
ReFlex: Remote Flash ≈ Local Flash

Ana Klimovic ∗ Heiner Litz∗ Christos Kozyrakis
Stanford University

{anakli, hlitz, kozyraki}@stanford.edu

Abstract
Remote access to NVMe Flash enables flexible scaling and
high utilization of Flash capacity and IOPS within a datacen-
ter. However, existing systems for remote Flash access either
introduce significant performance overheads or fail to isolate
the multiple remote clients sharing each Flash device. We
present ReFlex, a software-based system for remote Flash
access, that provides nearly identical performance to access-
ing local Flash. ReFlex uses a dataplane kernel to closely
integrate networking and storage processing to achieve low
latency and high throughput at low resource requirements.
Specifically, ReFlex can serve up to 850K IOPS per core
over TCP/IP networking, while adding 21µs over direct ac-
cess to local Flash. ReFlex uses a QoS scheduler that can
enforce tail latency and throughput service-level objectives
(SLOs) for thousands of remote clients. We show that Re-
Flex allows applications to use remote Flash while maintain-
ing their original performance with local Flash.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management

Keywords Flash; I/O scheduling; network storage; QoS

1. Introduction
NVMe Flash devices deliver up to 1 million I/O operations
per second (IOPS) at sub 100µs latencies, making them the
preferred storage medium for many data-intensive, online
services. However, the Flash devices deployed in datacen-
ters are often underutilized in terms of capacity and through-
put due to the imbalanced requirements across applications
and over time [37, 50]. In general, it is difficult to design
machines with the perfect balance between CPU, memory,
and Flash resources for all workloads, which leads to over-

∗ The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08 - 12, 2017, Xi’an, China

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037732

provisioning and higher total cost of ownership (TCO). Sim-
ilar to sharing disks within a datacenter, remote access to
Flash over the network can greatly improve utilization by al-
lowing access to Flash on either any machine that has spare
capacity and bandwidth or on servers dedicated to serving a
large number of NVMe devices.

There are significant challenges in implementing remote
access to Flash. Achieving low latency requires minimal pro-
cessing overheads at the network and storage layers in both
the server and client machines. In addition to low latency,
each server must achieve high throughput at minimum cost,
saturating one or more NVMe Flash devices with a small
number of CPU cores. Moreover, managing interference be-
tween multiple tenants sharing a Flash device and the uneven
read/write behavior of Flash devices [52, 61] requires isola-
tion mechanisms that can guarantee predictable performance
for all tenants. Finally, it is useful to have flexibility in the de-
gree of sharing, the deployment scale, and the network pro-
tocol used for remote connections. Existing, software-only
options for remote Flash access, like iSCSI [57] or event-
based servers, cannot meet performance expectations. Re-
cently proposed, hardware-accelerated options, like NVMe
over RDMA fabrics [18], lack performance isolation and
provide limited deployment flexibility.

We present ReFlex, a software-based Flash storage server
that implements remote Flash access at a performance com-
parable with local Flash accesses. ReFlex achieves high per-
formance with limited compute requirements using a novel
dataplane kernel that tightly integrates networking and stor-
age. The dataplane design avoids the overhead of interrupts
and data copying, optimizes for locality, and strikes a bal-
ance between high throughput (IOPS) and low tail latency.
ReFlex includes a QoS scheduler that implements priorities
and rate limiting in order to enforce service level objectives
(SLOs) for latency and throughput for multiple tenants shar-
ing a device. ReFlex provides both a user-level library and a
remote block device driver to support client applications.

The ReFlex server achieves 850K IOPS per core over
commodity 10GbE networking with TCP/IP. Hence, it can
serve several NVMe devices and meet networking line rates
at low cost. Its unloaded latency is only 21µs higher than
direct access to local Flash through NVMe queues. The Re-
Flex server can support thousands of remote tenants. Its QoS

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

0	 250	 500	 750	 1000	 1250	

p9
5	
re
ad

	la
te
nc
y	
(u
s)
	

Total	IOPS	(Thousands)	

100%read	
99%read	
95%read	
90%read	
75%read	
50%read	

Figure 1: The impact of interference on Flash performance.
Tail read latency depends on total IOPS and read/write ratio.

scheduler can enforce the tail latency and throughput re-
quirements of tenants with SLOs, while allowing best-effort
tenants to consume all remaining throughput of the NVMe
device. Finally, using legacy applications, we show that even
with heavy-weight clients, ReFlex allows for performance
levels nearly identical to those with local Flash.

ReFlex is open-source software. The code is available at
https://github.com/stanford-mast/reflex.

2. Background and Motivation
Remote access provides flexibility to use Flash regardless
of its physical location in a datacenter, increasing utilization
and reducing the total cost of ownership [37, 38].

Remote access to hard disks is already common in data-
centers [8, 23], since their high latency and low throughput
easily hide network overheads [3, 9]. A variety of software
systems can make remote disks available as block devices
(e.g., iSCSI [57]), network file systems (e.g., NFS [56]), dis-
tributed file systems (e.g., Google File System [23]), or dis-
tributed data stores (e.g., Bigtable [17]). There are also pro-
posals for hardware-accelerated, remote access to Flash us-
ing Remote Direct Memory Access (RDMA) (e.g., NVMe
over Fabrics [18]) or PCIe interconnects [6, 29, 67]. Exist-
ing approaches for remote Flash access face two main chal-
lenges: achieving high performance at low cost, and provid-
ing predictable performance in the presence of interference.

2.1 Performance Goals
Low latency: The unloaded read latency of NVMe Flash
is 20-100µs [19]. To satisfy the requirements of latency-
sensitive applications, remote access to Flash should have
low latency overhead. Conventional remote server access
over 10GbE and the TCP/IP network protocol adds at least
50µs to unloaded latency before any software-based storage
protocol even begins [11]. More important, network process-
ing in Linux introduces performance unpredictability due to

interrupt management and core scheduling, increasing the
tail latency of remote accesses [36, 40, 41]. Network stor-
age systems like iSCSI introduce additional latency for pro-
tocol processing and copying data between kernel and user
buffers [35, 37]. On the other hand, distributed file systems
like GFS and HDFS are optimized for multi-megabyte data
transfers to remote disks, introducing overhead for kilobyte-
sized data accesses to remote Flash [23, 63].

High throughput at low cost: Modern Flash devices have
throughput capabilities on the order of a million IOPS [55].
A remote Flash server must serve high I/O rates with low
processing overhead to reduce the cost and increase the flex-
ibility of sharing Flash over the network. Datacenter ma-
chines with spare Flash capacity and IOPS may not have
many cores available to serve remote requests. Existing
software-based approaches require significant compute re-
sources to saturate Flash throughput. For example, the iSCSI
protocol achieves 70K IOPS per CPU core [37], thus requir-
ing 14 cores to serve the 1M IOPS of a high-end NVMe de-
vice. Similarly, in §5, we show that a light-weight server for
remote Flash access based on Linux libevent and libaio

achieves only 75K IOPS per core.

2.2 Interference Management
Remote Flash is useful if it provides predictable perfor-
mance even when multiple tenants share a device. Pre-
dictable performance is a challenge for NVMe Flash devices
because of the impact of read/write interference. Figure 1
plots the tail read latency (95th percentile) on Flash as a
function of throughput (IOPS) for workloads with various
read/write ratios. Tail read latency depends on throughput
(load) and the read/write ratio. This behavior is typical for
all NVMe Flash devices we have tested because write oper-
ations are slower and trigger activities for wear leveling and
garbage collection that cannot always be hidden. Read/write
interference can be managed when a single application uses
a local Flash device, but becomes a big challenge with re-
mote Flash and multiple tenants that share the same device
and are unaware of each other.

Hardware acceleration is not enough: Interference miti-
gation is a major omission of hardware-accelerated schemes
like NVMe over Fabrics [18], QuickSAN [15] or iSCSI
extensions for RDMA (iSER) [16]. The current isolation
features of NVMe devices, namely hardware queues and
namespaces, are not sufficient to reduce interference be-
tween multiple remote clients without additional software.
The number of queues is limited (e.g., 64 queues in high-end
devices) and request arbitration is simplistic (round-robin).
Namespaces are host-side logical partitions of the device, so
requests issued to different namespaces will still interfere.
Existing NVMe over Fabrics solutions do not perform I/O
scheduling to mitigate interference between multiple remote
clients. The existing solutions do not offer a way for clients
to specify quality of service objectives and are thus unable
to manage Flash devices in a QoS-aware manner [48].

https://github.com/stanford-mast/reflex

Hardware-accelerated approaches have other disadvan-
tages. RDMA-based schemes require network fabrics with
RDMA capabilities, which may not be readily available
in legacy datacenters. Approaches for sharing Flash over
a PCIe backplane limit sharing to a single rack and also lack
support for performance isolation [6, 29, 67].

3. ReFlex Design
ReFlex provides low latency and high throughput access to
remote Flash using a dataplane architecture that tightly in-
tegrates the networking and storage layers. It serves remote
read/write requests for logical blocks of any size over gen-
eral networking protocols like TCP and UDP. While pre-
dominately a software system, ReFlex leverages hardware
virtualization capabilities in NICs and NVMe Flash devices
to operate directly on hardware queues and efficiently for-
ward requests and data between NICs and Flash devices
without copying. Its polling-based execution model (§3.1)
allows requests to be processed without interruptions, im-
proving locality and reducing unpredictability. ReFlex uses a
novel I/O scheduler (§3.2) to guarantee latency and through-
put SLOs for tenants with varying ratios of read/write re-
quests. ReFlex can serve thousands of tenants and network
connections, using as many cores as needed to saturate Flash
device IOPS.

3.1 Dataplane Execution Model
Each ReFlex server thread uses a dedicated core with direct
and exclusive access to a network queue pair for packet
reception/transmission and an NVMe queue pair for Flash
command submission/completion.

Figure 2 reviews the execution model for a ReFlex server
thread processing an incoming Flash read (or write) request.
First, the NIC receives a network packet and delivers it via
DMA to a pre-allocated memory buffer provided by the net-
working stack ¬. The ReFlex thread polls the receive de-
scriptor ring and processes the packet through the Ethernet
driver and networking stack (e.g., TCP/IP), generating event
conditions indicating the availability of a new message ­.
The same thread uses libix [11], a library similar to Linux
libevent [54], to process the event. This involves switching
to the server code that parses the message, extracts the I/O
request, performs access control checks and any other stor-
age protocol processing required before submitting a Flash
read (write) system call ®. The thread then switches to sys-
tem call processing and performs I/O scheduling to enforce
SLOs across all tenants sharing the ReFlex server (§3.2).
Once scheduled, the request is submitted to the Flash de-
vice through an NVMe submission queue ¯. The Flash de-
vice performs the read (write) I/O and delivers (retrieves) the
data via DMA to (from) a pre-allocated user-space buffer ².
The thread polls the completion queue ° and delivers a com-
pletion event ±. The event callback executes through libix

and emits a send system call ². Finally, the thread processes

ReFlex	Server	
libIX	

NIC	RX	

TCP/IP	

Event	
Condi8ons	

Batched	
Syscalls	

Ring	3	

Guest		
Ring	0	

NVMe	 TCP/IP	

NVMe	

NVMe	CQ	

SLO
	Scheduler	

1	

2	

3	

4	5	

6	

7	

8	

NVMe	Req	NIC	TX	

Figure 2: The execution model for a each ReFlex thread.

the send system call to deliver the requested data back to
the originator through the network stack ³. The execution
model supports multiple I/O requests per network message
and large I/Os that span across multiple network messages.

This execution model achieves low latency for remote
Flash requests. It runs to completion the two steps of re-
quest processing, the first between network packet reception
and Flash command submission (¬ - ¯) and the second be-
tween Flash completion and network packet transmission (°
- ³), without any additional interruptions or thread schedul-
ing. Running to completion eliminates latency variability
and improves data cache locality for request processing. Re-
Flex’s two-step run to completion model avoids blocking on
Flash requests. ReFlex avoids interrupt overhead by polling
for network packet arrivals and Flash completions. More-
over, ReFlex implements zero-copy by passing pointers to
the buffers used to DMA data from the NIC or Flash device.

In addition to the benefit from lower latency, ReFlex im-
proves the throughput of remote Flash requests using two
methods. First, it uses asynchronous I/O to overlap Flash
device latency (50µs or more) with network processing for
other requests. Once a command is submitted to the Flash
device ¯, the thread polls the NMVe completion queue for
previously issued requests that require outgoing network
processing and polls the NIC receive queue for incoming
packets that require incoming network processing. As long
as there is work to do, the thread does not idle. Second,
ReFlex employs adaptive batching of requests in order to
amortize overheads and improve prefetching and instruc-
tion cache efficiency [11]. Under low load, incoming pack-
ets or completed NVMe commands are processed immedi-
ately without any delay. As load rises, the NIC receive and
NVMe completion queues fill up and provide the opportu-
nity to process multiple incoming packets or multiple com-
pleted accesses in a batch. The batch size increases with load
but it is capped to 64 to avoid excessive latencies. Unlike
conventional batching, which trades off latency for band-
width, adaptive batching achieves a good balance between
high throughput and low latency [11].

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

0	 200	 400	 600	 800	

p9
5	
Re

ad
		L
at
en

cy
	(u

s)
	

Weighted	IOPS	(x	103	tokens/s)	

100%read	(1KB)	
100%rd	(32KB)	
100%rd	(4KB)	
99%rd	(4kB)	
95%rd	(4KB)	
90%rd	(4KB)	
75%rd	(4KB)	
50%rd	(4KB)	

100%rd	(1KB)	

(a) Device A Request Cost Model

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

0	 100	 200	 300	 400	

p9
5	
Re

ad
	L
at
en

cy
	(u

s)
	

Weighted	IOPS	(x	103	tokens/s)	

100%rd	(1KB)	
100%rd	(32KB)	
100%rd	(4KB)	
99%rd	(4KB)	
95%rd	(4KB)	
90%rd	(4KB)	
75%rd	(4KB)	
50%rd	(4KB)	

(b) Device B Request Cost Model

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

0	 200	 400	 600	 800	

p9
5	
re
ad

	la
te
nc
y	
(u
s)
	

Weighted	IOPS	(x	103	tokens/s)	

100%rd	(1KB)	
100%rd	(32KB)	
100%rd	(4KB)	
99%rd	(4KB)	
95%rd	(4KB)	
90%rd	(4KB)	
75%rd	(4KB)	
50%rd	(4KB)	

(c) Device C Request Cost Model

Figure 3: Request cost models for various workloads on 3 different NVMe Flash devices.

ReFlex scales to multiple threads, each using a dedicated
core and separate hardware queue pairs. Threads need to co-
ordinate only when issuing accesses to the NVMe command
queue so that they collectively respect the tail latency and
throughput SLOs of the various tenants that share the ReFlex
server (see §3.2). A local control plane periodically monitors
the load of all ReFlex threads and their ability to achieve the
requested SLOs in order to increase or decrease the number
of ReFlex threads. When the number of threads changes, re-
mote tenants and network connections are rebalanced across
threads as explained in [53]. Rebalancing takes a few mil-
liseconds and does not lead to packet dropping or reordering.

3.2 QoS Scheduling and Isolation
The QoS scheduler allows ReFlex to provide performance
guarantees for tenants sharing the Flash device(s) in a server.
A tenant is a logical abstraction for accounting for and en-
forcing service-level objectives (SLOs). An SLO specifies a
tail read latency limit at a certain throughput and read/write
ratio. For example, a tenant may register an SLO of 50K
IOPS with 200µs read tail latency (95th percentile) at an 80%
read ratio. In addition to such latency-critical (LC) tenants
which have guaranteed allocations in terms of tail latency
and throughput, ReFlex also serves best-effort (BE) tenants,
which can opportunistically use any unallocated or unused
Flash bandwidth and tolerate higher latency. A tenant defi-
nition can be shared by thousands of network connections,
originating from different client machines running any num-
ber of applications. An application can use multiple tenants
to request separate SLOs for different data streams.

As shown in Figure 1, enforcing an SLO on Flash device
accesses is complicated by two factors. First, the maximum
bandwidth (IOPS) the device can support depends on the
overall read/write ratio of requests it sees across all tenants.
Second, the tail latency for read requests depends on both
the overall read/write ratio and the current bandwidth load.
Hence, the QoS scheduler requires global visibility and con-
trol over the total load on Flash and the type of outstanding
I/O operations. We use a request cost model to account for
each Flash I/O’s impact on read tail latency (§3.2.1) and a

novel scheduling algorithm that guarantees SLOs across all
tenants and all dataplane threads (§3.2.2). ReFlex does not
assume a priori knowledge of workloads.

3.2.1 Request Cost Model
The model estimates read tail latency as a function of
weighted IOPS, where the cost (weight) of a request de-
pends on the I/O size, type (read vs. write), and the current
read/write request ratio r on the device:

I/O cost =
⌈ I/O size

4KB

⌉
× C(I/O type, r)

Cost is a function of r because some Flash devices pro-
vide substantially higher IOPS for read-only loads (r=100%)
compared to 99% or lower read loads, as seen in Figure 1.
Hence, the model adjusts the cost of read requests when the
device load is read-only. Costs are expressed in multiples of
tokens, where one token represents the cost of a 4KB ran-
dom read request. In all Flash devices we have used, cost
scales linearly with request size for sizes larger than 4KB
(e.g., a 32KB request costs as much as 8 back-to-back 4KB
requests). Cost is constant for requests 4KB and smaller, as
these Flash devices seem to operate at 4KB granularity.

We calibrate the cost model for each type of Flash device
deployed in the ReFlex server. First, we measure tail latency
versus throughput with local Flash for workloads with vari-
ous read/write ratios and request sizes (see 4KB example in
Figure 1). Since the cost of write requests depends on the
frequency of garbage collection and page erasure events, we
conservatively use random write patterns to trigger the worst
case. Next, we use curve fitting to deriveC(I/O type, r). The
model can be re-calibrated after deployment to account for
performance degradation due to Flash wear-out [13].

Figure 3 shows latency versus weighted IOPS (tokens)
plots for three different NVMe devices from multiple ven-
dors and representing multiple generations and capacities of
Flash devices. Device A is the one characterized in Figure 1.
The value of C(write, r < 100%) is 10, 20, and 16 tokens
for devices A, B, and C respectively. This means that write
operations are 10 to 20 times more expensive than read oper-
ations, depending on the device. For device A, when the load

from all tenants is read-only, the cost of a 4KB read request
is half a token (i.e., C(read, r = 100%) = 1

2 token). For all
three devices, our linear cost model leads to similar behavior
for tail latency versus load across all read/write load distribu-
tions and request sizes. This uniform behavior allows the Re-
Flex scheduler to manage SLOs when serving multiple ten-
ants with different throughput requirements and read/write
request ratios. Although non-linear curve-fitting models can
achieve better fit, the accuracy of the linear model has been
sufficient for our scheduler and we prefer it because of sim-
plicity.

3.2.2 Scheduling Mechanism
The QoS scheduler builds upon the cost model to maintain
tail latency and throughput SLOs for LC tenants, while al-
lowing BE tenants to utilize any spare throughput in a fair
manner.

Token management: The ReFlex scheduler generates to-
kens at a rate equal to the maximum weighted IOPS the
Flash device can support at a given tail latency SLO. Re-
Flex enforces the strictest (lowest) latency SLO among all
LC tenants that share a Flash device. For example, to serve
two tenants with tail read latency SLOs of 500µs and 1ms,
respectively, on a Flash device with the cost model shown
in Figure 3a, the scheduler generates 420K tokens/sec to en-
force the 500µs SLO. LC tenants are guaranteed a token sup-
ply that satisfies their IOPS SLO, weighted by the read/write
ratio indicated in their SLO. For example, assuming 4KB
requests and a write cost of 10 tokens, a tenant registering
an SLO of 100K IOPS with an 80% read ratio is guaran-
teed to receive tokens at a rate of 0.8(100K IOPS)(1 token

I/O) +
0.2(100K IOPS)(10 tokens

I/O) = 280K tokens/sec. Tokens gen-
erated by the scheduler but not allocated to LC tenants are
distributed fairly among BE tenants. The scheduler spends a
tenant’s tokens based on per-request costs as it submits the
tenant’s requests to the Flash device.

Scheduling Algorithm: Each ReFlex thread enqueues
Flash requests in per-tenant, software queues. When the
thread reaches the QoS scheduling step in the dataplane
execution model (§3.1), the thread uses Algorithm 1 to cal-
culate the weighted cost of enqueued requests and submit
all admissible requests to the Flash device, gradually spend-
ing each tenant’s tokens. Depending on the thread load and
the batching factor, the execution model enters a scheduling
round every 0.5µs to 100µs. The control plane and the batch
size limit ensure that the time between scheduler invocations
does not exceed 5% of the strictest SLO. Frequent schedul-
ing is necessary to avoid excessive queuing delays and to
maintain high utilization of the NVMe device.

Latency-critical tenants: The scheduling algorithm starts
by serving LC tenants. First, the scheduler generates tokens
for each LC tenant based on their IOPS SLO and the elapsed
time since the previous scheduler invocation. Since the con-
trol plane has determined each LC tenant’s weighted IOPS

Algorithm 1 QoS Scheduling Algorithm
1: procedure SCHEDULE
2: time delta = current time()− prev sched time

3: prev sched time = current time()
4: for each latency-critical tenant t do
5: t.tokens += generate tokens LC(t.SLO, time delta)
6: if t.tokens < NEG LIMIT then
7: notify control plane()

8: while t.demand > 0 and t.tokens > NEG LIMIT do
9: t.tokens −= submit next req(t.queue)

10: if t.tokens > POS LIMIT then
11: atomic incr global bucket(t.tokens× FRACTION)
12: t.tokens −= t.tokens× FRACTION

13: for each best-effort tenant t in round-robin order do
14: t.tokens += generate tokens BE(time delta)
15: d = t.demand− t.tokens
16: if d > 0 then
17: t.tokens += atomic decr global bucket(d)

18: t.tokens−=submit admissible reqs(t.queue, t.tokens)
19: if t.tokens > 0 and t.demand == 0 then
20: atomic incr global bucket(t.tokens)
21: t.tokens = 0

22: if all threads scheduled() then
23: atomic reset global bucket()

reservation is admissible, the scheduler can typically submit
all queued requests of LC tenants to the NVMe device. How-
ever, since traffic is seldom uniform and tenants may issue
more or less IOPS than the average IOPS reserved in their
SLO, the scheduler keeps track of each tenant’s token usage.
We allow LC tenants to temporarily burst above their token
allocation to avoid short term queueing. However, we limit
the burst size by rate-limiting LC tenants once they reach
the token deficit limit (NEG LIMIT). This parameter is em-
pirically set to −50 tokens to limit the number of expensive
write requests in a burst. We also notify the control plane
when this limit is reached to detect tenants with incorrect
SLOs that need renegotiation.

LC tenants that consume less than their available to-
kens are allowed to accumulate tokens for future bursts. Ac-
cumulation is limited by the POS LIMIT parameter. When
reached, the scheduler donates a big fraction of accumulated
tokens (empirically 90%) to the global token bucket for use
by BE tenants. POS LIMIT is empirically set to the number
of tokens the LC tenant received in the last three schedul-
ing rounds to accommodate short bursts without going into
deficit.

Best-effort tenants: The scheduler generates tokens for
BE tenants by giving each BE tenant a fair share of unallo-
cated throughput on the device. Unallocated device through-
put corresponds to the token rate the device can support
while enforcing the strictest LC latency SLO minus the sum
of LC tenant token rates (based on LC tenant IOPS SLOs).
Assuming N BE tenants, every scheduling round, each BE
tenant receives 1

N th of the unallocated token rate times the
time elapsed since the previous scheduling round. If a BE
tenant does not have enough tokens to submit all of its en-

queued requests, the tenant can claim tokens from the global
token bucket, which are supplied by LC tenants with spare
tokens (if any). BE tenants are scheduled in a round robin
order across scheduling rounds to provide fair access to the
global token bucket. The scheduler conditionally submits a
BE request only if the tenant has sufficient tokens for the re-
quest. Rate limiting BE traffic is essential for achieving LC
SLOs. Since scheduling rounds occur at high frequency, a
typical round may generate only a fraction of a token. BE
tenants accumulate tokens over multiple scheduling rounds
when their request queues are not empty. When a BE ten-
ant’s software queue is empty, we disallow token accumu-
lation to prevent bursting after idle periods. This aspect of
the scheduler is inspired by Deficit Round Robin (DRR)
scheduling [60]. Tokens left unused by a BE tenant are do-
nated to the global token bucket for use by other BE tenants.
To avoid large accumulation allowing BE tenants to issue
uncontrolled bursts, we periodically reset the bucket.

If a ReFlex server manages more than one NVMe device,
we run an independent instance of the scheduling algorithm
for each device with separate token counts and limits. We
assume the server machine has sufficient PCIe bandwidth, a
condition easily met by PCIe Gen3 systems.

4. ReFlex Implementation
ReFlex consists of three components: the server, clients, and
control plane. Their implementation leverages open-source
code bases.

4.1 ReFlex Server
The remote Flash server is the main component of ReFlex.
We implemented it as an extension to the open-source, IX
dataplane operating system [1, 11]. IX uses hardware sup-
port for processor virtualization (through the Dune mod-
ule [10]) and multi-queue support in NICs (through the In-
tel DPDK driver [30]) to gain direct and exclusive access to
multiple cores and network queues in a Linux system. These
resources are used to run a dataplane kernel and any appli-
cations on top of it. The original IX dataplane was devel-
oped for network-intensive workloads like in-memory, key-
value stores. IX uses run to completion of incoming requests
and bounded, adaptive batching to optimize both tail latency
and throughput. IX also splits connections between threads,
using separate cores and queues to scale without requiring
synchronization or significant coherence traffic. These op-
timizations make IX a great starting point for the ReFlex
server.

ReFlex extends IX in the following ways. First, we de-
veloped an NVMe driver leveraging Intel’s Storage Perfor-
mance Development Kit (SPDK) [31] to interface to Flash
devices and gain exclusive access to NVMe queue pairs.
Second, we implemented the dataplane model shown in Fig-
ure 2. In IX, the run to completion model includes all work
for a key-value store request, from packet reception to re-

System Calls (batched)
Type Parameters Description
register id, latency, IOPS, Registers a tenant with

rw ratio, cookie SLO
unregister handle Unregisters a tenant
read handle, buf, addr, Read data from Flash

len, cookie into user buf
write handle, buf, addr, Write data from user

len, cookie buf into flash

Event Conditions
Type Parameters Description
registered handle, cookie, Registered tenant, or

status out of resources error
unregistered handle Unregistered tenant
response cookie, status NVMe read completed
written cookie, status NVMe write completed

Table 1: The systems calls and event conditions that the
ReFlex dataplane adds to the IX baseline.

ply transmission. Directly applying this monolithic run to
completion model in ReFlex would require blocking for ev-
ery Flash access. Instead, we introduce a two step model
that retains the efficiency of run to completion but allows
for asynchronous access to Flash. The first run to comple-
tion step is from packet reception to Flash command sub-
mission and the second is from Flash command completion
to reply transmission. We maintained adaptive batching with
a maximum batch size of 64. Third, we implemented the
QoS scheduler as part of the first run to completion step.
Fourth, we introduced the system calls and events needed
for remote Flash accesses shown in Table 1. The original
IX defines system calls and events for opening and closing
connections, receiving and sending network messages, and
managing network errors. We introduced system calls and
events to register and unregister tenants, submit and com-
plete NVMe read and write commands, and manage NVMe
errors. Finally, we developed the ReFlex user-level server
code that consumes events delivered by the dataplane and
issues system calls back to it. The cookie parameter allows
the user-space server code to track requests and retrieve their
context upon an event notification. Note that all event and
system calls are communicated over shared memory arrays
without the need for blocking, interrupts, or thread schedul-
ing. This also enables batching of systems calls under high
load in order to reduce overheads. The dataplane implements
zero-copy; buffers for read and write data are initialized in
the ReFlex user-space code and provided as a parameter for
read and write system calls. They are released after the user-
space code is notified of a send completion.

The ReFlex server is written in C and consists of the
following source lines of code (SLOC): 490 SLOC for the
user-level server, 954 SLOC for the IX NVMe driver and
628 SLOC for the dataplane including the QoS scheduler.

We leverage code from Intel’s DPDK and SPDK and the IX
dataplane, including the lwIP TCP stack [21].

Multi-threading operation: ReFlex scales to multiple
threads, each using a separate core and separate network and
NVMe queues. We parallelize the load by dividing tenants
across threads. All operations across threads are independent
and can occur without synchronization, excluding some QoS
scheduling actions described in §3.2.2. Specifically, threads
need to occasionally synchronize in order to exchange any
spare tokens from their LC tenants so that any BE tenant
on any thread can benefit from unused Flash bandwidth.
Threads use atomic read-modify-write operations to access
the global token bucket. The bucket is reset periodically by
having each thread asynchronously mark that it has com-
pleted at least one scheduling round. The last thread resets
the global bucket. This approach avoids locking overheads
and decouples QoS scheduling across threads. In particu-
lar, it allows threads to perform scheduling at different fre-
quencies, while still maintaining fairness and guaranteeing
system-wide SLOs.

Security model: The ReFlex server enforces access con-
trol list (ACL) policies at the granularity of tenants and net-
work connections. It checks if a client has the right to open
a connection to a specific tenant and if a tenant has read or
write permission for an NVMe namespace (range of logi-
cal blocks). These checks can be extended to use certificate
mechanisms.

Following IX, ReFlex runs its dataplane in protected ker-
nel mode (guest ring 0), while the high-level server code runs
in user space (ring 3) as shown in Figure 2. Any exploitable
bug in parsing remote requests or other high-level server
functions cannot lead to loss of hardware control and cannot
affect the operation of the dataplane or any ordinary Linux
application running on the same machine. This approach al-
lows ReFlex to share Flash devices with other Linux applica-
tions. Access to Flash by Linux workloads (kernel or user) is
mediated through the protected part of ReFlex that includes
the QoS scheduler. From a QoS perspective, Linux requests
are treated as latency-critical with specific throughput and la-
tency guarantees. We achieve virtually indistinguishable per-
formance compared to running ReFlex all in user mode. The
inherit cost of the kernel to user-mode transition is similar to
that of a main memory access [11] and it is compensated for
by the improved locality that ReFlex achieves using run to
completion and zero-copy.

Limitations: The current server implementation has some
non-fundamental limitations that we will remove in future
versions. First, we limit each tenant to using a single ReFlex
thread. Since ReFlex can serve up to 850K remote IOPS per
thread (§5.3) and an application can use multiple tenants to
access the same data, this is not a significant bottleneck for
any application. In the future, we will load balance connec-
tions for individual tenants across threads if their overall de-
mands exceed a single thread’s throughput. Second, we have

implemented a single networking protocol in the ReFlex dat-
aplane, the ubiquitous TCP/IP [21]. Since TCP/IP is the most
heavy-weight protocol used in datacenters, this is a conser-
vative choice that defines a lower bound on ReFlex perfor-
mance. Both tail latency and throughput will improve when
we implement UDP or other, lighter-weight transport proto-
cols. Finally, ReFlex currently serves remote read and write
requests without any ordering guarantees, beyond ordering
forced by the networking protocol (e.g., order within a TCP
connection). In the future, we will support barrier operations
that can be used to force ordering and build high-level ab-
stractions like atomic transactions.

4.2 ReFlex Clients
Applications can access ReFlex servers over the network us-
ing a variety of clients. We have implemented two alterna-
tives that represent extreme points in terms of performance.

The first implementation is a user-level library (536
SLOC), similar to the client library for the binary protocol of
the memcached key-value store [46]. The library allows ap-
plications to open TCP connections to ReFlex and transmit
read and write requests to logical blocks. This client ap-
proach avoids the performance overheads of the file-system
and block layers of the operating system in the client ma-
chine. Nevertheless, the client is still subject to any latency
or throughput inefficiencies of the networking layer in its
operating system (see §5).

To support legacy client applications, we also imple-
mented a remote block device driver that exposes a Re-
Flex server as a Linux block device (845 SLOC). The driver
translates conventional Linux block I/O (bio) requests to
ReFlex accesses issued with the user-level library discussed
above. The driver implements the multi-queue (blk-mq) ker-
nel API [12] and supports one hardware context per core to
enable linear scaling with cores. For each hardware context,
the driver opens a socket to the ReFlex server and spawns
a kernel thread for receiving and completing incoming re-
sponses. To minimize latency, the driver directly issues each
block to the server without coalescing as the overhead of
ReFlex requests is small (38 bytes per 4KB request) and the
bandwidth of NVMe devices does not change significantly
if we use requests larger than 4KB. At 4KB, the Linux TCP
stack supports up to 70K messages per thread and hence the
driver needs to execute at least 4 threads (or 6 for improved
latency) to fully utilize a 10GbE interface, as we will show
in §5.6.

4.3 ReFlex Control Plane
The ReFlex control plane consists of two components, a
local component that runs on every ReFlex server and a
global one. We have currently implemented the former.

The local control plane is responsible for the following
actions. First, when a new LC tenant is registered, the control
plane determines if the tenant is admissible and which server
thread it should be bound to. It uses the strictest latency SLO

from all LC tenants and the throughput-latency characteris-
tics of each device to check if the new tenant’s SLO can be
met without violating SLOs of existing tenants. When a ten-
ant registers or terminates, the control plane re-calculates the
rate of token generation for LC and BE tenants. The control
plane intervenes if an LC tenant consistently bursts above
its SLO allocation by notifying the tenant to renegotiate its
SLO. Second, the local control plane monitors the request
latency and the thread load. If latency and load are high, it
allocates resources for additional threads and rebalances ten-
ants. If load is low, it deallocates threads and their resources,
returning them to Linux for general use. This last function
is a derivative of the IX control plane that can dynamically
rightsize the number and clock frequency of threads used
by the IX dataplane without packet loss or reordering [53].
Finally, the control plane periodically calibrates the request
cost model and determines the throughput-latency character-
istics of each Flash device (see §3.2).

In future work, we will develop a global control plane that
manages remote Flash resources across a datacenter cluster
and optimizes the allocation of Flash capacity and IOPS.
For example, the global control plane should try to co-locate
tenants with similar tail latency requirements such that strict
requirements of one tenant do not limit the IOPS available to
other tenants. The global control plane should also maintain
global latency and throughput SLOs for applications that
span across multiple ReFlex servers [4, 28, 65, 66].

5. Evaluation
5.1 Experimental Methodology
Hardware setup: Our experimental setup consists of iden-
tical server and client machines with Intel Xeon CPU E5-
2630 processors (Sandy Bridge EP) with 12 physical cores
across two sockets running at 2.3 GHz and 64GB DRAM.
The machines use Intel 82599ES 10GbE NICs connected via
an Arista 7050S-64 switch. They run Ubuntu LTS 16.04 with
a 4.4 Linux kernel. Server machines house PCIe-attached
Flash devices, preconditioned with sequential writes to the
whole address space followed by a series of random writes
to reach steady state performance. We tested ReFlex with
three different Flash devices whose request cost models are
shown in Figure 3. We show results for ReFlex using device
A as it achieves the highest raw IOPS, up to 1M IOPS for
read-only workloads (see Figure 1). For all experiments, we
disable power management and operate CPU cores at their
maximum frequency to ensure result fidelity. NICs are con-
figured with jumbo frames enabled and large receive offload
(LRO) and generic receive offload (GRO) disabled. LRO and
GRO distort unloaded latency as received packets are some-
times buffered instead of being directly delivered to the ker-
nel. We enable interrupt coalescing with a 20µs interval.

Clients: We use Linux-based clients in most experiments.
We extend the mutilate load generator [40] to use our
user-level client library and issue read/write requests to Re-

Reads (µs) Writes (µs)
Avg p95 Avg p95

Local (SPDK) 78 90 11 17
iSCSI 211 251 155 215
Libaio (Linux Client) 183 205 180 205
Libaio (IX Client) 121 139 117 144
ReFlex (Linux Client) 117 135 58 64
ReFlex (IX Client) 99 113 31 34

Table 2: Unloaded Flash latency for 4KB random I/Os,
including round-trip network latency for client and server.

Flex. mutilate coordinates a large number of client threads
across multiple machines to generate a desired throughput
while a separate, unloaded client measures latency by issu-
ing one request at a time. To reduce client-side performance
overheads, we also evaluate unloaded latency and peak IOPS
per core for ReFlex with clients running a similar load gener-
ator on top of the IX dataplane, which achieves significantly
lower latency and higher throughput than the Linux network-
ing stack.

I/O size: We issue 4KB read and write requests in most
experiments. Since we use a 10GbE network infrastructure,
clients issuing 4KB IOPS can saturate the NIC of the Re-
Flex server before they saturate the NVMe Flash device (1M
IOPS peak). Hence, we use 1KB requests in some experi-
ments to stress IOPS of the ReFlex server. Modern datacen-
ters include 40GbE networking infrastructure and future dat-
acenters will likely deploy 100GbE. Both technologies will
remove this bottleneck.

Baseline: We compare the performance of remote ac-
cesses over ReFlex to that of issuing local accesses to the
Flash device using SPDK [31]. SPDK offers the best local
performance we can expect as it gives software direct ac-
cess to NVMe queues without the need to go through the
Linux filesystem or block device layers. We also compare
ReFlex to two software-based schemes for remote Flash ac-
cess: 1) the Linux iSCSI system [49] and 2) a lightweight
remote storage server that maximizes performance on Linux
by efficiently handling multiple connections per thread us-
ing libevent and overlapping communication and compu-
tation using libaio. We do not have access to a hardware-
accelerated remote Flash environment, but we compare to re-
sults quoted in a public presentation on NVMe over RDMA
Fabrics [45]. In §5.4, we evaluate the performance prob-
lems that arise when NVMe devices are shared without a
software-based QoS scheduler like the one in ReFlex.

5.2 Unloaded latency
We first measure unloaded latency for Flash accesses. Ta-
ble 2 shows the average and 95th percentile latency of 4KB
random read and write requests issued with queue depth 1.
Remote accesses include the round-trip networking over-
heads in both client and server. Remote access over iSCSI

0	
100	
200	
300	
400	
500	
600	
700	
800	
900	

1000	

0	 200	 400	 600	 800	 1000	 1200	

p9
5	
Re

ad
	L
at
en

cy
	(u

s)
	

IOPS	(Thousands)	

Local-1T	
Local-2T	
ReFlex-1T	
ReFlex-2T	
Libaio-1T	
Libaio-2T	

Figure 4: Tail latency vs. throughput for 1KB, read-only
requests.

increases latency by 2.8× for read requests due to heavy-
weight protocol processing on both the client and server side,
involving data copying between socket, SCSI and applica-
tion buffers. The libaio-libevent remote Flash server is
significantly faster than iSCSI, but the Linux network and
storage stacks still add over 100µs to average and tail la-
tency. The dataplane execution model of ReFlex adds 21µs
to local Flash latency (IX client). At 113µs of tail read la-
tency, a ReFlex server is close to the performance of many
(local) NVMe devices. Unloaded write latency is lower than
read latency due to DRAM buffering on the Flash device.
Thus, the overhead of iSCSI and libaio-libevent is even
more significant for write I/Os. ReFlex outperforms both
iSCSI and libaio-libevent, adding 20µs to local write
latency (IX client). Comparing ReFlex latency results with
Linux and IX clients shows that for low latency remote Flash
access, it is also important to optimize the client.

NVMe over Fabrics provides marginally lower latency
overhead (8µs), measured with a higher throughput 40GbE
Chelsio NIC (lower transmit latency for 4KB) and a 3.6GHz
Haswell CPU (versus a 2.3GHz Sandy Bridge CPU) [45].
Remote Flash latency with ReFlex includes a full TCP/IP
stack and a QoS scheduler that allows multiple clients to
connect to the Flash server. ReFlex would likely benefit from
TCP offloading in Chelsio NICs.

5.3 Throughput and CPU Resource Cost
Figure 4 plots tail latency (95th percentile) as a function of
throughput (IOPS) for 1KB read-only requests. Even for lo-
cal accesses to Flash with SPDK, it takes two cores to sat-
urate the 1M IOPS of the Flash device. A single core can
support up to 870K IOPS on local Flash. ReFlex achieves
up to 850K IOPS with a single core for network and stor-
age processing. With two cores, ReFlex saturates 1M IOPS
on Flash, introducing negligible latency overhead compared
to local access. In contrast, the libaio-libevent server
achieves only 75K IOPS/core and at higher latency due to

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

Tenant	A	 Tenant	B	 Tenant	C	 Tenant	D	

Re
ad

	p
95
	la
te
nc
y	
(u
s)
	

I/O	sched	disabled	

I/O	sched	enabled	

		
SLO	

(a) Scenario 1: p95 latency

0	

20	

40	

60	

80	

100	

120	

140	

Tenant	A	 Tenant	B	 Tenant	C	 Tenant	D	

IO
PS
			
(T
ho

us
an

ds
)	

I/O	sched	disabled	

I/O	sched	enabled	
Tenant	A	SLO	

Tenant	B	SLO	

(b) Scenario 1: IOPS

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

Tenant	A	 Tenant	B	 Tenant	C	 Tenant	D	

Re
ad

	p
95
	la
te
nc
y	
(u
s)
	

I/O	sched	disabled	

I/O	sched	enabled	

		
SLO	

(c) Scenario 2: p95 latency

0	

20	

40	

60	

80	

100	

120	

140	

Tenant	A	 Tenant	B	 Tenant	C	 Tenant	D	

IO
PS
			
(T
ho

us
an

ds
)	

I/O	sched	disabled	

I/O	sched	enabled	
Tenant	A	SLO	

Tenant	B	SLO	

(d) Scenario 2: IOPS

Figure 5: Tail latency and IOPS for 4 tenants sharing a
ReFlex server. Tenants A and B are LC, while tenants C and
D are BE. Tenants issue 4kB I/Os with read ratios of 100%,
80%, 95%, and 25%, respectively. In Scenario 1, tenants A
and B attempt to use all the IOPS in their SLO. In Scenario
2, tenant B uses less than its reservation.

higher compute intensity for request processing. This server
requires over 10× more CPU cores to achieve the through-
put of ReFlex. The hardware-accelerated NVMe over Fab-
rics can reportedly achieve 460K IOPS at 20% utilization of
a 3.6GHz Haswell core [45].

At high load, a ReFlex thread spends about 20% of ex-
ecution time on TCP/IP processing. Hence, coupled with
a lighter network protocol, ReFlex can deliver even higher
throughput. The time spent on QoS scheduling varies be-
tween 2% and 8%, depending on the number of tenants
served.

ReFlex’s ability to serve millions of IOPS with a small
number of cores without impacting tail latency is impor-
tant for making remote Flash practical and cost effective in
datacenters. To put IOPS per core into perspective, assume
we deploy ReFlex on the latest Broadwell or Skylake class
CPUs by Intel. The improved core performance will likely
allow ReFlex to reach 1M IOPS/core. Assuming 20 cores
per CPU socket, ReFlex will be able to share a 1M IOPS
Flash device using 2.5% of the compute capacity of a 2-
socket server. Alternatively, using 4 Flash devices, ReFlex
will need 8% of the server’s compute capacity to saturate a
100GbE link with 4KB I/Os.

5.4 Performance QoS and Isolation
We now evaluate the QoS scheduler using multiple tenants
with different SLOs. The following experiments use a single
ReFlex thread. We evaluate multi-core scalability in §5.5.

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	

50	

100	

150	

200	

250	

300	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	

	T
ok

en
s/
s	

Th
ou

sa
nd

s	

IO
PS
	(T

ho
us
an

ds
)	

#	cores	on	ReFlex	server	

Latency-cri6cal	IOPS	total	
Best-Effort	IOPS	total	
Total	Token	Usage	Rate	

(a) Multi-core scaling

0	

200	

400	

600	

800	

1000	

100	 1000	 10000	

IO
PS
	(T

ho
us
an

ds
)	

#	tenants	(each	uses	1	conn)		

4	core	server	
2	core	server	
1	core	server	

Device	limit	for	100%	read	

(b) Tenant scaling

0	

200	

400	

600	

800	

1000	

10	 100	 1000	 10000	

IO
PS
	(T

ho
us
an

ds
)	

#	connec3ons	(all	for	1	tenant)	

1000	IOPS/conn	
500	IOPS/conn	
100	IOPS/conn	

Device	limit	for	100%	read	

ReFlex	per-core	IOPS	limit	

(c) Connection scaling

Figure 6: Scalability experiments. In Fig 6a, ReFlex scales to 12 cores, enforcing a 2ms latency SLO for 90% read (LC) and
80% read (BE) tenants while maintaining high Flash utilization (570K tokens/s). Fig 6b shows a single ReFlex core can support
up to 2,500 tenants. Fig 6c shows a single ReFlex core can serve thousands of TCP connections.

We first consider Scenario 1 (Figure 5a - 5b), where two
latency-critical (A, B) and two best-effort (C, D) tenants
share a ReFlex server. Both A and B require 95th percentile
read latency of 500µs. Tenant A requires 120K IOPS at
100% read, while B requires 70K IOPS at 80% read. C and
D are best effort tenants with 95% and 25% read loads, re-
spectively. To guarantee read tail latency below the 500µs
SLO, our Flash device can support up to 420K weighted
IOPS. Thus, the QoS scheduler generates 420K tokens/sec.
LC tenant A receives 120K tokens/sec while tenant B re-
ceives 196K tokens/sec = 0.8(70K IOPS)(1 token

I/O) + 0.2(70K
IOPS)(10 tokens

I/O). Thus, the two LC tenants collectively re-
serve 75% of the device throughput, leaving 25% of tokens
for BE tenants. Figure 5 shows the tail latency and IOPS for
each tenant with the QoS scheduler disabled and enabled.
Without QoS scheduling, tail read latency is above 2ms for
all tenants due to read/write interference. Tenant B also op-
erates below its SLO throughput. With QoS scheduling en-
abled, latency and throughput SLOs are met for both LC ten-
ants (Figure 5a) at the expense of BE throughput (Figure 5b).
BE tenants C and D receive a fair share of unallocated to-
kens (52K tokens/sec each), but D achieves lower IOPS than
C due to its higher percentage of write I/Os (writes cost 10
times more tokens than reads).

Scenario 2 uses the same tenants as Scenario 1 with
identical SLOs. However, latency-critical tenant B issues
only 45K IOPS instead of the 70K reserved in its SLO. BE
tenants can now reach higher throughput (Figure 5c - 5d),
as they acquire the unused tokens of tenant B, in addition to
tokens not allocated to LC tenants. The round-robin serving
of BE tenants ensures fair access to unused tokens.

While these scenarios involve just 4 tenants, they are
sufficient to show the need for QoS scheduling for remote
Flash accesses, beyond what hardware provides. Our QoS
scheduler can guarantee SLOs while being work-conserving
and fair for best-effort tenants.

5.5 Scalability
We now evaluate how ReFlex scales in the dimensions of
cores, tenants, and connections.

Cores: We run ReFlex with up to 12 cores (6 cores per
socket) to test the scheduler’s multi-core scalability. Each
thread manages a single LC tenant with an SLO of 20K IOPS
(90% read, 4KB requests) at up to 2ms tail read latency (95th

percentile). The 2ms latency SLO allows our Flash device
to serve up to 12 such tenants before the SLO is no longer
admissible due to too much write interference. Two ReFlex
threads also each serve a BE tenant (80% read, 4KB). Fig-
ure 6a shows a linear increase in the aggregate IOPS for LC
tenants as we scale the number of cores (tenants) without any
scaling bottleneck in the scheduler. Meanwhile, aggregate
BE IOPS decrease due to rate-limiting with less spare band-
width on the device. Although not shown in Figure 6, the
tail read latency of all LC tenants stays below the 2ms SLO.
The total token usage rate (green line with values marked on
the secondary y-axis) is high when no LC tenants are regis-
tered since the two BE tenants are allowed to issue as many
requests as the device can handle. As soon as the first LC
tenant registers, the scheduler caps the token rate to 570K
tokens/s to enforce the 2ms SLO. Token usage remains at
this level as we scale the number of cores, as ReFlex satu-
rates the Flash device at all points without violating SLOs.

Tenants: We evaluate the number of tenants each ReFlex
thread can serve before tenant management becomes a per-
formance bottleneck. Each tenant uses a single connection to
issue 100 1KB read IOPS. In this experiment, low IOPS per
connection are necessary to avoid saturating the Flash device
before reaching a tenant scaling limit. Figure 6b shows that
a single ReFlex core can serve up to 2,500 tenants, while 2
ReFlex cores serve 5,000 tenants, and a 4-core ReFlex server
comes close to supporting 10K tenants, at which point we
approach the 1M read-only IOPS limit of the Flash device.
As we scale the number of tenants per thread, tail latency
may increase as the QoS scheduling frequency decreases.

0	

200	

400	

600	

800	

1000	

0	 1000	 2000	 3000	

p9
5	
La
te
nc
y	
(u
s)
	

Throughput	(MB/s)	

Local	
iSCSI	
ReFlex	

(a) FIO p95 Access Latency

1	

1.1	

1.2	

1.3	

1.4	

1.5	

WCC	 PR	 BFS	 SCC	

Sl
ow

do
w
n	
ov
er
	L
oc
al
	

iSCSI	

ReFlex	

(b) FlashX Performance

1	

1.1	

1.2	

1.3	

1.4	

1.5	

BL	 RR	 RwW	

Sl
ow

do
w
n	
ov
er
	L
oc
al
	

iSCSI	

ReFlex	

(c) RocksDB

Figure 7: Performance evaluation with Linux block device driver for ReFlex.

This case is detected by the ReFlex control plane which allo-
cates more cores and rebalances tenants as needed (see §4.3).

TCP Connections: A tenant may be used to track the
QoS requirement of an application that uses multiple client
machines and threads. Hence, it is important to know how
many TCP connections the ReFlex server can handle. Fig-
ure 6c plots the throughput of a single ReFlex thread when
scaling the number of TCP connections associated with a
tenant. At 100 IOPS per connection, a single ReFlex thread
can support up to 5K connections. Performance degrades be-
yond this point as the TCP connection state no longer fits in
the last-level cache and TCP/IP processing slows down due
to main memory accesses. This is similar to the connection
scaling behavior of IX [11], which saturates at 10K connec-
tions in experiments with smaller messages (64B vs. 1KB)
which trigger fewer misses. With 1K IOPS/connection, the
ReFlex core approaches its peak bandwidth, achieving 780K
IOPS with 850 connections. The peak bandwidth is lower
than the 850K IOPS in §5.3 due to higher cache pressure.

5.6 Linux Application Performance
We now use the remote block device driver for ReFlex to
evaluate performance with legacy Linux applications. We
compare to performance with the local NVMe device driver
and Linux iSCSI remote block I/O. We show results for the
following applications: the flexible I/O tester (FIO) [32],
the FlashX graph analytics framework [75], and Facebook’s
RocksDB key-value store [22].

FIO: Figure 7a shows the latency-throughput curves for
FIO issuing 4KB random reads with queue depth up to 64.
We need multiple FIO threads to reach maximum through-
put: 5 threads with the local NVMe driver, 3 threads with
iSCSI, and 6 with the ReFlex block driver. As expected,
ReFlex stops scaling when it saturates the 10GbE network
interfaces at both the client and the server. However, since
FIO on top of ReFlex scales linearly up to 6 threads, we ex-
pect it will be able to match local throughput given higher
bandwidth network links. The higher latency of ReFlex in
this experiment is due to the client-side overheads of the

Linux block and networking layers. Still, ReFlex provides
4× higher throughput than iSCSI and 2× lower tail and av-
erage latency. We evaluated ReFlex with optimized clients
in §5.3.

FlashX: We use FlashX, a graph processing framework
that uses the SAFS user-space filesystem to efficiently store
and retrieve vertex and edge data from Flash. We execute
four graph benchmarks including weakly connected com-
ponents (WCC), pagerank (PR), breadth-first search (BFS)
and strongly connected components (SCC) on the SOC-
LiveJournal1 social network graph from SNAP [39]. The
graph contains 4.8M vertices and 68.9M edges, which we
store on a local block device or on a remote block device
through iSCSI or ReFlex. Figure 7b shows the impact of ac-
cessing remote Flash on the end-to-end application execu-
tion time. Compared to performance on local Flash, ReFlex
introduces only a small slowdown, between 1% for WCC
and 3.8% for BFS. In contrast, iSCSI reduces performance
by 15% for PR and up to 40% for BFS and SCC.

RocksDB: Finally, we use RocksDB to evaluate key-
value store performance on Flash with ReFlex. We install
an ext4 filesystem on the NVMe block device and mount
it as either local or remote via ReFlex or iSCSI. We place
both RocksDB’s database and its write-ahead-log on Flash.
We generate a workload using db bench, a benchmark-
ing tool provided with RocksDB. We use cgroups [43] to
limit memory and reduce the effect of Linux’s page cache,
thus exercising Flash storage with a short experiment on a
43GB database. We first populate the database with the bulk-
load (BL) routine and then execute the randomread (RR)
and readwhilewriting (RwW) benchmarks. Figure 7c shows
the end-to-end execution time slowdown of RocksDB over
iSCSI and ReFlex compared to local Flash. For the write-
heavy BL test, performance is almost equal between local
and remote as the Flash itself limits IOPS. For RR and RwW,
iSCSI shows a slow down of 32% and 27%, respectively,
while ReFlex slows down performance by less than 4%.

6. Discussion
There are two limitations of current Flash hardware that are
particularly relevant to ReFlex.

Read/write interference: Write operations have a big im-
pact on the tail latency of concurrent read requests. Our
scheduler uses a request cost model to avoid pushing be-
yond the latency-throughput capabilities of the Flash device
for the current read/write ratio. However, we are still limited
to enforcing tail read latency SLOs at the 95th percentile.
Stricter SLOs, such as 99th or 99.9th percentile are diffi-
cult to enforce on existing Flash devices without dramati-
cally reducing IOPS as reads frequently stall behind writes,
garbage collection, or wear leveling tasks. Future Flash de-
vices should limit read/write interference, targeting tail be-
havior in addition to average. For example, the Flash Trans-
lation Layer (FTL) could always read out and buffer Flash
pages before writing in them [2, 74].

Hardware support for request scheduling: Existing Flash
devices schedule requests from different NVMe hardware
queues using simplistic round-robin arbitration. To guaran-
tee SLOs, ReFlex has to use a software scheduler that imple-
ments rate limiting and priorities. The NVMe specification
defines a weighted round-robin arbiter [47], but it is not im-
plemented by any Flash device we are aware of. This arbiter
would allow ReFlex threads to submit requests to hardware
queues with properly weighted priorities, thus eliminating
the need to enforce priorities between tenants in software.
ReFlex would still implement rate limiting in software as it
must manage the device latency-throughput characteristics
under varying read/write ratios, defend against SLO viola-
tions (long bursts by LC tenants), and support a number of
tenants that may exceed the number of hardware queues.

7. Related Work
We discuss related work on storage QoS and high perfor-
mance network stacks. Alternative approaches for remote
access to Flash are discussed in §2.

Storage QoS: Prior work has extensively studied quality
of service and fairness for shared storage [5, 24, 25, 27, 44,
62, 73]. Timeslice-based I/O schedulers like Argon, CFQ,
and FIOS offer tenants exclusive device access for regulated
time quanta to achieve fairness [7, 52, 69]. This approach can
lead to poor responsiveness and timeslices may not always
be fair on Flash as background tasks (i.e., garbage collection)
impact device performance.

In contrast, fair-queuing-based solutions interleave re-
quests from all tenants. The original weighted fair queuing
schedulers [20, 51] have successfully been adapted from net-
work to storage I/O with support for reordering, throttling,
and/or batching requests to leverage device parallelism [14,
26, 34, 58, 59, 68]. Our I/O scheduler resembles Deficit
Round Robin in that tenants accumulate tokens each round,
so long as they have demand [60]. Zygaria and AQuA also
apply a token bucket approach to serve real-time tenants

while offering spare device bandwidth to best-effort traffic,
but they only provide throughput guarantees while ReFlex
also enforces tail latency SLOs [71, 72].

Tail latency SLOs: PriorityMeister provides tail latency
guarantees even at the 99.99th percentile by mediating ac-
cess to shared network and storage resources using a token-
bucket mechanism similar to ReFlex [76]. Unlike ReFlex,
the scheduler profiles workloads to assign different priori-
ties to latency-critical tenants. Cake uses a feedback con-
troller to enforce tail latency SLOs, but only supports a sin-
gle latency-critical tenant [70]. Avatar relies on feedback in-
stead of device-specific performance models to control tail
latency on disk [73].

Flash-specific challenges: Many I/O schedulers specifi-
cally designed for Flash use a request cost model to account
for read/write interference. FIOS was one of the first sched-
ulers to address Flash write interference and provide fair-
ness using timeslices [52]. FlashFQ, a virtual-time based
scheduler, improves fairness and responsiveness through
throttled dispatch and I/O anticipation [58]. Libra is an I/O
scheduling framework that allocates per-tenant throughput
reservations and uses a virtual IOPS metric to capture the
non-linearity between raw IOPS and bandwidth [61]. While
FIOS, FlashFQ and Libra all assign I/O costs, their cost
models do not necessarily capture a request’s impact on the
tail latency of concurrent I/Os, since these schedulers are
designed for fairness and throughput guarantees rather than
latency QoS.

High Performance Networking: ReFlex leverages the
IX dataplane for high performance networking [11]. Alter-
native network stacks, such as mTCP [33], Sandstorm [42]
and OpenOnload [64], apply similar techniques in user space
to achieve high throughput and/or low latency networking.

8. Conclusion
We described ReFlex, a software system for remote Flash
access over commodity networking. ReFlex uses a dataplane
design to closely integrate and reduce the overheads of net-
working and storage processing. This allows the system to
serve up to 850K IOPS per core while adding only 21µs over
direct access to local Flash. The QoS scheduler in ReFlex en-
forces latency and throughput SLOs across thousands of ten-
ants sharing a device. ReFlex allows applications to flexibly
allocate Flash across any machine in the datacenter and still
achieve nearly identical performance to using local Flash.

Acknowledgments
We thank the anonymous reviewers and Christina Delim-
itrou for their valuable feedback. This work is supported
by the Stanford Platform Lab, Samsung Semiconductor and
NSF grant CNS-1422088. Ana Klimovic is supported by
a Stanford Graduate Fellowship and a Microsoft Research
PhD Fellowship.

References
[1] IX-project: protected dataplane for low latency and high per-

formance. https://github.com/ix-project, 2016.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D.
Davis, Mark S. Manasse, and Rina Panigrahy. Design trade-
offs for ssd performance. In USENIX Annual Technical Con-
ference, pages 57–70, 2008.

[3] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and
Ion Stoica. Disk-locality in datacenter computing considered
irrelevant. In Proc. of USENIX Hot Topics in Operating
Systems, HotOS’13, pages 12–12, 2011.

[4] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan
Spence, Mustafa Uysal, and Alistair Veitch. Hippodrome:
Running circles around storage administration. In Proc. of
the 1st USENIX Conference on File and Storage Technologies,
FAST ’02. USENIX Association, 2002.

[5] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg
O’Shea, and Eno Thereska. End-to-end performance isolation
through virtual datacenters. In Proc. of USENIX Operating
Systems Design and Implementation, OSDI’14, pages 233–
248, October 2014.

[6] Avago Technologies. Storage and PCI Express – A
Natural Combination. http://www.avagotech.com/

applications/datacenters/enterprise-storage,
2016.

[7] Jens Axboe. Linux block IOpresent and future. In Ottawa
Linux Symp, pages 51–61, 2004.

[8] Microsoft Azure. Storage. https://azure.microsoft.

com/en-us/services/storage/, 2016.

[9] Luiz Andr Barroso and Urs Hölzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale
Machines. 2009.

[10] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei,
David Mazières, and Christos Kozyrakis. Dune: Safe user-
level access to privileged cpu features. In Proc. of USENIX
Operating Systems Design and Implementation, OSDI’12,
pages 335–348, 2012.

[11] Adam Belay, George Prekas, Ana Klimovic, Samuel Gross-
man, Christos Kozyrakis, and Edouard Bugnion. IX: A pro-
tected dataplane operating system for high throughput and low
latency. In Proc. of USENIX Operating Systems Design and
Implementation, OSDI’14, pages 49–65, October 2014.

[12] Matias Bjørling, Jens Axboe, David Nellans, and Philippe
Bonnet. Linux block io: introducing multi-queue ssd access
on multi-core systems. In Proc. of International Systems and
Storage Conference, page 22. ACM, 2013.

[13] Simona Boboila and Peter Desnoyers. Write endurance in
flash drives: Measurements and analysis. In Proc. of USENIX
Conference on File and Storage Technologies, FAST’10,
pages 9–9. USENIX Association, 2010.

[14] John Bruno, Jose Brustoloni, Eran Gabber, Banu Ozden, and
Abraham Silberschatz. Disk scheduling with quality of ser-
vice guarantees. In Proc. of the IEEE International Con-
ference on Multimedia Computing and Systems - Volume 2,
ICMCS ’99, pages 400–405. IEEE Computer Society, 1999.

[15] Adrian M. Caulfield and Steven Swanson. QuickSAN: A
storage area network for fast, distributed, solid state disks. In
Proc. of International Symposium on Computer Architecture,
ISCA ’13, pages 464–474. ACM, 2013.

[16] Mallikarjun Chadalapaka, Hemal Shah, Uri Elzur, Patricia
Thaler, and Michael Ko. A study of iSCSI extensions for
RDMA (iSER). In Proc. of ACM SIGCOMM Workshop
on Network-I/O Convergence: Experience, Lessons, Implica-
tions, NICELI ’03, pages 209–219. ACM, 2003.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A distributed storage
system for structured data. In Proc. of USENIX Symposium
on Operating Systems Design and Implementation - Volume
7, OSDI ’06, pages 205–218. USENIX Association, 2006.

[18] Chelsio Communications. NVM Express over Fab-
rics. http://www.chelsio.com/wp-content/uploads/

resources/NVM_Express_Over_Fabrics.pdf, 2014.

[19] Franois Alexandre Colombani. HDD, SSHD,
SSD or PCIe SSD. Storage Newslet-
ter, http://www.storagenewsletter.com/

rubriques/market-reportsresearch/

hdd-sshd-ssd-or-pcie-ssd/, 2015.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In Symposium Pro-
ceedings on Communications Architectures &Amp; Protocols,
SIGCOMM ’89, pages 1–12. ACM, 1989.

[21] Adam Dunkels. Design and implementation of the lwip, 2001.

[22] Facebook Inc. RocksDB: A persistent key-value store for fast
storage environments. http://rocksdb.org, 2015.

[23] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google file system. In Proc. of ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 29–43. ACM,
2003.

[24] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. PARDA:
proportional allocation of resources for distributed storage
access. In Proc. of USENIX File and Storage Technologies,
FAST ’09, pages 85–98, 2009.

[25] Ajay Gulati, Arif Merchant, Mustafa Uysal, Pradeep Padala,
and Peter Varman. Efficient and adaptive proportional share
I/O scheduling. SIGMETRICS Perform. Eval. Rev., 37(2):79–
80, October 2009.

[26] Ajay Gulati, Arif Merchant, and Peter J. Varman. pclock: An
arrival curve based approach for qos guarantees in shared stor-
age systems. In Proc. of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’07, pages 13–24. ACM, 2007.

[27] Ajay Gulati, Arif Merchant, and Peter J. Varman. mClock:
handling throughput variability for hypervisor io scheduling.
In Proc. of USENIX Operating Systems Design and Implemen-
tation, OSDI’10, pages 437–450, 2010.

[28] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl
Waldspurger, and Mustafa Uysal. Pesto: Online storage per-
formance management in virtualized datacenters. In Proc. of
the 2Nd ACM Symposium on Cloud Computing, SOCC ’11,
pages 19:1–19:14. ACM, 2011.

https://github.com/ix-project
http://www.avagotech.com/applications/datacenters/enterprise-storage
http://www.avagotech.com/applications/datacenters/enterprise-storage
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
 http://www.chelsio.com/wp-content/uploads/resources/NVM_Express_Over_Fabrics.pdf
 http://www.chelsio.com/wp-content/uploads/resources/NVM_Express_Over_Fabrics.pdf
http://www.storagenewsletter.com/rubriques/market-reportsresearch/hdd-sshd-ssd-or-pcie-ssd/
http://www.storagenewsletter.com/rubriques/market-reportsresearch/hdd-sshd-ssd-or-pcie-ssd/
http://www.storagenewsletter.com/rubriques/market-reportsresearch/hdd-sshd-ssd-or-pcie-ssd/
http://rocksdb.org

[29] Intel Corp. Intel Rack Scale Architecture Platform. http:

//www.intel.com/content/dam/www/public/us/en/

documents/guides/rack-scale-hardware-guide.pdf,
2015.

[30] Intel Corp. Dataplane Performance Development Kit. https:
//dpdk.org, 2016.

[31] Intel Corp. Storage Performance Development Kit. https:

//01.org/spdk, 2016.

[32] Jens Axboe. FIO: Flexible I/O Tester. https://github.

com/axboe/fio, 2015.

[33] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Hae-
won Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo
Park. mTCP: A highly scalable user-level TCP stack for multi-
core systems. In Proc. of USENIX Networked Systems Design
and Implementation, NSDI’14, pages 489–502, 2014.

[34] Wei Jin, Jeffrey S. Chase, and Jasleen Kaur. Interposed pro-
portional sharing for a storage service utility. In Proc. of
the Joint International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’04/Performance
’04, pages 37–48. ACM, 2004.

[35] Abhijeet Joglekar, Michael E. Kounavis, and Frank L. Berry.
A scalable and high performance software iSCSI implemen-
tation. In Proc. of USENIX Conference on File and Storage
Technologies - Volume 4, FAST’05, pages 20–20. USENIX
Association, 2005.

[36] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M.
Voelker, and Amin Vahdat. Chronos: Predictable low latency
for data center applications. In Proc. of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pages 9:1–9:14,
New York, NY, USA, 2012. ACM.

[37] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John,
and Sanjeev Kumar. Flash storage disaggregation. In Proc.
of European Conference on Computer Systems, EuroSys ’16,
pages 29:1–29:15, 2016.

[38] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladel-
sky, Abel Gordon, and Dan Tsafrir. Paravirtual remote I/O. In
Proc. of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 49–65. ACM, 2016.

[39] Jure Leskovec and Andrej Krevl. SNAP datasets: Stanford
large network dataset collection. 2015.

[40] Jacob Leverich. Mutilate: High-Performance Mem-
cached Load Generator. https://github.com/leverich/
mutilate, 2014.

[41] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.
Gribble. Tales of the tail: Hardware, OS, and application-level
sources of tail latency. In Proc. of the ACM Symposium on
Cloud Computing, SOCC ’14, pages 9:1–9:14. ACM, 2014.

[42] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Net-
work stack specialization for performance. In Proc. of ACM
SIGCOMM, SIGCOMM’14, pages 175–186, 2014.

[43] Menage, Paul. cgroups. https://www.kernel.org/doc/

Documentation/cgroup-v1/cgroups.txt, 2004.

[44] Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun Zhu,
Sharad Singhal, and Kang G. Shin. Maestro: quality-of-
service in large disk arrays. In Proc. of International Con-

ference on Autonomic Computing, ICAC’11, pages 245–254,
2011.

[45] J. Metz, Amber Huffman, Steve Sardella, and Dave
Mintrun. The performance impact of NVM Ex-
press and NVM Express over Fabrics. http:

//www.nvmexpress.org/wp-content/uploads/

NVMe-Webcast-Slides-20141111-Final.pdf, 2015.

[46] Trond Norbye. Memcached Binary Protocol. https:

//https://github.com/memcached/memcached/blob/

master/protocol_binary.h, 2008.

[47] NVM Express Inc. NVM Express: the optimized PCI Express
SSD interface. http://www.nvmexpress.org, 2015.

[48] NVM Express Inc. NVM Express over Fabrics Revision 1.0
. http://www.nvmexpress.org/wp-content/uploads/

NVMe_over_Fabrics_1_0_Gold_20160605.pdf, 2016.

[49] Open-iSCSi project. iSCSI tools for Linux. https://

github.com/open-iscsi/open-iscsi, 2016.

[50] Jian Ouyang, Shiding Lin, Jiang Song, Zhenyu Hou, Yong
Wang, and Yuanzheng Wang. SDF: software-defined flash for
web-scale internet storage systems. In Architectural Support
for Programming Languages and Operating Systems, ASP-
LOS ’14, pages 471–484, 2014.

[51] Abhay K. Parekh and Robert G. Gallager. A generalized pro-
cessor sharing approach to flow control in integrated services
networks: The single-node case. IEEE/ACM Trans. Netw.,
1(3):344–357, June 1993.

[52] Stan Park and Kai Shen. FIOS: a fair, efficient flash I/O
scheduler. In Proc. of USENIX File and Storage Technologies,
FAST’12, page 13, 2012.

[53] George Prekas, Mia Primorac, Adam Belay, Christos
Kozyrakis, and Edouard Bugnion. Energy proportionality
and workload consolidation for latency-critical applications.
In Proc. of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, pages 342–355. ACM, 2015.

[54] Niels Provos and Nick Mathewson. libeventan event notifica-
tion library. http://libevent.org, 2016.

[55] Samsung Electronics Co. Samsung PM1725
NVMe PCIe SSD. http://www.samsung.com/

semiconductor/global/file/insight/2015/11/

pm1725-ProdOverview-2015-0.pdf, 2015.

[56] R. Sandberg. Design and implementation of the Sun network
filesystem. In In Proc. of USENIX Summer Conference., pages
119–130. 1985.

[57] Satran, et al. Internet Small Computer Systems Inter-
face (iSCSI). https://www.ietf.org/rfc/rfc3720.txt,
2004.

[58] Kai Shen and Stan Park. FlashFQ: A fair queueing I/O sched-
uler for flash-based SSDs. In Proc. of USENIX Annual Tech-
nical Conference, ATC’13, pages 67–78. USENIX, 2013.

[59] Prashant J. Shenoy and Harrick M. Vin. Cello: A disk schedul-
ing framework for next generation operating systems. Techni-
cal report, Austin, TX, USA, 1998.

[60] M. Shreedhar and George Varghese. Efficient fair queueing
using deficit round robin. In Proc. of the Conference on
Applications, Technologies, Architectures, and Protocols for

http://www.intel.com/content/dam/www/public/us/en/documents/guides/rack-scale-hardware-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/rack-scale-hardware-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/rack-scale-hardware-guide.pdf
https://dpdk.org
https://dpdk.org
https://01.org/spdk
https://01.org/spdk
https://github.com/axboe/fio
https://github.com/axboe/fio
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://www.nvmexpress.org/wp-content/uploads/NVMe-Webcast-Slides-20141111-Final.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe-Webcast-Slides-20141111-Final.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe-Webcast-Slides-20141111-Final.pdf
https://https://github.com/memcached/memcached/blob/master/protocol_binary.h
https://https://github.com/memcached/memcached/blob/master/protocol_binary.h
https://https://github.com/memcached/memcached/blob/master/protocol_binary.h
http://www.nvmexpress.org
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605.pdf
https://github.com/open-iscsi/open-iscsi
https://github.com/open-iscsi/open-iscsi
http://libevent.org
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
http://www.samsung.com/semiconductor/global/file/insight/2015/11/pm1725-ProdOverview-2015-0.pdf
https://www.ietf.org/rfc/rfc3720.txt

Computer Communication, SIGCOMM ’95, pages 231–242.
ACM, 1995.

[61] David Shue and Michael J. Freedman. From application re-
quests to virtual IOPs: provisioned key-value storage with Li-
bra. In Proc. of European Conference on Computer Systems,
EuroSys’14, pages 17:1–17:14, 2014.

[62] David Shue, Michael J. Freedman, and Anees Shaikh. Perfor-
mance isolation and fairness for multi-tenant cloud storage. In
Proc. of USENIX Operating Systems Design and Implementa-
tion, OSDI’12, pages 349–362, 2012.

[63] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop distributed file system. In Proc.
of IEEE Mass Storage Systems and Technologies, MSST ’10,
pages 1–10. IEEE Computer Society, 2010.

[64] Solarflare Communications Inc. OpenOnload. http://www.
openonload.org/, 2013.

[65] Ioan Stefanovici, Bianca Schroeder, Greg O’Shea, and Eno
Thereska. sRoute: Treating the storage stack like a network.
In Proc. of USENIX Conference on File and Storage Technolo-
gies, FAST ’16, pages 197–212, Santa Clara, CA, 2016.

[66] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Kara-
giannis, Antony Rowstron, Tom Talpey, Richard Black, and
Timothy Zhu. IOFlow: A software-defined storage architec-
ture. In Proc. of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, SOSP ’13, pages 182–196. ACM,
2013.

[67] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. Secure
I/O device sharing among virtual machines on multiple hosts.
In Proc. of International Symposium on Computer Architec-
ture, ISCA ’13, pages 108–119. ACM, 2013.

[68] Paolo Valente and Fabio Checconi. High throughput disk
scheduling with fair bandwidth distribution. IEEE Trans.
Computers, 59:1172–1186, 2010.

[69] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and
Gregory R. Ganger. Argon: Performance insulation for shared
storage servers. In Proc. of USENIX File and Storage Tech-
nologies, FAST ’07, pages 5–5, 2007.

[70] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh,
Randy Katz, and Ion Stoica. Cake: Enabling high-level SLOs
on shared storage systems. In Proc. of ACM Symposium on
Cloud Computing, SoCC ’12, pages 14:1–14:14. ACM, 2012.

[71] Theodore M. Wong, Richard A. Golding, Caixue Lin, and
Ralph A. Becker-Szendy. Zygaria: Storage performance as a
managed resource. In Proc. of IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS ’06, pages
125–134. IEEE Computer Society, 2006.

[72] Joel Wu and Scott A. Brandt. The design and implementa-
tion of aqua: an adaptive quality of service aware object-based
storage device. In Proc. of the 23rd IEEE / 14th NASA God-
dard Conference on Mass Storage Systems and Technologies,
pages 209–218, May 2006.

[73] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma
Riska, and Erik Riedel. Storage performance virtualization
via throughput and latency control. Trans. Storage, 2(3):283–
308, August 2006.

[74] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. De-indirection for
flash-based ssds with nameless writes. In FAST, page 1, 2012.

[75] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein,
Carey E. Priebe, and Alexander S. Szalay. Flashgraph: Pro-
cessing billion-node graphs on an array of commodity SSDs.
In Proc of USENIX Conference on File and Storage Technolo-
gies, FAST ’15, pages 45–58, 2015.

[76] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor
Harchol-Balter, and Gregory R. Ganger. Prioritymeister: Tail
latency QoS for shared networked storage. In Proc. of ACM
Symposium on Cloud Computing, SOCC ’14, pages 29:1–
29:14. ACM, 2014.

http://www.openonload.org/
http://www.openonload.org/

	Introduction
	Background and Motivation
	Performance Goals
	Interference Management

	ReFlex Design
	Dataplane Execution Model
	QoS Scheduling and Isolation
	Request Cost Model
	Scheduling Mechanism

	ReFlex Implementation
	ReFlex Server
	ReFlex Clients
	ReFlex Control Plane

	Evaluation
	Experimental Methodology
	Unloaded latency
	Throughput and CPU Resource Cost
	Performance QoS and Isolation
	Scalability
	Linux Application Performance

	Discussion
	Related Work
	Conclusion

