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Flash-based storage is replacing disk for an increasing number of data center applications, providing orders

of magnitude higher throughput and lower average latency. However, applications also require predictable

storage latency. Existing Flash devices fail to provide low tail read latency in the presence of write operations.

We propose two novel techniques to address SSD read tail latency, including Redundant Array of Independent

LUNs (RAIL) which avoids serialization of reads behind user writes as well as latency-aware hot-cold separa-

tion (HC) which improves write throughput while maintaining low tail latency. RAIL leverages the internal

parallelism of modern Flash devices and allocates data and parity pages to avoid reads getting stuck behind

writes. We implement RAIL in the Linux Kernel as part of the LightNVM Flash translation layer and show that

it can reduce read tail latency by 7× at the 99.99th percentile, while reducing relative bandwidth by only 33%.
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1 INTRODUCTION

Flash-based storage devices are replacing disks for an increasing number of applications in data

centers. Transistor scaling, multi-level cell technology, and 3D integration have delivered a con-

tinuous increase in capacity, while new Flash controllers have leveraged high degrees of archi-

tectural parallelism and new software interfaces such as NVMe to significantly increase perfor-

mance [6, 55]. As a result, Flash devices now provide up to one million I/O operations per second

(IOPS) and read latencies as low as 70μs [39, 64]. However, data center applications also require

predictable performance. Low read tail latency is particularly important for high fan out applica-

tions that access thousands of servers to process a single request [22]. Existing Flash devices fail
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Fig. 1. Read latency CCDF for read/write mix.

to provide predictable tail read latency [30, 42]. Figure 1 shows the read latency complimentary

cumulative distribution function (CCDF) for a mixed read/write workload on an NVMe based

solid state disk (SSD) from CNEX Labs.1 While most of the reads complete in under 100μs there

is also a long tail with some reads completing at just under 6ms resulting in over 50× difference

between the average and 99.99th percentile latency.

Prior work has focused on reducing high tail latency by optimizing garbage collection (GC)[67,

78, 80], interference between applications[28, 35] or by over-provisioning Flash capacity by up to

30–50% [56]. While these techniques improve performance to some degree, they fail to enforce

strict tail latency guarantees and, furthermore, introduce significant overheads in terms of capacity

and bandwidth. For instance, TinyTail [80] leverages a RAID [58] approach to avoid interference

between reads and GC, addressing the 6ms tail shown in Figure 1. However, TinyTail does not

protect against the common read-after-write (RaW) serialization, increasing tail latency by up

to 20×. Furthermore, TinyTail introduces significant write overheads to achieve isolation between

reads and GC.

To address these challenges, we present Redundant Array of Independent LUNs (RAIL), an

SSD device-level technique that eliminates the possibility of reads being stalled by any high latency

operation. RAIL leverages redundancy to provide an alternative read path in the case a particular

NAND chip is temporarily inaccessible due to performing a high latency operation. Unlike previ-

ous work, RAIL reduces tail latency at all percentiles, in particular, by 7× over existing approaches

for the 99.99th percentile and for our tests always completes reads in under 1ms. To reduce the

write bandwidth overheads, RAIL introduces latency-aware hot-cold separation (HC) to sepa-

rate hot user writes and cold GC writes into independent physical flash chips. With this technique

in place, we show that avoiding RaGC serialization, such as implemented by prior work becomes

obsolete and can be skipped entirely. As a result, RAIL-HC also reduces write amplification by

2× and increases GC write bandwidth by 4× over prior work. Furthermore, in contrast to prior

works that relied on simulation, we present a full Linux kernel software implementation leverag-

ing OpenChannel SSDs.

1We analyzed a set of SSDs including CNEX Westlake, Intel P3600, Intel 750, and Samsung PM1725 all showing similar

behavior.
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Table 1. RAIL vs. Prior Work

Technique Avoid Avoid Avoid Detect WR

RaW RaGC RaWL Stall Overhead

Purity [20] yes no no react high

Toleraid [30] yes no no proact high

F-on-R [70] yes no no exact high

TinyTail [80] no yes no exact high

RAIL-HC yes yes yes exact low

2 BACKGROUND

Prior Work: Prior work has leveraged redundancy to reduce tail read latency when accessing

storage. Flash-on-rails [70], ToleRAID [30], and Purity [20] use parity across drives to improve tail

ready latency by only writing to a subset of the drives at a time. Whenever a read is slow (time-

outs) another read is triggered to recompute the data from parity. While simple to implement, these

approaches can only prevent RaW serialization, however, they cannot guard against reads being

serialized behind operations such as GC and wear leveling, as those are triggered by the SSD itself.

Furthermore, waiting for a timeout at least doubles the read latency in average. TinyTail [80] iso-

lates reads from GC, however, fails to prevent RaW serialization which occurs frequently. TinyTail

also utilizes the internal copyback operation to move data which can lead to errors because NAND

chips do not have error detection and correction internally, whereas RAIL re-computes error cor-

rection bits during GC on the host. TinyTail also has only been simulated, ignoring many of the

NAND specific challenges of real designs discussed in Section 4. RAIL has passed an extensive two

man year validation and verification phase to reach Linux kernel stability. The validation suite is

implemented in QEMU [5] and emulates read/write/erase errors as well as static and grown bad

blocks in a random constrained way to automatically test RAIL in different configurations.

All related works above [20, 30, 70, 80] achieve a tail latency reduction by throttling write band-

width. By combining RAID with HC, RAIL-HC significantly reduces the negative impact on write

performance. Table 1 compares the capabilities of prior approaches against RAIL. It shows whether

a technique is capable of preventing RaW, read-after-GC (RaGC), and read-after-wear-leveling

(RaWL) stalls. It also shows whether the techniques require timeouts (react) to detect a RaW stall

or if they always assume a stall (proact) or if they can determine whether a read will be stalled

(exact). The last column shows the bandwidth overheads introduced by the approaches for reduc-

ing read latency. As we will show in this article, to guarantee low read latency at the very tail,

all sources of high latency need to be addressed. We find that this can only be achieved by con-

trolling SSD device properties on the hardware level exposing us to the intricate details of NAND

Flash such as bad blocks, managing meta information, and handling write errors. RAIL overcomes

these challenges by leveraging OpenChannel SSDs providing strict tail latency guarantees up to

the 99.99th percentile.

Internal device parallelism: Modern Flash devices have multiple levels of internal paral-

lelism [1, 16]. A Flash controller interfaces with multiple channels which are shared by multiple

NAND dies. We refer to units of parallelism on Flash as logical units (LUNs). On a typical Flash

device, a LUN typically corresponds to a die, since each NAND die typically supports one outstand-

ing operation at a time.2 Tables 2 and 3 show the device specification for the SSD we use in our

experiments. The device contains 128 LUNs in total, thus the number of concurrent operations is

2Most devices support multi-plane operations, which allow multiple identical operations per die, increasing throughput

but not latency.
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Table 2. Open-Channel SSD

SSD Properties

Channels 16

LUNs per Channel 8

Total LUNs 128

Channel Bandwidth 280 MB/s

Table 3. LUN Properties

LUN Properties

Sector Size 4 KB

Page Size 64 KB

Blocks 1067

Block Size 256 pages

Table 4. Per-LUN Performance

Op. Bandwidth Latency Size

Read 280 MB/s 65μs 32 KB

Write 25 MB/s 1,700μs 32 KB

Erase N/A 6,000μs 4 MB

limited to 128. With 64 KB pages, 256 pages per block and 1,067 blocks per LUN, each LUN has

over 16 GB of capacity.

NAND properties: In NAND technology, erase operations are performed at the granularity

of blocks, writes at the granularity of pages, and reads at the granularity of sectors. Writes can

only set bits in a single direction (from one to zero). Thus, pages cannot be updated in place;

they must first be erased. Table 4 shows the performance of read, write, and erase operations

per LUN. Although SSDs deploy battery backed DRAM caches to complete writes to software

instantaneously, a write can only be sent to a chip if all prior writes have persisted. Although,

erases take 8 times as long as writes, they are a more efficient operation since they operate on 4 MB

of data. Due to the asymmetric read, write, and erase latencies and the serialization of operations,

read latency increases significantly when the requested data page resides on a LUN occupied by a

write or erase operation.

Flash Translation Layer (FTL): The FTL is an essential layer in the Flash storage stack, man-

aging L2P address mapping, GC, and wear-leveling while presenting a simple block interface to the

operating system. User applications submit read and write requests to logical block addresses

(LBAs). Each logical block in the address space represents a sector-sized data segment (usually

4 KB) which the FTL maps to a sector of a physical page on Flash. Policies for physical data lay-

out and GC (choosing which blocks to erase and when) in the FTL directly influence read/write

performance of user applications on Flash.

LightNVM and OpenChannel SSDs: OpenChannel SSDs do not implement the FTL in

firmware, but instead, expose the internal parallelism of SSDs to the host, enabling the operat-

ing system to manage physical storage [8]. The Linux kernel is an example of an operating sys-

tem that supports OpenChannel SSDs through an abstraction layer called LightNVM [9, 11]. The

LightNVM subsystem is an open-source host-based FTL that provides a generic media manager

for wear-leveling and bad block management, uses a physical page address (PPA) I/O interface

to communicate with the SSD (still over the standard NVMe specification), and exposes the Open-

Channel SSD as a traditional block I/O device to user applications. We develop RAIL as part of

LightNVM.

3 DESIGN

RAIL enforces strict tail latency guarantees by eliminating reads being stalled behind high latency

operations such as writes and erases. Therefore, RAIL maintains redundant parity data for recom-

puting sectors, that reside on a LUN that currently serves a high latency operation. RAIL draws
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Fig. 2. SSD sector placement.

from techniques such as RAID [58], however, utilizes redundancy for latency reduction in addi-

tion to improving fault tolerance. RAIL parity computation is performed within strides, where a

stride of size S consists of one parity element and S-1 data elements. Data elements are XOR’ed

together to compute the parity element. Each element of a stride resides on a separate LUN. In the

case where a LUN, for instance, LUN_0, is serving a high latency operation, reads targeting LUN_0
are served by reading the corresponding sectors from LUN_1, LUN_2, and LUN_3 and computing

the original sector residing on LUN_0. We refer to such multi-LUN reads as a RAIL read. Note

that block devices provide no ordering guarantees for reads and writes in the absence of flushes,

enabling RAIL reads to complete before prior writes.3 To enforce tail latency guarantees, RAIL

ensures that only one LUN within a stride serves a high latency operation at all times, impacting

write bandwidth.

3.1 Parity Sector Placement (RAIL)

In this section, we describe how RAIL manages sectors and places data and parity on the SSD. SSDs

use device specific unit sizes for reads, writes, and erases. For instance, CNEX performs reads at

the unit of sectors (4 KB), writes at the unit of pages (64 KB), and erases at the unit of blocks

(1,024 KB). Each LUN contains multiple blocks, enumerated by an ID. All blocks with the same ID,

for instance, the first block of all LUNs, are combined to form a line. Furthermore, all write unit

(page) sized elements that have the same page ID and block ID are defined as a stripe. RAIL needs

to allocate sectors for parity data to enable RAIL reads. One option would be to maintain additional

information as part of the logical to physical (L2P) block translation table, which enables to find

the other sectors and parity data in case of a RAIL read. As the L2P already consumes multiple GB

in host memory for TB sized SSDs, we place parity data to fixed locations within a stripe using

simple modulo operations to determine the target physical addresses of a RAIL read. We distribute

RAIL strides over stripes to maximize write bandwidth and place parity data on the high order

LUNs of a stripe as parity can only be computed after all data sectors of a stride have been written.

Figure 2 shows how RAIL manages sectors, blocks, stripes, and lines as well as how it places data

and parity elements. In the example, two RAIL strides are shown, where stride 0 consists of Data00,

Data01, Data02, and Parity0.

3Ordering needs to be enforced by the filesystem or application.
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3.2 Latency-Aware Hot-Cold Separation (HC)

Vertical hot-cold separation [24, 48, 72] reduces write amplification by separating frequently writ-

ten LBAs (hot) and rarely written LBAs (cold) into separate flash blocks. This increases the proba-

bility that all sectors within hot blocks are overwritten by user writes before the block is garbage

collected, minimizing the number of valid blocks that need to be moved by GC. Hot-cold sepa-

ration is implemented by maintaining two open blocks per NAND chip whereas user writes are

applied to the hot block and GC writes are applied to the cold block. We introduce horizontal hot-

cold separation, separating user and GC writes for the purpose of reducing tail latency. In contrast

to prior approaches that applied GC and user writes to separate blocks, our technique allocates

hot and cold partitions from separate NAND chips guaranteeing that user and GC writes do not

utilize the same LUN. For workloads with a zipfian distribution, reads are likely to access hot data

and hence the probability is low that reads are serialized behind cold writes. As a result, it is no

longer mandatory to throttle writes to only one LUN per stride for the cold block, eliminating the

write overhead introduced by avoiding RaGC serialization. Horizontal hot-cold separation intro-

duces no capacity or bandwidth overheads and hence represents a more effective technique than

prior approaches [67, 78, 80] focusing on the read-GC interference. Enabling horizontal hot-cold

separation is challenging as the ratio of the number of hot to cold blocks depends on the dynamic

write amplification factor. Therefore, RAIL-HC continuously monitors the user and GC writes and,

every 1M total writes, based on the the write-amplification factor, it assigns LUNs to user and GC

lines accordingly, rounding-up the number of LUNs assigned to GC. To avoid high tail read latency

when re-assigning LUNs between hot and cold lines, RAIL-HC supports LBA live migration. For

instance, if a user LUN is re-assigned to a GC line, the old data continues to be accessible via RAIL

reads, while new written pages are allocated according to the most recent partitioning scheme. As

blocks are invalidated and erased over time, all blocks within a LUN gradually converge to the

new partitioning scheme. Consequently, blocks within the same LUN may be part of a different

line configuration. Therefore, every line contains less than 100 bits of additional meta information

defining the stride width and GC/user configuration enabling the correct line-specific RAIL read

access pattern. Note that migrating LUNs occurs rarely (after millions of writes) as even an abrupt

change of the user write pattern, for instance, from random to sequential, suffers from inertia. In

particular, a large fraction of the SSD needs to be overwritten by a new user write pattern before

the GC behavior starts to change. Furthermore, a temporally non-optimal allocation of user and

GC LUNs only reduces write bandwidth but does not affect tail read performance. For instance, if

there are not enough cold LUNs, GC will need to be performed on hot lines reducing user write

bandwidth, however, without affecting user read latency.

3.3 RAIL Implementation

RAIL is implemented within the Linux kernel’s PBLK [11] subsystem in 1,618 C lines of code.

Figure 3 provides an overview of PBLK and the RAIL modifications in blue.

Write path: Write requests updating a particular LBA are inserted into a single shared ring

buffer by all blk-mq [10] kernel threads. Written sectors are immediately completed to the block

I/O layer and buffered in DRAM until enough sectors are available to write a whole page. In the

case of a flush (sync) operation, available sectors are padded with empty sectors to form a page and

then mapped to a PPA. PBLK then sends the write operation to the Flash hardware controller over

the standard NVMe interface [55] using the PPA as the address. Writes are performed round-robin

across LUNs within a stripe in the hot line to maximize LUN parallelism and bandwidth.

To implement RAIL, we add a PPA to write buffer entry (P2B) mapping table (16 KB) which

references all write buffer entries forming a RAIL stride. The P2B is required, as there is no static
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Fig. 3. RAIL architecture.

fixed mapping between write buffer entries and hardware sectors because of existing bad blocks,

padded sectors, and meta data. RAIL extends the PPA mapping mechanism such that, whenever,

a parity LUN (e.g., Parity0 in Figure 2) is to be mapped, the RAIL parity engine is triggered

to generate a parity write. The RAIL parity engine queries the P2B, computes the parity from

the cached sectors, and generates the PPA for writing the parity to the SSD. RAIL introduces

stride semaphores to enforce that at most one LUN per RAIL stride is written or erased at a time

reducing write bandwidth to 1÷S . However, this only applies to hot writes. By leveraging hot-cold

separation, RAIL-HC does not require to throttle cold writes, minimizing the negative impact on

write bandwidth. Furthermore, trading-off write bandwidth for low tail latency is acceptable for

the following reasons: (1) Many datacenter workload studies [18, 32, 36, 43, 62, 63] have shown

read to write ratios of 4 to 1 and higher. As our SSD provides the same maximal read and write

bandwidth of 1.6 GB/s, applications are generally limited by read and not write bandwidth. (2) Due

to shared resources (PCIe, channels, and controller) the maximum bandwidth is shared between

reads and writes. Hence, even for a 1 to 1 read/write ratio, RAIL only reduces write bandwidth

by 50% effectively. (3) RAIL detects write-mostly (<1K read IOPS) workloads and automatically

disables LUN throttling. (4) As shown in Section 5 applications such as MongoDB and RocksDB

are not performance limited by write bandwidth.

Read path: Reads are served by looking up the LBAs (multiple LBAs in the case of multi-sector

reads) in the L2P to determine the PPA. Since blk-mq threads directly serve read requests, multiple

threads can have multiple asynchronous read requests in flight at the same time. To integrate

RAIL, we check, for each PPA, whether the target LUN currently serves a high latency operation.

In this case, we perform a RAIL read by transforming the PPA into its corresponding S-1 RAIL

PPAs. We issue asynchronous read requests for all PPAs and, in the interrupt handler, complete

the I/O by copying the recomputed reverse-parity of the RAIL PPAs into the original kernel block

I/O (struct bio).

Garbage collection and Wear Leveling: In addition to managing userspace I/O, PBLK gener-

ates write and erase operations to implement GC and WL. PBLK performs GC at the granularity of
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lines by reading all valid 4K sectors from a line and then writing them into the same write buffer

into which user writes are placed. From the write buffer they are written to the next open line

as any other user write. To implement hot-cold separation we tag the write buffer entries so that

GC’ed sectors are written to the cold line and user sectors to the hot line. We also implemented

an alternative approach utilizing separate buffers for GC and user writes which performed equally

well. PBLKs original GC mechanism greedily determines the line with the least amount of valid

sectors, moves them to a new line and then erases all blocks within the line. With hot-cold sepa-

ration it becomes beneficial to prefer cold lines over hot lines [72]. RAIL does not require further

modification of the GC path, except for marking parity sectors as invalid so that they are not moved

by GC. Note that overwriting LBAs does not affect parity computation of other sectors within the

same stripe. As sectors are never updated in place, the physical sectors can still be used for parity

computation although they have been logically invalidated.

3.4 RAIL Overheads

RAIL enforces low tail latency at the cost of storage capacity and bandwidth. However, RAIL also

offers fault tolerance guarantees over a non-RAID approach.

Capacity overheads: RAIL induces capacity overheads of 1 ÷ S, where S is the stride size, to

store parity data. For instance, for S=4 the capacity overhead is 25%, for S=16 the capacity overhead

is 6.25%. Note that RAIL enables fault tolerance as provided by RAID. In applications where RAID

needs to be deployed anyways, RAIL’s capacity overheads can be zero. RAIL-HC only requires

parity blocks for hot data, hence, depending on the distribution of hot and cold data the capacity

overheads are reduced, often by 2× as shown in Figure 6. Furthermore, Section 5.1.5 shows that

RAIL allows to reduce over-provisioning compensating RAIL’s capacity overheads.

Bandwidth overheads: RAIL affects total device bandwidth (TotalBW) which is shared among

reads, writes. and erases and also effects read and write bandwidth individually. TotalBW is reduced

by UserWrBW ÷ S as additional parity data needs to be written to the SSD. For RAIL (but not for

RAIL-HC), TotalBW is reduced by GcWrBW ÷ S as additional parity data needs to be written for

garbage collected sectors. UserWrBw is limited to 1 ÷ S to ensure that only a single LUN is serving

a high latency operation at a time. Note that for mixed read-write workloads this is generally

not an issue as the remaining bandwidth TotalBW − 1 ÷ S can be used for reads. If maximum

write bandwidth is required such as for preconditioning or bulk-loading data, RAIL automatically

disables LUN throttling in the presence of <1K read IOPS while maintaining parity computation.

Effective user read bandwidth is reduced by the read amplification of RAIL reads. We quantify the

effect of read amplification in Section 5.1.4.

4 IMPLEMENTATION CHALLENGES

Implementing RAIL on real hardware has been a challenging endeavor due to the technology

specific properties of NAND Flash. In the following sections, we list the most challenging issues

we faced and addressed.

4.1 Bad Blocks

NAND Flash is an inherently unreliable storage medium. New devices generally contain a number

of bad blocks that are unusable and, furthermore, write and erase operations wear out NAND

memory over time, increasing the number of bad blocks over time. The number of erase cycles

before a block wears out is technology dependent and determined, for instance, by the number

of voltage levels (single level vs. multi level cells). LightNVM supports bad block management by

maintaining a list of bad blocks to guarantee that LBAs are never mapped to a bad sector. Bad blocks

and, in particular, grown bad blocks are problematic, as RAIL utilizes a fixed mapping between the
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data/parity sectors of a RAIL stride and the LUNs. As a result, whenever performing a RAIL read,

the read path needs to determine the number of bad sectors within a stride so that it can issue the

correct number of sector reads. Similarly, on the write path RAIL needs to be aware of bad blocks

such that they can be skipped during parity computation. The P2B on the write path described

in Section 3 maintains all valid PPA to write buffer entry and invalid (bad block) mappings to

compute the correct parity in the presence of strides with fewer than S sectors.

4.2 Meta Data

LightNVM maintains meta data to store information about bad sectors, overwritten sectors that

can be GC’ed, sequence numbers and other information required for recovery in the case of a

power cycle. Meta data is stored on Flash within the start and end sectors of a line and hence meta

sectors are not available for storing data. Even worse, due to potential bad blocks at the start or end

of a line, the location of meta sectors is not fixed. There exist many corner cases in the presence

of bad and meta sectors which need to be considered to compute correct parity in all cases both

on the read and write path.

4.3 Flushes

Block devices support flushes to enforce the required consistency guarantees of filesystems and

databases. For instance, in ACID databases, durability can be enforced by issuing a flush operation

before committing a transaction. Flushes require LightNVM to immediately issue all writes in prior

to the flush to the storage device by padding the flushed sectors with zeros to form a full page, the

unit of writes. As the padded sectors do not traverse the write buffer, RAIL maintains additional

information to correctly compute parity for the padding sectors.

4.4 Reverse LBA Map

The logical block (LBA) to physical sector (PPA) mapping table (L2P) is resident in main memory

and lost during a power cycle. LightNVM recovers the L2P during boot up from the recovery data

stored as part of the meta section on the device. To store the actual LBA that maps to a particular

sector, LightNVM utilizes out-of-band memory on Flash to store a reverse L2P. In addition to

recovery, LightNVM leverages the out-of-band LBA data for verification purposes. On every read,

the out-of-band LBA information is compared to the expected LBA from the memory resident L2P.

For RAIL reads, this verification check fails as the sectors utilized to re-compute the original page

are mapped to different LBAs. We address this issue by computing a parity LBA for each RAIL

parity page by XOR’ing all LBAs of a RAIL stride. On the read path, this enables to re-compute the

original LBA for read verification. XOR’ed RAIL LBAs are skipped during L2P recovery.

4.5 Multi-Sector Reads

To support different read sizes, PBLK allows to read multiple sequential LBAs as part of a single

access, although they might be mapped to non-consecutive PPAs. To implement this capability,

PBLK utilizes scatter operations composed of a vector of PPAs. In the case of RAIL, it is possible

that some of the sectors need to be read utilizing conventional reads, some sectors are read using

RAIL reads and some sectors are read from the write cache. To reduce the number of permutations

and corner cases, we re-factored the code to offer three different code paths reflecting the poten-

tial location of a sector. We then scan the entire multi-sector request before emitting up to three

separate asynchronous read requests which finally get assembled to complete the original block

I/O (bio) request.
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4.6 Locking and Synchronization

Linux kernel developers need to deal with various concurrency issues. LightNVM leverages the

blk-mq interface to enable concurrent access of multiple readers to the NVMe block device. For

performance reasons, each reader can issue multiple overlapping asynchronous reads and also

needs to handle completion events (interrupts) that can preempt the read path at any time. While

the CNEX OC driver and SSD can process multiple outstanding reads at a time, it can only process

one write or erase operation which needs to be enforced via per LUN semaphores. RAIL has been

carefully designed to comply with all the locking and synchronization policies built into LightNVM

and has been validated using an extensive verification suite.

4.7 Write Buffer Races

The write buffer introduces a potential race condition which occurs when transferring sectors

from the buffer to the device in the presence of concurrent reads to the same sectors. In particular,

it is possible that some sectors of a RAIL stride are persisted to the SSD while some are still in the

write buffer. Additionally, NAND chips specify the concept of upper and lower pages, distributed

within a block at a certain distance whereas the upper page can only be read after both the lower

and upper page have been written. We guarantee consistent reads under all these conditions by

delaying the L2P update such that reads are only served from the device if all above conditions are

met.

5 EVALUATION

We evaluate RAIL on the CNEX Westlake Open-Channel SSD [8] with the properties shown in

Table 2. The SSD is connected over a PCIe ×8 interface to the host server, an Intel Xeon Broadwell

E5-2630 with 20 cores, and 40 SMT threads running at 2.2 GHz with 64 GB of DRAM. Our system

runs Ubuntu 18.4 Linux with a 5.1 kernel for the unmodified PBLK baseline. We utilize nvme-cli

to initialize LightNVM’s media manager and expose the Open-Channel SSD as a block device.

We compare RAIL and RAIL-HC against two baselines: PBLK which represents the unmodified

LightNVM subsystem and LinuxTinyTail, our Linux re-implementation of TinyTail [80]. Linux-

TinyTail conceptually resembles TinyTail, in that it leverages redundancy to reduce tail latency in

the presence of GC. In particular, whenever the GC mechanism issues writes or erases, it accesses

only one unit of the RAID array at a time to avoid GC overheads impacting read tail latency. Linux-

TinyTail is entirely implemented in software on top of LightNVM and hence our implementation

lacks the (simulated) hardware acceleration of the original TinyTail proposal. We evaluate RAIL

with microbenchmarks using the Flexible I/O tester (FIO) [40] and two database applications:

RocksDB and MongoDB. We also evaluated Twitter’s Fatcache [60] but omit the results for brevity

(RAIL shows a 4× tail latency reduction over PBLK for Fatcache). For all tests, we precondition the

SSD with sequential writes and then 4K random writes. For all tests, if not mentioned otherwise

we utilize S = 4 for both RAIL and RAIL-HC.

5.1 Flexible I/O Tester

We perform a series of microbenchmarks using FIO. All tests are performed directly on the block

device without a filesystem and page cache (O_DIRECT). We use a thread count of 40, and low queue

depth of 2 for all tests. We enable the Kyber [65] I/O scheduler for all tests and set it to a target

read latency of 500μs. While the SSD device can be saturated by two threads, high queue depth

has a detrimental effect on latency due to request batching. We leave optimizing the Linux block

I/O layer for low tail latency as future work.
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Fig. 4. RAIL-HC provides predictable, low tail read latency at high write throughput.

5.1.1 Read Latency vs. Write IOPS. As described in Section 3, high read tail latency is caused

by reads being serialized behind high latency operations such as writes, erases, and GC. Our first

series of microbenchmarks shown in Figure 4 plots read latency against write IOPS on the X -

Axis. For this test, we utilize the entire SSD capacity by preconditioning all LBAs using a standard

over-provisioning ratio of 12%. When executing non-sequential write workloads on a full SSD, GC

kicks in immediately. The resulting write amplification ranges from 1× − 10× depending on the

write distribution, over-provisioning ratio and hot-cold separation technique. For realistic zipfian

distributions, the observed write amplification ratio generally ranges between 1.8× and 4.5× [23,

33, 73]. To run our tests, we execute 40 threads that issue 100% 4K sized random reads with a

zipfian distribution and one write thread that issues 4K sized random writes with the same zipfian

distribution. The test utilizes a fixed read bandwidth of 350 KIOPS which is close to the SSD’s

peak read only throughput of 380K IOPS and we sweep the target write IOPS from 1K to 96K

IOPS. Note that, because of write throttling, the four approaches support different maximum write

performances. In particular, for this setup, the approaches reach a maximum write IOPS (in the

absence of reads) of 169K for PBLK, 80K for RAIL-HC, 49K for LinuxTinyTail, and 41K for RAIL.

We evaluate write performance in more detail in Section 5.1.3. As shown in Figure 4(a), for all

approaches read latency generally increases in the presence of writes. RAIL provides a 20% average

latency reduction over PBLK at maximum write IOPS. For the 90th percentile tail latency, shown

in Figure 4(b), RAIL reduces latency from 600μs to below 340μs. For the 99.9th percentile, RAIL

again shows a 5x latency reduction already for low write bandwidth such as 8K IOPS. At the

99.99th percentile, shown in Figure 4(f), RAIL provides a read latency of below 900μs for all write

rates, whereas for PBLK, tail latency increases to 5300μs for maximum write IOPS. Figure 4 shows

that LinuxTinyTail successfully addresses read after erase stalls that in PBLK introduce up to 6ms
latency (Table 4), however, it only provides little performance improvement over the PBLK baseline

as it cannot avoid RaW serialization. This shows that avoiding GC interference is not enough;

RaW stalls need to be addressed as well. RAIL-HC performs almost on par with RAIL. The zipfian

distribution of the test workload ensures that most reads hit the hot data partition and only few
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Fig. 5. Tail latency without GC.

reads are served from the cold partition. As a result, RaGC serialization is almost non-existent

and hence RAIL-HC enables low tail latency without throttling write performance as significantly.

Note that RAIL-HC only works well for workloads that follow a zipfian distribution. For completely

uniform distributions, there exists a high probability that reads hit cold data in which case RAIL-

HC does not provide sufficient read-write isolation. For such workloads, RAIL is the only approach

that enforces low tail latency.

5.1.2 Read Latency vs. Percentile Latency (No GC). We also evaluated tail latency for the case

where there exists sufficient free space (75%) on the SSD. In this case, there exist 4× as many

physical than logical blocks on the SSD which delays GC significantly and hence reduces write

amplification to 1.05×. As the GC traffic is significantly reduced, LinuxTinyTail provides very

little latency benefits over PBLK, while the RAIL approaches continue to maintain low tail latency.

Figure 5 shows the results of the non-GC workloads in condensed form. We use the same setup as

in Section 5.1.1 while only filling the SSD to 25%. RAIL consistently provides lower latency ranging

from 100μs in average to 585μs at the 99.99th percentile. In contrast, PBLK shows a tail latency

of 4358μs and LinuxTinyTail shows a 99.99th percentile latency of 2834μs. RAIL outperforms the

baselines at all percentiles whereas LinuxTinyTail can only avoid the rare read being stalled behind

erase scenarios while it suffers from the much more frequent RaW stalls. Due to the lack of GC

traffic, RAIL, and RAIL-HC perform almost identical in terms of read latency and write throughput.

5.1.3 Write Performance and Request Size. We omit write latency graphs as, in absence of

flushes, writes are immediately completed when they enter the DRAM write buffer. As a re-

sult, writes generally complete in less than 20μs independent of the evaluated mechanism. Write

throughput as measured by FIO is reduced by all latency avoidance techniques. The write overhead,

hereby, depends on the GC write amplification, the stride width S and whether reads are isolated

only from GC writes, from user writes or from all operations. We evaluate the write overhead of

the different techniques for S = 4 and different write amplification factors using a write workload

with zipfian distribution. Using FIO, we vary theta-zipf to generate write amplification factors of

2.3, 3.2, 4.1, and 5.0 which match our observations of real applications as well as prior work on

write amplification analysis [23, 33, 73]. Figure 6 shows the achieved maximum write throughput

of the different approaches normalized to PBLK. RAIL provides the strictest tail latency guaran-

tees at the cost of reducing bandwidth to approximately 1÷S . TinyTail and RAIL-HC only throttle
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Fig. 6. Write bandwidth overhead. Fig. 7. Capacity vs. latency.

cold GC, respectively, hot user write traffic and hence limit their impact on write performance.

For a write amplification ratio of 5× RAIL-HC can maintain 62% of PBLK’s original bandwidth,

whereas TinyTail achieves only 29%, while RAIL-HC enforces much stricter tail latency guaran-

tees than TinyTail as shown in Section 5.1.1. We will show in Sections 5.2 and 5.3 that overall,

write throttling has a small effect on end-to-end application performance.

We also evaluated the performance of RAIL and PBLK for different request sizes. In PBLK, writes

are always performed at the granularity of 64K, independent of the size of the original request, by

slicing and reassembling segments in the write buffer. For reads, in the case of RAIL, we could

not see any significant performance impact of larger requests and hence omit the results here for

brevity. The reason is that read requests are always scattered into a series of 4 KB requests and RAIL

emits RAIL reads for any of the 4K sector reads that would be blocked by a high latency operation.

In the case of PBLK, tail latency in fact increases for larger request sizes as the probability increases

that one of the 4 KB reads is serialized behind a write operation. For instance, for 256 KB sequential

reads PBLK already shows a latency of greater than 2ms for the 80th percentile.

5.1.4 RAIL Stride Width. As described in Section 3.3 the stride width S refers to the number of

sectors that are used to compute a parity sector. A high stride width is advantageous as it reduces

the capacity overhead of RAIL. For instance, a stride width of 16 (RAIL-16) only introduces a

capacity overhead of 6.25% to store redundant parity information. On the other hand, RAIL-16

also reduces maximum write bandwidth by 16x and increases read amplification, as on a RAIL

read 15 sectors have to be read to recompute the original sector. Figure 7 compares three RAIL

configurations and their impact on read IOPS and 90th percentile latency. We run 1 write thread

issuing 30K IOPS and 32 read threads that sweep their aggregate IOPS from 32K to 384K IOPS.

Due to read amplification, RAIL-16 reduces the maximum read IOPS by 64K and increases the tail

latency by 220μs. Configuring stride width enables users to trade-off capacity, IOPS, and latency

in an application specific way.

5.1.5 Over-provisioning vs. Tail Latency. SSD vendors over-provision NAND Flash memory to

compensate for GC overheads, by exposing fewer capacity to the user than available on the SSD.

The amount of capacity reserved for GC determines the number of valid sectors that need to be

moved between blocks, significantly affecting the read-write interference [52, 71, 73]. Data center

operators commonly reserve up to 30–50% of raw SSD capacity for space over-provisioning to

improve predictability in the presence of random writes [56]. We evaluate the impact of over-

provisioning for RAIL by comparing three over-provisioning factors: 20%, 11%, and 7%. As Figure 8

shows, RAIL completely eliminates read stalls even for very low over-provisioning factors and

operators may be able to choose lower over-provisioning factors reducing capacity overheads.

ACM Transactions on Storage, Vol. 18, No. 1, Article 5. Publication date: January 2022.



5:14 H. Litz et al.

Fig. 8. Latency vs. over-provision. Fig. 9. RocksDB latency.

LinuxTinyTail improves tail latency as it does not suffer from the increased GC overheads induced

by low over-provisioning factors but tail latency is still affected by RaW stalls.

5.2 RocksDB

We evaluate the performance of RAIL using the RocksDB key-value store database in version 5.10.3.

To run RocksDB, we create an Ext4 filesystem to place both the database and write ahead log onto

the mounted SSD. As load generator we utilize db_bench configured with the default parameters.

We Bulkload 100M key/value pairs into the database with 20 byte keys and 400 byte values which

completes in 4,300 seconds for both PBLK and RAIL. Bulkload generates a write bandwidth of

233 MB/s which is below the 400 MB/s RAIL supports in an S = 4 configuration and well below

the 1.6 GB/s supported by PBLK and RAIL in write-only mode. Figure 9 shows the tail latency

of db_bench’s ReadWhileWriting (RWW) and ReadWhileMerging (RWM) workload for RAIL

and PBLK utilizing 1 through 32 threads. We omit db_bench’s other benchmarks as they are either

read-only or write-only. RAIL shows 4× lower tail latency at the 99.9th percentile than PBLK for

less than 32 threads whereas for high thread counts software queuing increases latency for both ap-

proaches. Figure 10 lists the queries per second (QPS) that can be achieved with both approaches.

140K QPS translate into 330 MB/s which is below the throttled bandwidth of RAIL which explains

that all approaches are able to achieve similar performance. TinyTail performs similar as PBLK

(less than 10% latency improvement) while RAIL-HC closely follows the performance of RAIL.

5.3 MongoDB

We evaluate the performance of RAIL with the document-oriented NoSQL database MongoDB [3,

19]. We utilize MongoDB version 3.4.7, placing the database file on the Open-Channel SSD, utilizing

the XFS filesystem as recommended by MongoDB. As a workload generator, we leverage Yahoo

Cloud Server Benchmark (YCSB) [21]. We first load the database with 1 billion entries of 1KB
in size to generate a 1.2TB backing file, filling up the SSD to 75% capacity. As most benchmarks

utilize random writes, this fill level leads to significant GC. We run 1M transactions of each of

the workloads defined by YCSB. Figure 11 shows the 99.9th percentile read latency as reported by

YCSB for PBLK, LinuxTinyTail, and RAIL. Workloads B, C, D are read-heavy (95% reads) and hence

all three implementations perform well providing sub millisecond tail latency. RAIL outperforms

the two baselines for workload A (50% reads/50% writes) and F whereas F shows read and F2

shows the read-modify-write latency performed by workload F. We omit the results for workload

E for brevity which performs scans that take 30ms to complete for all 3 approaches. Figure 12

shows the aggregated read/write throughput measurements for the same set of workloads. All

three approaches achieve the same QPS and benchmark execution time.
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Fig. 10. RocksDB throughput. Fig. 11. MongoDB latency.

Fig. 12. MongoDB throughput. Fig. 13. MongoDB interference.

We now study application interference by running the same MongoDB workload as above while

running an FIO workload concurrently that generates a steady write workload of 10K IOPS. The

performance of MongoDB suffering from application interference is shown in Figure 13. While

RAIL performance is unaffected, tail latency increases by up to 3× for PBLK in the presence of

application interference. This shows that RAIL cannot only enforce low tail latency within a single

application, but that it also reliably avoids application interference.

6 DISCUSSION

6.1 FTL-Application Trade-offs

While RAIL could be implemented in hardware, the benefit of our host-based, software FTL ap-

proach is to expose design trade-offs to users. Based on application requirements and device char-

acteristics, users can tune the stride size and over-provisioning factor, to trade-off capacity, band-

width, and latency. For instance, if write bandwidth is more important than minimizing capacity

overheads, RAIL can be configured in RAID-6 mode which utilizes two parity LUNs per stride.

RAID-6 mode does not change the tail latency behavior, however, it further increases write band-

width (as 2 LUNs can be written at a time) at the cost of additional capacity. In particular, in a

configuration with three data LUNs and two parity LUNs, write throughput and capacity over-

heads both increase by 1.6×.

6.2 Tail Latency Aware OSes

RAIL enforces predictable low tail latency for Flash accesses. Nevertheless, independent software

layers can introduce high tail latency, jeopardizing RAIL’s effectiveness. While the Linux block I/O
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layer has significantly improved scalability and throughput to support high performance NVMe

storage devices, achieving low end-to-end tail latency remains a challenge. We provide three

insights, that we believe are crucial to achieve low tail latency storage access on existing Linux

systems.

Filesystem Bypass: Running the same workload in FIO over an Ext4 filesystem increases tail

latency by 2 − 3× over directly accessing the I/O device. As a result, to achieve low tail latency,

applications need to operate on block devices directly bypassing the filesystem layer. Block de-

vice virtualization techniques such as provided by PBLK, enables sharing devices among multiple

applications without the need of a filesystem.

Read/Write Separation: RAIL eliminates reads being stalled by independent writes. In addi-

tion, developers need to guarantee to never serialize any reads behind writes on the application

layer. This design principle can be implemented with relative ease for databases or caches that have

limited consistency and atomicity requirements but becomes challenging when implementing a

database with strict ACID properties.

Over-provisioning of cores is costly, although, data plane operating systems such as Arrakis [59],

IX [4], and ReFlex [46] have shown that low tail latency can be achieved without sacrificing

throughput and efficiency while user level networking (DPDK) and storage (SPDK) stacks have

also shown to provide predictable high performance. POSIX OSes such as Linux need to be re-

architected with tail latency as a first order concern to enable end-to-end low latency systems.

6.3 Hardware Acceleration

Open-Channel SSDs move compute cycles from the SSD controller to the host processor in order to

increase flexibility and programmability. As host processors represent a costly resource, this may

negatively affect the total cost of ownership (TCO). We believe that both programmability and

cost efficiency can be achieved by an Open-Channel design that leverages the following techniques.

Parity Acceleration: RAIL consumes 10% of the compute cycles of a modern Intel Skylake

class processor core for parity computation. We propose a new NVMe command that, given a set

of source PPAs and a destination PPA, computes parity of the source sectors and writes it into the

destination sector. This hardware offload would also reduce PCIe bandwidth as the parity sector

would not have to be transferred from the host to the SSD, while maintaining the flexibility of

performing the sector mapping in software.

Garbage Collection: GC overheads can be reduced by introducing an NVMe memcpy com-

mand that copies the sector of one PPA to another. With this approach, the over-provisioning

factor, GC aggressiveness, remapping strategy, and line selection remains fully programmable in

software while PCIe bandwidth and host CPU cycles are reduced significantly.

Flash Architecture: When designing a Flash chip, NAND architects need to trade-off cost,

capacity, bandwidth, and latency. For instance, to amortize the high cost of erases, they are per-

formed on a large block granularity, sacrificing latency for throughput. Writes are also batched (see

Section 3) to increase throughput, however, batching is limited as it can lead to high tail latency

when a read is stalled behind a write. With RAIL, write latency becomes irrelevant and hence very

large pages can be supported that can improve write throughput. Furthermore, with RAIL, SSDs

no longer need to support a large amount of LUNs to reduce RaW serialization.

7 RELATED WORK

Data center level techniques have been proposed to improve storage tail latency performance

for maintenance [2], video serving [7], and remote storage access [46] while Limplock [25] ana-

lyzes the performance impact of unreliable storage hardware.These approaches are application

specific and cannot provide the same guarantees as RAIL. Many Flash-based systems account
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for asymmetrical read-write latency in I/O scheduling decisions [57, 66, 68]. LOCS, a key-value

store database implemented directly on an Open-Channel SSD, schedules read, write, and erase

operations using a least-weight-queue-length policy to maximize Flash utilization and through-

put [76]. ParaFS also weighs requests as part of its parallelism-aware scheduling algorithm [82].

Prefetching [14] has been proposed to reduce tail latency. In contrast to prior techniques, RAIL is

the first device-level technique that supports strict tail latency guarantees.

Redundancy: Storage systems use replication or erasure coding to improve reliability [13, 26,

34, 37, 38, 45, 50, 51, 69]. Several systems and studies have shown that redundancy is an effective

way to reduce tail latency [22, 27, 75, 79]. EC-Cache uses erasure codes and late binding of redun-

dant requests to reduce tail latency and improve load balance for in-memory cache systems [61].

These approaches requires application-level changes while RAIL provides stronger guarantees

while being transparent to the application layer.

Data placement: Prior work has examined various page allocation schemes on Flash to leverage

internal device parallelism [17, 41, 74]. Gordon [12] uses a 2-D striping scheme to leverage channel

and die-level parallelism, increasing throughput. OFSS is an object-based FTL co-designed in hard-

ware/software to reduce write amplification [53]. Chopper [31] and F2Fs [47] are two file system

proposals that improve performance for Flash based storage devices. Autostream [81] separates

writes into streams to improve data placement. RAIL differs from these systems by making data

placement decisions based on reducing the probability of read-write conflict, thus improving tail

latency.

Garbage Collection: Several systems [15, 20, 29, 44, 49, 54, 77, 80] have determined GC as the

culprit for high tail latency and try to reduce or eliminate its effect. While GC arguably has a strong

impact on tail latency, we showed that addressing read-write interference is even more important.

User writes increase read latency by an order of magnitude and so far have been ignored by prior

work.

8 CONCLUSION

We described RAIL, a Flash management technique that relies on redundancy to improve the tail

read latency in the presence of high latency operations. We showed that RAIL’s page placement al-

gorithm and parity-based read datapath eliminates the possibility of a read operation getting stuck

behind writes and erases, allowing RAIL to achieve 7× lower tail read latency than a conventional

SSD. We implemented RAIL within Linux PBLK, a host-side, software FTL whose design param-

eters can be tuned by users to balance trade-offs between tail latency QoS, bandwidth, capacity,

and fault-tolerance according to application requirements and device properties. RAIL contributes

over prior approaches by avoiding RaW serialization, enforcing stricter tail latency guarantees and

by reducing write overheads by leveraging HC.
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