS supports three di#erent function spe-
cialization prototypes including (i) single invariant argu-
ments, (ii) multiple, semi-invariant arguments (e.g. two com-
mmon values), (iii) multiple value invariant parameters (e.g.
two invariant arguments). (i) For single invariant arguments,
the pass creates one replica of the callee function via cloning.
To enable later compiler optimizations such as constant prop-
agation, the LLVM pass then replaces the orginal argument
in the specialized function with a constant local variable set
to the pro!led value. Additionally, it splits the call site’s block
to insert a conditional branch (lines 8-12) selecting between
the original and the specialized function (fast-path) based
on the runtime argument value. This must be done to en-
sure correctness, as pro!ling cannot ensure that an invariant
argument is always invariant.

(ii) If the pro!ling pass captures multiple frequent values
for the same argument, the pass creates one clone function
per value and builds a switch case, based on the value of the
invariant argument to branch to the correct cloned function.
The default edge of the switch case branches to the original
callee. The passes perform the same techniques as described
for path (i) for both function cloning and safety checks for
call site splitting. We limit the number of switch cases to 5
as otherwise the call frequency for individual functions is
too low.

(iii) To support multiple invariant values across multiple ar-
guments, the pass lists the Cartesian product of per argument
value domains, creates a cloned function per combination of
value-invariant arguments and then sets the values of these
arguments to the pro!led constant values. The pass emits a
compact multi-argument switch case in the call site to jump
to the cloned function when the argument values match the
pro!led values during run time. Again, the default edge of
the switch case branches to the original function for safety
purposes (lines 19-24).

Example Use Case. We now provide an example use case of
how RIFS generates an optimized output IR from an input IR
utilizing the Swaptions application from the PARSEC bench-
mark suite (for more details about swaptions see Section 3).
Listing 2 shows the IR representation of the call site and
the callee (target of the call) for the value invariant function
call in the swaptions benchmark described in Listing 1. The
optimizations performed by the LLVM pass can be seen in
the highlighted lines in the call site, Listing 3, and the callee,
Listing 4, of the output LLVM IR. In the new call site, the
FastCallPath-0 is inserted as an optimized path to jump to
the specialized function, SimPath_Forward_Blocking.1, if
the current value of the argument is equal to the pro!led
value of 11 in the comparisons done in lines (10-13) of List-
ing 3. In the specialized function, as shown in Listing 4, the
new version of the value invariant argument is created by

45

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

1 Call Site :
2 de!ne dso_local noundef
3 i32 HJM_Swaption_Blocking(
4 ptr noundef %0, double noundef %1,
5 double noundef %2, ... , i32 %14)
6 local_unnamed_addr #15{
7 ...
8 137: ;preds = %. _crit_edge36, %87
9 ...
10 %141 = call noundef
11 i32 SimPath_Forward_Blocking(
12 ptr noundef nonnull %35, i32 noundef %6,
13 ..., i32 noundef %13)
14 br i1 %99, label %. loopexit 40 ,
15 label %. _crit_edge34
16 ...
17 }
18 -
19 Callee :
20 de!ne dso_local noundef
21 i32 HJM_SimPath_Forward_Blocking
22 (ptr noundef %0, i32 noundef %1,
23 ... , i32 noundef %8)
24 local_unnamed_addr #15{
25 %10 = sitofp i32 %1 to double
26 %11 = fdiv double %3, %10
27 %12 = tail call double
28 @sqrt(double noundef %11)
29 %13 = add nsw i32 %2, -1
30 %14 = sext i32 %13 to i64
31 %15 = mul nsw i32 %8, %1
32 %16 = add nsw i32 %15, -1
33 %17 = sext i32 %16 to i64
34 %18 = tail call noundef ptr @_Z7dmatrixllll
35 (i64 noundef 0, ... , i64 noundef %17)
36 %19 = tail call noundef ptr @_Z7dmatrixllll
37 (i64 noundef 0, ... , i64 noundef %17)
38 %20 = icmp sgt i32 %8, 0
39 %21 = icmp sgt i32 %1, 0
40 %22 = and i1 %21, %20
41 br i1 %22, label %23, label %312
42 ...

Listing 2. Original call Site and Callee
for swaptions before applying RIFS

1 Call Site :
2 de!ne dso_local noundef
3 i32 HJM_Swaption_Blocking(
4 ptr noundef %0, double noundef %1,
5 double noundef %2, ... , i32 %14)
6 local_unnamed_addr #15{
7 ...
8 137: ; preds = %. _crit_edge36, %87
9 ...
10 %141 = trunc i64 11 to i32
11 %142 = icmp eq i32 %6, %141
12 br i1 %142, label %FastCallPath-0,
13 label %OrgCallPath-0
14 FastCallPath-0: ; preds = %137
15 %143 = call noundef i32

SimPath_Forward_Blocking.1(
16 ptr noundef nonnull %35, i32 noundef %6,
17 ..., i32 noundef %13)
18 br label % tail -0
19 OrgCallPath-0: ; preds = %137
20 %144 = call noundef i32

SimPath_Forward_Blocking(
21 ptr noundef nonnull %35, i32 noundef %6,
22 ... , i32 noundef %13)
23 br label % tail -0
24 tail -0 : ; preds = %OrgCallPath-0, %

FastCallPath-0
25 %145 = phi i32 [%143, %FastCallPath-0] ,
26 [%144, %OrgCallPath-0]
27 br i1 %99, label %. loopexit 40 , label %

. _crit_edge34
28
29
30
31
32
33
34
35
36
37 ...

Listing 3. Call Site of swaptions bench-
mark after applying RIFS

1 Callee :
2 de!ne dso_local noundef
3 i32 HJM_SimPath_Forward_Blocking
4 (ptr nocapture noundef
5 readonly %0,
6 ... , i32 noundef %8)
7 local_unnamed_addr #15
8 %arg1 = alloca i32, align 4,
9 store i32 11, ptr %arg1, align 4,
10 %argLoaded1 = load i32, ptr %arg1, align 4,
11 %10 = sitofp i32 %argLoaded1 to double,
12 %11 = fdiv double %3, %10,
13 %12 = tail call
14 double @sqrt(double noundef %11) #28
15 %13 = add nsw i32 %2, -1
16 %14 = sext i32 %13 to i64
17 %15 = mul nsw i32 %8, %argLoaded1
18 %16 = add nsw i32 %15, -1
19 %17 = sext i32 %16 to i64
20 %18 = tail call noundef
21 ptr @_Z7dmatrixllll (i64 noundef 0,
22 i64 noundef %14, i64 noundef 0, i64 noundef %1

7)
23 %19 = tail call noundef ptr @_Z7dmatrixllll
24 (i64 noundef 0, i64 noundef %14,
25 i64 noundef 0, i64 noundef %17)
26 %20 = icmp sgt i32 %8, 0
27 %21 = icmp sgt i32 %argLoaded1 , 0
28 %22 = and i1 %21, %20
29 br i1 %22, label %23, label %312
30
31
32
33
34
35
36
37
38
39
40 ...

Listing 4. Specialized function code for
swaptions after applying RIFS

de!ning argLoaded1 in line 10 and storing the pro!led value,
11, in the new variable in line 9. argLoaded1 is also replaced
with the old version of the value invariant argument in the
following dependent instructions in the body of specialized
function.

4.3 Cost Model for Selecting Optimization
Candidates

Although function specialization can signi!cantly improve
application performance, it can also increase code size
through code replication, potentially leading to more in-
struction cache misses. Furthermore, as RIFS supports single-
argument, multiple-value, and multiple-argument specializa-
tions across multiple functions and call sites, there is a large
optimization space that needs to be explored. RIFS introduces
a novel cost model to guide function specialization decisions
at compile time. After applying function specialization, RIFS
applies the O3 pipeline, including constant propagation and

inlining, to observe e#ects at the IR level. In particular, our
data-driven cost model compares a specialized IR with the
baseline IR (before any function specialization) and then
trains a machine learning model to predict the performance
impact of the changes introduced by function specialization.
For multiple IRs representing di#erent function specializa-
tion con!gurations, the model can rank them based on their
expected performance impact. RIFS then selects the best IR
as predicted by the model to be used. To train our model, we
compile a dataset containing 1000 data points per application,
where each data point corresponds to a speci!c combination
of function specializations. We detect cases where function
specialization reduces the specialized function’s size and
enables interprocedural optimizations to inline it into the
caller. Because of that, the model’s feature vector includes
changes to both the call site and the callee before and after
specialization to inform ranking. To label our dataset, we
measure the execution time for each data point. As a result,

46

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

the model learns to predict the execution time based on a
set of input features summarized in Table 2.

In particular, the model considers the delta between the
generated specialized IRs and the baseline IR during both
training and inference. The metrics are IR-level instruction
changes, structural shifts in the control $ow graph, such as
loop nesting characteristics, and estimated computational
density, as well as modi!ed data dependencies, such as dom-
inance depth (the number of dependent IR instructions to
the argument value). For the machine learning component,
we tested di#erent models, including LightGBM [33], de-
cision trees [35], and random forest [15] approaches, with
LightGBM yielding the best results. The trained model is
integrated into the compiler pipeline as a cost analysis mod-
ule. After the model selects an optimization variant, LLVM
generates the !nal output binary. As a result, our technique
allows LLVM to explore a large number of possible optimiza-
tion candidates with low overhead on the IR level, without
the need to exhaustively measure the execution time of each
variant. The model is portable because it is not machine-
speci!c and uses IR-level analysis to collect data and extract
control-$ow features for training. Furthermore, the dataset
per application has a small storage overhead in the range
of 25 MB to 1 GB and negligible runtime cost. Training the
model, as a one-time overhead, and inference takes less than
60 seconds per application on average, which is an insigni!-
cant overhead compared to performing all code generation,
link time, and evaluation steps on all optimization candidates
to detect bene!cial candidates.

4.4 Implementation

RIFS can be integrated into existing compilation pipelines
with minimal disruption. For instance, data center operators
such as Google and Meta already rely heavily on pro!le-
guided optimizations (PGO) in their production toolchains.
Since the value pro!ling and function specialization mech-
anisms in RIFS are implemented as LLVM transformation
passes, they can be inserted alongside existing optimizations
such as function inlining and function reordering. To in-
corporate RIFS, developers !rst enable PGO in the Clang
compiler to generate an instrumented LLVM IR enriched
with execution pro!ling data [39]. After this step, RIFS ’s
LLVM pass can be applied to the IR. This pass performs
value pro!ling to collect specialization candidates and uses
the trained classi!cation-based cost model to decide, for each
candidate, whether specialization is likely to yield perfor-
mance gains. Only candidates predicted to be bene!cial are
transformed. This selective application reduces code bloat
while retaining performance advantages. Our specialization
path then utilized the pre-trained cost model to select valu-
able optimization candidates. Following the specialization
step, the resulting optimized IR proceede through the rest of

the compilation pipeline, including post-link optimizations
with tools such as BOLT [7] or Propeller [51]. By acting as
a plug-in cost-aware specialization pass, RIFS enables im-
proved IR customization with no manual intervention or
substantial changes to existing infrastructure.

5 Evaluation

We now describe our experimental methodology, bench-
marked applications, and evaluation results. In particular,
We evaluate RIFS in terms of execution time improvements,
branch miss prediction reductions, and dynamic instructions
reduction.

5.1 Methodology

Experimental Setup. We perform all experiments on an
Intel Xeon Gold 5218R CPU with two sockets containing
16 cores and 32 threads, all running at 2.30Hz. Each core
has access to a 32 KiB L1i, a 32 KiB L1d, a 1 MiB L2, and
a 44 MiB L3 shared cache. The machine runs on Ubuntu
Linux 20.04.6 with kernel version 5.4. We utilize the LLVM
infrastructure and Clang compiler, version 20.0.0, to develop
the value pro!ling and function specialization passes and
compile the applications. The IR representation of the appli-
cations is generated by WLLVM [3], which builds a single
whole-program LLVM IR !le from C or C++ source packages
instead of compiling source !les individually and linking
them later. We use Intel’s hardware performance monitoring
features, such as processor event-based sampling PEBS [30],
Linux perf record [47], and perf stat, to gather performance
counter statistics. We execute workloads 5 times for all tests,
averaging the measured performance counters to compute
speedup and instructions reduction results. We disable fre-
quency scaling and turbo boost, setting the CPU to 2GHz, to
ensure reproducibility.

Cost Model. To evaluate the cost model for RIFS, we split
our labeled dataset, consisting of the features discussed in
Section 4.3, into 80% for training and 20% for evaluation.
We use 5-fold cross-validation, so that each data point is
included in the evaluation set exactly once. For the accuracy
evaluation, we compute the average accuracy of the !ve
evaluation runs. For the execution time evaluation, we ask
the model to rank all candidates in the evaluation set, then
pick the top candidate across all !ve evaluation sets, giving
the model a chance to select the best optimization candidate
across the whole data set.

Evaluated Applications. We utilize the SPEC
CPU2017(rate) [4] Integer and Floating points bench-
marks that exhibit value invariant function call parameters,
including 500.perlbench_r, 502.gcc_r, 505.mcf_r, 525.x264_r,

47

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

Table 2. Summary of static features extracted for the function specialization cost model.

Category Feature Description

CFG Structure
V_base / V_after Number of basic blocks before and after specialization.
E_base / E_after Number of control-$ow edges before and after specialization.
dV / dE Change in blocks/edges: V_after V_base, E_after E_base.

CFG Shape avg_out Average out-degree: E / V, before and after specialization.
density CFG density: E / (V * (V - 1)), before and after.

Block Frequencies (BFI) maxFreq / meanFreq Maximum and mean Basic Block execution frequencies in the Caller/Callee
functions.

BB_75, BB_50, BB_25 Number of Basic Blocks in the Caller/Callee functions with basic block
frequencies of 75%, 50%, and 25% of the max.

Opcode Counts Base_Count / Opt_Count Number of opcode instances before and after specialization.
RemovedCount / IncreasedCount Number of instructions removed or added.

Arg Dependence
DepTypeToArg Instruction Opcode Types in baseline dependent on the specialized argu-

ment.
RemovedCountByArg Dependent instructions to the value invariant argument removed in the

optimized IR.
AllDepToArg / AllRemovedByArg Total number of dependent instructions and those eliminated due to value

invariant argument.

Opcode Hotness Sum_BFI_Func Total BFI weights for basic blocks in the Caller/Callee functions, by consid-
ering the opcode type weight in both baseline and optimized IRs.

Sum_BFI_Func_Removed_by_Arg Total BFI weights of blocks with removed IR instructions due to dependency
on value invariant argument in the optimized IR.

IR-Wide Stats Count_Base_IR / Count_OPT_IR Total opcode counts in the full baseline and the optimized IR.
Count_Reduction_IR Net change in opcode counts across the IR.

531.deepsjeng_r, and 538.imagick_r. We use train inputs
for all SPEC2017 benchmarks, except 538.imagick_r, eval-
uated with the reference input. Furthermore, we evaluate
swaptions and freqmine from the Parsec-3.0 [59] benchmark
suite, which also features value invariant parameters. We
evaluate hotspot, hotspot3D, bfs, and kmeans from the
Rodinia Benchmark Suite 3.1 [19] utilizing realistic input
datasets.

Baseline Implementations. We compare RIFS against
LLVM’s -O3 plus PGO baseline and two state-of-the-art prior
works, Ali [8] and Perianayagam [43], in terms of execution
time and reduction in dynamic instruction count. We adapt
and extend both Ali and Perianayagam to work with LLVM
20.0.0, integrating their heuristics into a PGO-based compi-
lation $ow to minimize runtime overhead. In addition, we
enhance Perianayagam’s approach to support arbitrary user-
space applications and enable both baselines to leverage the
new pro!ling mechanism introduced by RIFS, ensuring a fair
comparison.

Even with these improvements, we will show that our prac-
tical implementation (RIFS-COST-MODEL) achieves sub-
stantially higher speedups based on the ability to explore
a broader set of candidate functions and employing an ad-
vanced cost model for function selection. Furthermore, we re-
port the upper bound on performance improvement—RIFS-
IDEAL—representing an idealized implementation that ex-
haustively explores all candidates without regard to compi-
lation time.

5.2 Execution Time Improvement

Figure 3 summarizes execution-time speedups of RIFS rela-
tive to the LLVM’s -O3 plus PGO baseline. Execution time is

measured using perf stat’s user time metric. For each bench-
mark, we report (i) the ideal speedup observed among all
optimized IRs generated by RIFS and (ii) the speedup of the
IR selected by RIFS ’s cost model. We also compare with two
state-of-the-art approaches [8, 43] on all benchmarks. Since
Perianayagam’s work [43] limits performing function spe-
cialization only for the functions that cover at least 90% of
the executed dynamic instructions during run time, it misses
the specialization opportunities for most of the applications,
such as 505.mcf_r where all the functions are executing less
than 50% of the dynamic instructions. Ali’s paper [8] also
limits performing function specialization for value invariant
arguments of the hot functions that are taken at least a value
for 500 times, and also they are used as the upper bound
for loop trip counts. These papers are not able to provide
execution time improvement for applications such as bfs
that the value frequency for the argument is lower than the
selected threshold and it is not used inside a loop de!nition.
As Figure 4 shows RIFS is able to reduce the branch miss
predictions signi!cantly for several applications such as bfs
and hotspot which yields to 18.5% and 15.2% speedup im-
provement in these applications compared to the baseline.
In overall, RIFS’s cost model is able to improve the execution
time speedup for all application by 5.1% over the baseline on
average.

5.3 Total Instruction Count Reduction

In Figure 5, we show the instruction count reduction pro-
vided by RIFS over the baselines. We measure the total num-
ber of executed instructions utilizing the instructions PMU
counter running the perf stat command. As Figure 5 illus-
trates, on average, RIFS can reduce the number of executed
instructions by 2.5% over the baseline, providing a maximum
reduction of 22.8% times for swaptions application, while

48

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

Figure 3. The percentage of execution time speedup pro-
vided by RIFS (Ideal/Cost-Model) and prior works [8, 43]
over the baseline (O3+PGO)

Figure 4. The percentage of branch miss prediction re-
ductions provided by RIFS (Ideal/Cost-Model) and prior
works [8, 43] over the baseline (O3+PGO)

prior works [8, 43] achieve overall 2% and 0.3% instructions
reductions compared to the baseline, respectively.

5.4 Cost Model Evaluation

The data set contains over 7 million features from static
control-$ow and data-$ow analysis performed on the Caller
and Callee functions per specialization. After removing the
outliers, it contains approximately 1.7 million (29%) fea-
tures that represent positive speedup. LightGBM achieves
an overall accuracy of 81%, with a precision of 70% and
a recall of 66% for the positive class, yielding an F1-score
of 68%. Top features that in$uence both models include
post-specialization CFG shape and hotness metrics, includ-
ing number of basic blocks, avg_out,meanFreq, density,
and Count_Reduction_IR after optimizations —as well
as data-dependence features like AllRemovedByArg and

Figure 5. The percentage of instruction count reduction
provided by RIFS (Ideal/Cost-Model) and prior works [8, 43]
over the baseline (O3+PGO)

AllDepToArg. These features indicate code elimination or
simpli!cation after function specializations compared to
the baseline IR. These results suggest that structural and
execution-weighted IR features provide useful signs for au-
tomatically deciding which specialization candidates are
worthwhile, enabling an e#ective cost model that can in-
form compiler decisions or guide o%ine autotuning. The
model can also list some critical features, such as a high
number of instructions removed by AllRemovedByArg
and a large Sum_BFI_Func_Reduction, as strong signals
for achieving speedup. It may be possible to combine these
signals to generate a purely analytic cost model.

5.5 Code Bloat Overhead

While relying on simple heuristics, such as the number of
eliminated instructions due to constant propagation, is not
su"cient to detect bene!cial candidates for function special-
ization, the systematic analysis of binaries is also costly to
perform in the compilation and linking stages. The machine
learning model controls both code growth and compile-time
overhead by !ltering top candidates. RIFS only performs
functions that specialize in hot functions with a maximum
of !ve arguments per call site. Therefore, the model !lters
many optimization candidates to reduce code bloat. We use
the Bloaty [6] tool, a binary-size pro!ler, to analyze the
binary size increase introduced by RIFS due to function spe-
cialization. We analyze the impact of code replication on
total and text size increases in two domains: !le size and
virtual memory usage, comparing RIFS against the LLVM
baseline (-O3+PGO). We utilize Bloaty’s Size Di"s option to
obtain the data shown in Table 3. The !rst column of Table 3
indicates that the binary !le size increases after applying
RIFS in the .text section, which is the size of data emitted by
the functions or variables in the code. The second column
shows how much the size of the binary !le changed overall.
The last two columns of Table 3 show the changes in the

49

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

virtual memory (VM) taken by the .text section of the binary
and the overall increase in VM size, respectively. As shown,
for most applications, especially the large SPEC2017 bench-
marks, such as 500. perlbench_r, the percentage increase in
the binary !le size and VM size is very small. In some cases,
such as 525.x264_r, the code size decreases because of op-
portunities enabled by RIFS’s function specialization, which
enables further optimizations such as constant propagation
and inlining. On average, RIFS increases the total !le size by
5.96% and the total VM size by 8.19%.

Table 3. The impact of function specialization by RIFS in the
!le and Virtual Memory Sizes increase

Application File Size File Size VM Size VM Size
.text (%) Total (%) .text (%) Total (%)

500.perlbench_r +1.10 +1.83 +1.10 +1.28
505.mcf_r +5.30 +8.81 +5.30 +4.83
525.x264_r -43.65 -30.99 -43.65 -38.04
531.deepsjeng_r +34.88 +36.45 +34.88 +0.84
538.imagick_r -0.59 +0.46 -0.59 -0.99
swaptions +38.61 +0.65 +38.61 +32.55
freqmine +8.14 +7.63 +8.14 +0.76
hotspot +32.51 +5.66 +32.51 +19.83
hotspot3D +26.94 +3.02 +26.94 +15.14
bfs +55.38 +11.43 +55.38 +29.02
kmeans +39.00 +20.56 +39.00 +24.92
Mean +17.97 +5.96 +17.97 +8.19

6 Related Work

Static Compiler Techniques. Several prior works [11–
13, 23, 40, 52, 58] propose function specialization based on
static arguments known to be constant at compile-time.
These works utilize di#erent techniques, such as static analy-
sis, concept-based specialization, and argument binding, for
generating specialized versions of functions. The function
specialization opportunities are limited for these works since
they rely on static compiler information and cannot utilize
dynamic values of function parameters during run-time to
enable additional function specialization opportunities.

Function Specialization Optimizations. Prior works [26–
28, 38] propose Just-In-Time (JIT) approaches to perform
function specialization, while others rely on binary rewrit-
ing and function memorization [8, 54]. Both of these ap-
proaches introduce several limitations. JIT-based approaches
are limited to managed languages such as JavaScript and,
in contrast to RIFS, do not support C/C++. They further-
more introduce continuous overheads for pro!ling JIT-ing
at run-time, whereas RIFS amortizes a single pro!ling run
over many application executions. Arjun [54] proposes mem-
orization techniques to replay return values generated by
functions based on their input values. In this case, whenever
functions are provided with previously seen arguments, the
approach returns memorized values from a table instead of
re-executing the target function. The main problem with

memorization techniques is that they need to prove that
functions do not rely on external (global) variables or any
other state that is not directly provided through function
arguments, reducing the applicability of this technique. Ad-
ditionally, for applications with large numbers of functions
they introduce time and storage overhead to monitor and
store the values of arguments and the return values during
the whole execution time of the program.

Performance analysis tools. To recognize the hot regions
of codes that signi!cantly a#ect the performance of appli-
cations in terms of consumed CPU cycles and power con-
sumption, a wide range of performance analysis tools are
developed, such as perf[47], Vtune[46] tools from Intel, and
OPro!le[21]. These tools help understand the e#ectiveness of
applied compiler optimizations on the performance counter
numbers for programs, such as the total number of executed
dynamic instructions, cycles, and cache misses. However,
they cannot learn value-invariant function arguments as re-
quired by RIFS. Tools including LOADSPY [53], mPro!le [5],
and RedSpy [57] can perform value pro!ling for the load
or store instructions and they are not designed for perform-
ing value pro!ling on the values taken by function param-
eters. Furthermore, they provide higher storage and execu-
tion overheads. None of these tools present an automated
compiler-assisted approach for exploiting value invariance.

7 Conclusion

In this paper, we propose RIFS, an automated function special-
ization technique for fully and semi-value invariant function
arguments. Our approach introduces a value pro!ling LLVM
pass to capture the dynamic behavior of value invariant
function arguments and a safe LLVM code transformation
pass to perform function specialization. Additionally, we
introduce a cost model that is able to select the optimized
LLVM IR with function specializations which provides the
performance improvment near to ideal IR. We show that
RIFS improves the performance of SPEC2017, PARSEC-3.0,
and Rodinia Benchmark Suite 3.1 [19] applications by up
to 18.5% and 6.3% on average. We also show that RIFS out-
performs two state-of-the-art previous works, Ali [8] and
Perianayagam[43]. Since RIFS is implemented at the LLVM
intermediate representation layer, it can be integrated easily
within any existing PGO-based pipeline.

Acknowledgements

Thisworkwas supported byGoogle, NSF grant #1942754, and
the CRSS Industrial Advisory Board. We thank David Li and
Teresa Johnson for their helpful discussions and feedback.

50

CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia Saba Jamilan, Snehasish Kumar, and Heiner Litz

References
[1] 1987. GCC, the GNU Compiler Collection. h!ps://gcc.gnu.org/
[2] 2003. LTO. h!ps://www.llvm.org/docs/LinkTimeOptimization.html
[3] 2016. Whole Program LLVM. h!ps://github.com/travitch/whole-

program-llvm
[4] 2017. SPEC CPU 2017. h!ps://www.spec.org/cpu2017/
[5] 2019. mpro!le value pro!ling tool. h!ps://github.com/

mounikaponugoti/Tracing-tools
[6] 2020. Bloaty: a size pro!ler for binaries. h!ps://github.com/google/

bloaty
[7] 2023. llvm-bolt. h!ps://github.com/llvm/llvm-project/blob/main/bolt/

README.md
[8] AP Arif Ali and Erven Rohou. 2017. Dynamic function specializa-

tion. In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). IEEE, 163–170.

[9] Randy Allen and Steve Johnson. 1988. Compiling C for vectorization,
parallelization, and inline expansion. ACM SIGPLAN Notices 23, 7
(1988), 241–249.

[10] Lars Ole Andersen. 1992. Partial evaluation of C and automatic com-
piler generation. In Compiler Construction: 4th International Conference,
CC’92 Paderborn, FRG, October 5–7, 1992 Proceedings 4. Springer, 251–
257.

[11] Lars Ole Andersen. 1992. Self-applicable C Program Specialization.
PEPM 92, 28 (1992), 54–61.

[12] Lars Ole Andersen. 1994. Program analysis and specialization for the
C programming language. (1994).

[13] Bruno Bachelet, Antoine Mahul, and Loïc Yon. 2010. Generic Program-
ming: Controlling Static Specialization with Concepts in C+. (2010).

[14] David F Bacon, Susan L Graham, and Oliver J Sharp. 1994. Compiler
transformations for high-performance computing. ACM Computing
Surveys (CSUR) 26, 4 (1994), 345–420.

[15] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001),
5–32.

[16] Preston Briggs, Keith D Cooper, and L Taylor Simpson. 1997. Value
numbering. Software: Practice and Experience 27, 6 (1997), 701–724.

[17] Preston Briggs, Doug Evans, Brian Grant, Robert Hundt, William Mad-
dox, Diego Novillo, Seongbae Park, David Sehr, Ian Taylor, and Ollie
Wild. 2007. WHOPR-Fast and Scalable Whole Program Optimizations
in GCC. Initial Draft 12 (2007).

[18] Jacques Carette. 2004. Understanding expression simpli!cation. In Pro-
ceedings of the 2004 international symposium on Symbolic and algebraic
computation. 72–79.

[19] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Shea#er, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC). Ieee, 44–54.

[20] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:
Automatic feedback-directed optimization for warehouse-scale appli-
cations. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. 12–23.

[21] William E Cohen. 2004. Tuning programs with OPro!le. Wide Open
Magazine 1 (2004), 53–62.

[22] Keith D Cooper, L Taylor Simpson, and Christopher A Vick. 2001. Oper-
ator strength reduction. ACM Transactions on Programming Languages
and Systems (TOPLAS) 23, 5 (2001), 603–625.

[23] Piotr Danilewski, Marcel Köster, Roland Leißa, Richard Membarth,
and Philipp Slusallek. 2014. Specialization through dynamic staging.
ACM SIGPLAN Notices 50, 3 (2014), 103–112.

[24] Jack W Davidson and Anne M Holler. 1988. A study of a C function
inliner. Software: Practice and Experience 18, 8 (1988), 775–790.

[25] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2011. Dark silicon and the end of multicore
scaling. In Proceedings of the 38th annual international symposium on

Computer architecture. 365–376.
[26] Olivier Flückiger. 2022. Just in Time: Assumptions and Speculations.

Ph. D. Dissertation. Northeastern University.
[27] Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Je&men, Jakob Hain,

and Jan Vitek. 2020. Contextual dispatch for function specialization.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1–24.

[28] Tyler Gobran, João PL de Carvalho, and Christopher Barton. 2023.
DASS: Dynamic Adaptive Sub-Target Specialization. In 2023 Interna-
tional Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW). IEEE, 36–45.

[29] John CockePeterWilly Markstein google patents. [n. d.]. Reassociation
process for code optimization. h!ps://patents.google.com/patent/
EP0273130A2/en

[30] Part Guide. 2011. Intel® 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part 2, 11 (2011), 1–64.

[31] Sumit Gupta, Mehrdad Reshadi, Nick Savoiu, Nikil Dutt, Rajesh Gupta,
and Alex Nicolau. 2002. Dynamic common sub-expression elimination
during scheduling in high-level synthesis. In Proceedings of the 15th
international symposium on System Synthesis. 261–266.

[32] Teresa Johnson, Mehdi Amini, and Xinliang David Li. 2017. ThinLTO:
scalable and incremental LTO. In 2017 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO). IEEE, 111–121.

[33] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly e"cient
gradient boosting decision tree. Advances in neural information pro-
cessing systems 30 (2017).

[34] Jens Knoop, Oliver Rüthing, and Bernhard Ste#en. 1994. Partial dead
code elimination. ACM Sigplan Notices 29, 6 (1994), 147–158.

[35] Sotiris B Kotsiantis. 2013. Decision trees: a recent overview. Arti!cial
Intelligence Review 39, 4 (2013), 261–283.

[36] David Lacey, Neil D Jones, Eric Van Wyk, and Carl Christian Fred-
eriksen. 2004. Compiler optimization correctness by temporal logic.
Higher-Order and Symbolic Computation 17 (2004), 173–206.

[37] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
symposium on code generation and optimization, 2004. CGO 2004. IEEE,
75–86.

[38] Caio Lima, Junio Cezar, Guilherme Vieira Leobas, Erven Rohou, and
Fernando Magno Quintão Pereira. 2020. Guided just-in-time special-
ization. Science of Computer Programming 185 (2020), 102318.

[39] CLANG COMPILER USER’S MANUAL. [n. d.]. Pro!le-Guided Opti-
mizations for Clang. h!ps://clang.llvm.org/docs/UsersManual.html#
profile-guided-optimization

[40] Shachee Mishra and Michalis Polychronakis. 2020. Sa"re: Context-
sensitive function specialization against code reuse attacks. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
17–33.

[41] Steven Muchnick. 1997. Advanced compiler design implementation.
Morgan kaufmann.

[42] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
2019. Bolt: a practical binary optimizer for data centers and beyond.
In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2–14.

[43] Somu Perianayagam, HaiFeng He, Mohan Rajagopalan, Gregory An-
drews, and Saumya Debray. 2006. Pro!le-guided specialization of an
operating system kernel. In Proc. Workshop on Binary Instrumentation
and Applications.

[44] Karl Pettis and Robert C Hansen. 1990. Pro!le guided code positioning.
In Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation. 16–27.

[45] Alex Ramirez, Josep Lluís Larriba-Pey, and Mateo Valero. 2000. The
e#ect of code reordering on branch prediction. In Proceedings 2000

51

https://gcc.gnu.org/
https://www.llvm.org/docs/LinkTimeOptimization.html
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://www.spec.org/cpu2017/
https://github.com/mounikaponugoti/Tracing-tools
https://github.com/mounikaponugoti/Tracing-tools
https://github.com/google/bloaty
https://github.com/google/bloaty
https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://github.com/llvm/llvm-project/blob/main/bolt/README.md
https://patents.google.com/patent/EP0273130A2/en
https://patents.google.com/patent/EP0273130A2/en
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization

RIFS: Run-Time Invariant Function Specialization CC ’26, January 31 – February 1, 2026, Sydney, NSW, Australia

International Conference on Parallel Architectures and Compilation Tech-
niques (Cat. No. PR00622). IEEE, 189–198.

[46] James Reinders. 2005. VTune performance analyzer essentials. Vol. 9.
Intel Press Santa Clara.

[47] Otto Bruggeman Patrick Fay Patrick Ungerer Austen Ott Patrick
Lu James Harris Phil Kerly Patrick Konsor Andrey Semin Michael
Kanaly Ryan Brazones Rahul Shah Jacob Dobkins Roman Demen-
tiev, Thomas Willhalm. [n. d.]. Intel Performance Counter Moni-
tor. h!ps://www.intel.com/content/www/us/en/developer/articles/
tool/performance-counter-monitor.html

[48] Vivek Sarkar. 2000. Optimized unrolling of nested loops. In Proceedings
of the 14th international conference on Supercomputing. 153–166.

[49] Robert R Schaller. 1997. Moore’s law: past, present and future. IEEE
spectrum 34, 6 (1997), 52–59.

[50] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew
Legendre. 2001. Plto: A link-time optimizer for the Intel IA-32 ar-
chitecture. In Proc. 2001 Workshop on Binary Translation (WBT-2001),
Vol. 114.

[51] Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar,
Sriraman Tallam, and Xinliang David Li. 2023. Propeller: A pro!le
guided, relinking optimizer for warehouse-scale applications. In Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2.
617–631.

[52] Victor Hugo Sperle Campos, Péricles Rafael Alves, Henrique
Nazaré Santos, and Fernando Magno Quintão Pereira. 2016. Restricti-
!cation of function arguments. In Proceedings of the 25th International
Conference on Compiler Construction. 163–173.

[53] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu.
2019. Redundant loads: A software ine"ciency indicator. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 982–993.

[54] Arjun Suresh, Bharath Narasimha Swamy, Erven Rohou, and André
Seznec. 2015. Intercepting functions for memoization: A case study
using transcendental functions. ACM Transactions on Architecture and
Code Optimization (TACO) 12, 2 (2015), 18–1.

[55] Je#ery Von Ronne. 2005. A Safe and E"cient Machine-independent
Code Transportation Format Based on Static Single Assignment Form
and Applied to Just-in Time Compilation. Ph. D. Dissertation. Citeseer.

[56] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propaga-
tion with conditional branches. ACM Transactions on Programming
Languages and Systems (TOPLAS) 13, 2 (1991), 181–210.

[57] ShashaWen, Milind Chabbi, and Xu Liu. 2017. Redspy: Exploring value
locality in software. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems. 47–61.

[58] John Robert Wernsing, Greg Stitt, and Jeremy Fowers. 2012. The
RACECAR heuristic for automatic function specialization on multi-
core heterogeneous systems. In Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded sys-
tems. 81–90.

[59] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017.
PARSEC3. 0: A multicore benchmark suite with network stacks and
SPLASH-2X. ACM SIGARCH Computer Architecture News 44, 5 (2017),
1–16.

Received 2025-11-10; accepted 2025-12-10

52

https://www.intel.com/content/www/us/en/developer/articles/tool/performance-counter-monitor.html
https://www.intel.com/content/www/us/en/developer/articles/tool/performance-counter-monitor.html

	Abstract
	1 Introduction
	2 Background
	2.1 Static Compilation Optimization Techniques
	2.2 Profile-Guided Optimization Techniques
	2.3 LLVM Compiler Infrastructure

	3 Analysis
	3.1 Are Value-Invariant Arguments Common?
	3.2 Which Argument Types to Optimize?
	3.3 Does Function Specialization Offer Optimization Opportunities?

	4 Design of RIFS
	4.1 Profile Collection
	4.2 Profile-Guided Function Specialization Pass
	4.3 Cost Model for Selecting Optimization Candidates
	4.4 Implementation

	5 Evaluation
	5.1 Methodology
	5.2 Execution Time Improvement
	5.3 Total Instruction Count Reduction
	5.4 Cost Model Evaluation
	5.5 Code Bloat Overhead

	6 Related Work
	7 Conclusion
	References

