PIPM: Partial and Incremental Page Migration for
Multi-host CXL Disaggregated Shared Memory

Gangqi Huang
Computer Science Engineering,
University of California, Santa Cruz
Santa Cruz, California, USA
ghuang49@ucsc.edu

Abstract

The emerging Compute Express Link (CXL) interconnect
supports multi-host cache-coherent disaggregated shared
memory (CXL-DSM). However, existing page migration ap-
proaches, designed primarily for single-host systems, are
inefficient in multi-host CXL-DSM scenarios. To address
this, we propose Partial and Incremental Page Migration
(PIPM), a hardware-based solution that transparently lever-
ages host-side local memory. PIPM is co-designed with the
CXL multi-host coherence protocol, enabling coherent ac-
cess to data residing in local DRAM. To overcome limitations
of existing migration methods, PIPM supports fine-grained
data migration and integrates hardware-based monitoring
and decision-making mechanisms to optimize data place-
ment. Evaluation results demonstrate that PIPM delivers
performance improvements of up to 2.54x (1.86x on average)
over the default multi-host CXL-DSM configuration.

CCS Concepts: « Computer systems organization — n-
tier architectures; Heterogeneous (hybrid) systems; «
Hardware — Memory and dense storage.

Keywords: Distributed Shared Memory, Disaggregated Mem-
ory, Page Migration, Cache Coherency, Compute eXpress
Link

ACM Reference Format:

Gangqi Huang, Heiner Litz, and Yuanchao Xu. 2026. PIPM: Par-
tial and Incremental Page Migration for Multi-host CXL Disag-
gregated Shared Memory. In Proceedings of the 31st ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (ASPLOS °26), March 22-26,
2026, Pittsburgh, PA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3779212.3790203

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °26, Pittsburgh, PA, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790203

Heiner Litz
Computer Science Engineering,
University of California, Santa Cruz
Santa Cruz, California, USA
hlitz@ucsc.edu

Yuanchao Xu
Computer Science Engineering,
University of California, Santa Cruz
Santa Cruz, California, USA
yxu314@ucsc.edu

1 Introduction

Emerging applications in AI [14], databases [33], and big-
data analytics [83] increasingly demand higher memory ca-
pacity, greater bandwidth, and lower costs [3, 5, 7, 13, 23, 25,
26, 40, 41, 43, 45-47, 55, 62, 64, 68, 70, 74, 86, 93]. With the
slowdown of DRAM technology scaling [48, 57], architects
have turned to Compute Express Link (CXL) for flexible,
disaggregated shared memory (CXL-DSM), significantly im-
proving efficiency and reducing DRAM costs [20, 48, 55, 60].
The latest CXL standards (CXL 3.x) further support coher-
ent multi-host shared memory, enabling dynamic compute
resource allocation and flexible memory partitioning, en-
hancing throughput and cost efficiency [20, 33, 53, 94, 95].

Recent research highlights substantial benefits of multi-
host CXL-DSM across various applications [4, 6, 33, 37, 53,
82, 88, 94]. For example, HydraRPC uses CXL-DSM to im-
prove RPC scalability [53], CXLfork reduces local mem-
ory consumption by 87% on average for cross-host process
cloning [6], Tigon achieves an average 2.5x throughput im-
provement for databases compared to configurations with-
out CXL-DSM [33], and PolarCXLMem [94] shows an up to
154.4% performance improvement compared to RDMA-based
cloud databases [2, 21, 95].

Despite its potential, CXL-based system performance is
often limited by the high latency of remote CXL memory
accesses [48, 55, 94], which are typically two to three times
slower than local DRAM accesses upon LLC misses [48]. A
common solution is page migration [45, 46, 49, 50, 55, 70,
85, 90]: pages identified as frequently accessed by a host are
migrated from CXL memory to a host’s local memory, con-
verting subsequent remote accesses into low-latency local
accesses.

However, existing page migration schemes designed for
single-host CXL disaggregated memory are ineffective in
multi-host CXL-DSM for two reasons: (1) Local gain, global
pain. In single-host systems, migrating a hot page to local
DRAM is strictly beneficial, assuming sufficient local mem-
ory capacity is available. In a multi-host CXL-DSM, however,
moving a hot page from shared CXL memory to one host’s
local DRAM may harm overall performance, outweighing
the local benefit. To preserve coherence and consistency, the
migrated page needs to become non-cacheable for all other

https://doi.org/10.1145/3779212.3790203
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790203

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

hosts. As a result, remote accesses incur extra hops, round-
trips, and address remapping overheads, significantly in-
creasing latency for other hosts accessing the page. (2) Poor
Migration Scalability. The side-effects of page migration
in multi-host CXL-DSM systems pose significant challenges
for supporting efficient and timely migration. However, mi-
gration overheads grow significantly as page migration is
no longer entirely local but instead requires coordination
across hosts, including CXL RPCs [53], per-host page-table
updates and TLB shootdowns.

To address these challenges, we propose Partial and In-
cremental Page Migration (PIPM) for multi-host CXL-
DSM. Partial Migration: Instead of migrating entire pages
into local memory or retaining them fully in CXL memory,
PIPM selectively migrates only those cache blocks frequently
accessed by a host into its local memory, while keeping
less-frequently or remotely accessed blocks in CXL memory.
This selective strategy differentiates local from inter-host
access patterns at a fine granularity, effectively resolving the
"local-gain, global-pain"” issue. Moreover, by maintaining two
possible destinations for cache blocks, PIPM significantly re-
duces migration management overheads, such as page-table
updates and TLB invalidations. Incremental Migration:
Rather than explicitly migrating entire pages, which incurs
substantial data-transfer overhead, PIPM leverages intrinsic
memory accesses of programs to migrate cache blocks in-
crementally and selectively. Specifically, PIPM determines
whether to incrementally migrate cache blocks from CXL
memory into the requester host’s local memory or back to
CXL memory during cache coherence request handling. Con-
sequently, incremental migration involves no additional data
transfers beyond regular cache-fill and eviction operations.
The partial migration policy identifies cache blocks and tar-
get hosts without initiating immediate data transfers, rely-
ing entirely on incremental migration for data movement.
Together, these techniques enable PIPM to systematically
address the previously identified challenges.

We develop architectural support for PIPM, including a
majority-vote migration policy, a two-level hardware remap-
ping table, and PIPM-coherency to effectively enable partial
and incremental page migration. We evaluate our technique
using the Championship simulator [1, 24]. PIPM achieves an
average speedup of 1.86x on multi-host CXL-DSM systems
and surpasses six state-of-the-art methods.

Overall, this paper makes the following contributions:

1. Qualitatively and quantitatively identifies the challenges
of page migration in multi-host CXL-DSM.

2. Introduces partial and incremental page migration to sys-
tematically address these challenges.

3. Presents an architectural design that effectively and effi-
ciently supports partial and incremental page migration.

4. Provides a comprehensive evaluation demonstrating the
effectiveness of PIPM.

Ganggi Huang, Heiner Litz, & Yuanchao Xu

2 Background
2.1 CXL Disaggregated Shared Memory

The CXL 3.0 standard introduces CXL Disaggregated Shared
Memory (CXL-DSM) [10, 35, 59-61, 71, 72], allowing a pool
of CXL memory to be shared coherently across multiple
hosts. This contrasts to prior versions of CXL in which the
CXL pool had to be statically partitioned and each partition
assigned to one particular host. Also note that CXL 3.0 only
allows coherent sharing of the CXL memory pool, while each
host’s local memory remains invisible to other hosts.

Compute node (host) ...|

Compute node (host) 1
Compute node (host) 0

CXL disaggregated
shared memory node

CPU 0

root complex
CXL/PCle
root complex

CXL/PCle

Mem. ctrl.
DRAM

Figure 1. Multi-host CXL-DSM architecture.

Figure 1 illustrates a multi-host CXL-DSM architecture
comprising multiple compute nodes (hosts) connected to a
CXL memory node. Each host or memory node integrates a
CXL/PCle Root Complex (RC) that issues and receives mes-
sages over CXL links. The memory node contains a CXL/PCle
RC, a CXL controller, and one or more memory controllers
connected to multiple memory devices [19, 79, 94]. The
CXL controller manages connections and access to the at-
tached memory. By allowing multiple hosts to attach con-
currently, CXL-DSM enables cache-coherent data sharing
and collaborative computation across hosts. Optional CXL
switches [48, 94, 94] can be inserted between hosts and de-
vices to realize even larger multi-host systems.

2.2 CXL-DSM Cache Coherence over CXL.mem

CXL-DSM supports multi-host cache coherence [20, 36] us-
ing a hierarchical, directory-based MESI protocol. Figure 2
illustrates a simplified organization of the CXL coherence
architecture comprising two cooperating components: (i)
a per-processor local coherence directory and (ii) a device
coherence directory on the CXL memory node. The per-
processor directory records the local coherence state and
the core IDs for each cache line resident in that processor’s
cache (including both local memory and CXL memory). The
device coherence directory records the coherence state and
the processor IDs for each CXL memory cache line that re-
side in processors’ caches. Throughout this paper, without
loss of generality, we assume that each host contains only
one processor to simplify the description.

The coherent CXL memory access workflow proceeds as
follows. A request is first sent to the local coherence directory
to determine whether the requesting processor’s cache holds
the most recent version of the target cache line €)). On a local

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory ~ ASPLOS ’26, March 22-26, 2026, Pittsburgh, PA, USA

Compute node 0
Processor 0

Compute node 1
Processor 0

Core 0 \[Core N Core 0 \[Core N
Private cache l[Private cache Private cache \[Private cache
LLC LLC

' '

Local coherence directory
= 4

Local coherence directory]
13

CXL memory data
local cache miss Device a

c;?séfgce CXL memory data global cache miss, BIRAY
CXL memory also has the latest data

CXL memory node

Figure 2. Coherence design of CXL-DSM.

cache miss, the request is forwarded to the device coherence
directory on the CXL memory node @. If the device directory
identifies a processor as the current owner (i.e., in M state),
the request is forwarded to that processor @) to retrieve the
latest data @). The data is then returned to the requester,
and both the device directory state and the requester’s local
directory state are updated @4). Conversely, if no processor
holds the data (i.e., in I state), or if both CXL memory and
a processor’s cache hold clean copies (i.e., in S state), the
request is satisfied directly from the CXL memory, and the
directory states are updated accordingly @.

3 Motivation
3.1 Detailed Analysis of Multi-Host Migration

The CXL 3.1 standard and beyond [20] introduces the concept
of Global Integrated Memory (GIM) [20, 42], allowing each
host to expose part of its local memory into a global, unified
memory address space. A host’s page table can map a page
that resides in its own local memory, in another host’s local
memory, or in CXL memory, thus allowing page migration
between local memory and CXL memory. Inter-host accesses
to another host’s local memory [42, 97] are non-cacheable
to the requester host [20, 38, 42, 97], thus always need to be
routed through CXL root complexes, CXL links, and optional
CXL switches. We present a simplified design consistent
with CXL 3.1 to illustrate the page migration and access
workflows.

Compute node 0 Compute node 1

Core 0 ! Cores
TLB [Cache [5) TLB [Cache
Uncacheable Page table Local memory
Page table cache block | | "nified PAs Migrated pages
Unified PAs Local coherence @
Unified PA @ —_directo

CXL root complex |z °

CXL memory node

Figure 3. Workflow of accessing of migrated pages.

Workflow of inter-host access of migrated pages. Fig-
ure 3 @-@ illustrates how a host accesses a page that has
been migrated to another host’s local memory. The local
host processor first obtains the unified physical address (PA)
from the TLB and page table and forwards it to the CXL Root
Complex at the CXL memory node @). The root complex
routes the request to the owning host indicated by the uni-
fied PA @. At the owning host, the local coherence directory
is used to determine whether the most recent value resides in
cache or in memory @); the data is then fetched into the own-
ing node’s LLC and returned to the CXL memory node @.
The returned block, which is treated as non-cacheable at
the requester host, is then delivered to the requester core.
Serving this read miss requires a 4-hop traversal for the non-
cacheable access. However, when the data resides in CXL
memory, accesses are cacheable, which requires only two
hops.

Take-away #1: In a multi-host CXL-DSM system, inter-host
accesses to a migrated page are non-cacheable and re-
quire four hops. By contrast, accesses to CXL memory are
cacheable and require at most two hops.

Workflow of local access of migrated pages. The non-
cacheable access design increases the complexity of inter-host
accesses but simplifies local accesses by eliminating coher-
ence checks at the CXL memory node. As shown in Fig-
ure 3 M, when a LLC read miss occurs, the unified PA is
used to consult the local coherence directory to determine
whether any cache within the host holds the most recent
valid copy. If not, the request is served from local memory. As
all inter-host accesses are non-cacheable, the design omits
coherence probes to caches on other hosts, streamlining
local-memory access.

Workflow of page migration. Page migration modifies
a page’s unified PA, which necessitates page table updates
and TLB invalidations across all hosts. Each host uses its
reserved page table to locate the process page tables that use
the previous unified PA of the migrating page, and updates
those entries to the new unified PA. Compared to single-host
CXL disaggregated memory systems, this operation incurs a
higher overhead in multi-host CXL-DSM because it requires
broadcasting CXL RPCs [53] and performing more page table
updates and TLB invalidations.

3.2 Quantitative Evaluation of Multi-Host Migration

Although recent research has investigated page migration
policies and overhead optimization for single-host CXL disag-
gregated memory systems [34, 45, 55, 78, 90, 92, 96, 99, 100],
these approaches are ineffective in multi-host CXL-DSM due
to their lack of awareness regarding the side effects of page
migration and the poor migration scalability from higher
demands in multi-host environments.

We evaluate existing page migration policies, originally de-
signed for single-host CXL disaggregated memory systems,

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

3 Others

Ganggi Huang, Heiner Litz, & Yuanchao Xu

[Z1 Nomad-100ms <] Nomad-10ms [0 Nomad-1ms

| Management Overhead

1.50 1

[Page Transfer Overhead

E—] Memtis-100ms O Memtis-10ms KA Memtis-1ms 7

e

g 1.25 ”

z p 7
< 100

[0

£

= 0751

8

2 050

i 5559 ok o a(\\k c© oo G

et & 2\ o C 0 .
\\)6,\\\)@3(\\“\'a G‘a(\“e \J“a() \90 \106 P‘\‘g

Figure 4. Performance breakdown with different page migration intervals, normalized to the no migration baseline.

in a multi-host CXL-DSM environment to quantitatively
assess the performance impact of the two limitations. Ex-
isting page migration policies can be broadly classified into
recency-based [32, 34, 54, 55, 90] and frequency-based meth-
ods [45, 68, 76]. Specifically, we evaluate two state-of-the-art
(SOTA) policies, Nomad (a recency-based method) [90] and
Memtis (a frequency-based method) [45], using the Champi-
onship simulator [1, 24] configured as a four-host CXL-DSM
system, with each host containing a single-socket CPU. Our
evaluation employs memory-intensive benchmarks from
prior studies, drawn from the GAP [9], PARSEC 3.0 [98], XS-
Bench [81], YCSB [18, 84] and TPC-C [84] benchmark suites.
Detailed evaluation settings are described in Section 5.1.

N Nomad (recency) Il Memtis (frequency)

=P

ES 5

£5

o5

5 2

SE

59 ° \

S® 5%9 ‘0‘\5 3(\\’* c© oo G (\0‘“ 5\6‘ 3\8 (\86 (30\(\ cC (;5‘0 NO-
ss S 99‘ ‘gg‘“oda(\ﬁ\ d‘l WMy R

Figure 5. Percentage of harmful page migration.

3.2.1 Side Effects of Page Migration on multi-host
CXL-DSM. We evaluated the percentage of harmful page
migrations to understand the impact of neglecting the side
effects of page migration in multi-host CXL-DSM. After a
page is migrated from CXL memory to a host’s local memory,
subsequent accesses from that host transition from remote
CXL memory access to local memory access. However, other
hosts experience increased latency and non-cacheable ac-
cesses when referencing the migrated page compared to
scenarios without migration. Thus, we define a page migra-
tion as harmful if it increases the overall execution time. We
report the percentage of harmful page migrations observed
in existing studies.

Figure 5 illustrates the percentage of harmful page mi-
grations. On average, Nomad and Memtis exhibit 34% and
29% harmful migrations, respectively. These migrations neg-
atively impact overall performance by increasing total execu-
tion time; refraining from performing such migrations would

enhance performance. The increase in execution time arises
because migrations convert accesses from other hosts into
inter-host non-cacheable accesses, underscoring the impor-
tance of accounting for side effects in multi-host CXL-DSM
page migration algorithms.

Take-away #2: Neglecting side effects in multi-host CXL-
DSM page migration, existing migration techniques, such
as Nomad and Memtis, result in 34% and 29% performance-
degrading page migrations, respectively.

3.2.2 Poor Migration Scalability. Existing page migra-
tion techniques tailored for single-host systems generally
adopt relatively long migration intervals (10 ms [68, 100] to
a few seconds [32, 34, 55]) to balance migration overhead
and performance benefits. However, the side-effects of page
migration in multi-host CXL-DSM systems necessitate more
efficient and timely migration mechanisms. We further con-
duct evaluations to quantitatively investigate: (1) whether
multi-host CXL-DSM systems benefit from shorter page mi-
gration intervals (i.e., more timely and aggressive migration),
and (2) the overhead breakdown associated with varying
intervals. We report the performance breakdown, including
page transfer overhead (data transfers incurred by migra-
tion), management overhead (e.g., page table updates and
TLB invalidations), and other overheads.

Figure 4 presents the performance breakdown across three
different page migration intervals (100 ms, 10 ms and 1ms),
normalized against a no-migration baseline. The two state-
of-the-art single-host migration methods show limited effec-
tiveness in multi-host scenarios at the long interval (100 ms):
Nomad increases execution time by 10.5% on average, while
Memtis reduces it by only 1.4%. When adopting a shorter
interval (10 ms) for more frequent page migration, execution
time decreases by 4.8% and 12.2% on average. However, at
the 1 ms interval, Nomad and Memtis increase execution
time by 26.1% and 15.4% on average, respectively, due to the
increased management overhead and page transfers.

Take-away #3: Multi-host CXL-DSM systems require
shorter migration intervals to effectively capture page ac-
cesses from multiple hosts.

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory

Take-away #4: At shorter intervals, page migration over-
head becomes the dominant source of overhead, requiring
efficient page migration.

3.3 Other Related Work

Several recent studies have investigated page migration in
single-host CXL-disaggregated memory systems; however,
their contributions does not address the previously discussed
challenges associated with multi-host CXL-DSM page mi-
gration. They are orthogonal with the objectives pursued by
our work. Specifically, Neomem [100] and M5 [78] offload
hotness detection to the CXL memory side to facilitate ef-
ficient, low-latency access tracking. Colloid [85] balances
memory placement between local and remote memory to
minimize overall latency. Alto and Soar [50] employ MLP-
aware policies to determine and dynamically adjust initial
memory allocations across local and remote memory.

Intel Flat Mode [65, 99] is a recently introduced hardware-
tiering technology designed for single-host CXL-disaggregated
memory systems. Under this scheme, when a host accesses
a cache block residing in CXL memory, the block is trans-
parently swapped with a corresponding block in the host’s
local memory. However, Intel Flat Mode is incompatible with
multi-host CXL-DSM. First, swapping memory lines between
local memory and CXL memory switches the coherence do-
main between cache-coherent CXL-DSM and non-cacheable
local memory, thereby violating coherence requirements.
Second, Intel Flat Mode employs a static one-to-one map-
ping between CXL memory and local DRAM [99], which is
impractical in multi-host environments where each host has
distinct local DRAM regions. In our evaluation, we imple-
ment an Intel Flat Mode-like baseline (referred to as HW-
static), utilizing parts of our design, to allow comparisons
with hardware-tiering approaches.

4 Design
4.1 Overview

Based on the quantitative and qualitative analysis in Sec-
tion 3, an effective and efficient page migration for multi-
host CXL-DSM should consider the side effects of migrating
data from CXL memory to local memory and reduce page
migration overhead.

We attribute the inefficiency of existing single-host page
migration methods to their single-destination and rigid
per-page migration. Specifically, even when certain cache
blocks within a page are frequently accessed by one host
and other blocks are rarely accessed or predominantly ac-
cessed by other hosts, existing strategies either fully migrate
the entire page or retain it entirely within CXL memory.
This strategy fails to exploit optimization opportunities by
treating different cache blocks within the same page sepa-
rately (i.e., selectively migrating cache blocks). Additionally,

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

per-page migration at low migration intervals incurs sub-
stantial overhead due to both management operations and
data transfer costs.

We propose Partial and Incremental Page Migration
(PIPM) for multi-host CXL-DSM. Partial Migration selec-
tively migrates only frequently accessed cache blocks of a
page to a host’s local memory while leaving less-used blocks
in CXL memory. This approach differentiates local and inter-
host access patterns at fine granularity, mitigating side ef-
fects associated with per-page migration and significantly
reducing management overhead (e.g., page-table updates
and TLB invalidations). Incremental Migration leverages
intrinsic memory accesses to incrementally migrate cache
blocks upon cache eviction or writeback, avoiding explicit
whole-page migrations and associated data-transfer over-
heads. Collectively, PIPM effectively addresses the previously
identified challenges in multi-host memory management.

We develop architectural support to effectively and ef-
ficiently enable PIPM, facilitating transparent partial and
incremental migration without requiring software modifica-
tions. As illustrated in Figure 6, our design introduces a per-
host Local Remapping Table and a Global Remapping
Table located on CXL memory to track pages undergoing
partial migration. Specifically, the global remapping table
records the migration destination host ID for each CXL-
DSM page, while the local remapping table on each host
stores the physical address mappings of CXL-DSM pages
that migrate to the local memory of that host. We propose
a PIPM Majority-vote Migration Policy that aggregates
page-access information across multiple hosts, enabling glob-
ally optimized decisions regarding the necessity and place-
ment of partially migrated pages. To ensure coherent access
to partially migrated pages, we design the PIPM Coherence
to incorporate partially migrated pages into the coherence
domain, permitting incremental migration and cacheable
access by other hosts.

Local coherence
directory
Mem. ctrl.

l DRAM I Mem. Dir. I Local Remapping Table]

CXL Controller

directory

CXL memory node
[GIobaI Remapping Tablel Mem. Dir. I DRAM]

Compute node 0

Figure 6. PIPM design overview.

4.2 PIPM Migration Policy

Existing page migration policies [15, 32, 93] are ineffective
in multi-host CXL-DSM environments due to their neglect
of migration side effects (Takeaways #1 and #2). To address
this, PIPM introduces a hardware-based majority-vote mi-
gration policy inspired by the Boyer-Moore algorithm [11],
enabling globally optimized decisions regarding the neces-
sity and placement of partially migrated pages.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

The intuition behind PIPM majority-vote migration policy
is that partial migration is initiated only when the number
of page accesses from a single host exceeds the combined
accesses from all other hosts by a predefined threshold. It
is important to note that initiating partial migration only
involves updating the local and global remapping tables; thus,
no page-table updates or TLB invalidations are required. The
partial migration step only identifies the host to which cache
blocks should be migrated, without triggering immediate
data transfers.

Compute node ...

Compute node 0
Local remapping cache
PFN

CXL memory node
Global remapping cache 9
PFN Current [Candidate [Glob:

Accesses

L
Start migration
| (- igration |

(F;;T o Local (CXL) | hostID | hostID | counter
0£< 5”) 05(gg?) COI:IJTSI’ Inter-host 0x5f7... | 0 (invalid) 5 15
Oxddb... | Oxdf7... | 22 || accesses e 2

Global remapping table

Revoke migration

Local remapping table

Figure 7. Partial migration workflow.

Figure 7 illustrates the architectural components designed
to support the PIPM migration policy. The global remapping
cache records recently accessed CXL pages and is backed
by an in-memory global remapping table. Each entry in the
global remapping table records metadata for a CXL-DSM
page, comprising a 5-bit current host ID, a 5-bit candidate
host ID, and a 6-bit global counter. The local remapping table
of each host only tracks pages partially migrated to that host.
Each entry in the local remapping table contains a 28-bit
PEN (indexing 1TB local DRAM) referring to as the page’s
PFN in local memory, and a 4-bit local counter.

The global and local counters implement the PIPM majority-
vote migration policy for initiating and revoking partial
migration, as described below: The global counter tracks
whether a particular host (indicated by the candidate host
ID) has more accesses than all other hosts to issue partial
migration. Specifically, the global counter is incremented by
one when the access originates from the candidate host and
decremented by one when accessed by other hosts. When
the global counter reaches zero, the next host to access the
page updates the candidate host ID @). If the global counter
reaches a predefined partial migration threshold @), partial
migration of this page is initiated by creating an entry in the
candidate host’s local remapping table. The local PFN for
this entry, allocated by the host’s OS/hypervisor, identifies
the location where partially migrated data from CXL mem-
ory is stored, and the entry’s local counter is initialized to
the migration threshold @). After a page has been partially
migrated, its current host ID is set to that host’s ID.

The local counter, stored in each host’s local remapping
table, records local accesses to partially migrated pages since
local accesses bypass the global counter maintained at the
CXL memory node @. Also, inter-host accesses decrement
the local counter for that page @. If the local counter of
a partially migrated page reaches zero, partial migration

Ganggi Huang, Heiner Litz, & Yuanchao Xu

for the page is revoked by migrating all cache blocks from
local memory back to their original CXL memory location,
removing the corresponding entry from the local remapping
table, and resetting the current host ID in the corresponding
global remapping table entry @.

4.3 PIPM Coherence and Incremental Migration
Design

In existing multi-host CXL-DSM systems, only the hosts’
caches and CXL memory are within the coherence domain.
The hosts’ local memory lies outside this coherence domain,
precluding our proposed PIPM approach, as partially mi-
grated cache blocks in local memory cannot be accessed
coherently and cacheably.

4.3.1 Naive Coherence Solution. A straightforward so-
lution is to introduce a 1-bit in-memory state for each cache
block in the CXL memory to track partially migrated data’.
This state indicates whether the associated cache block holds
the most recent version,; if it does not, the request will be
redirected to the alternative memory (either local or CXL)
to retrieve the latest data. However, this approach is ineffi-
cient for multi-host CXL-DSM because existing coherence
protocols require completing a coherence state check for all
caches in the CXL memory node and initiating a memory
access from the CXL memory node—even if the latest ver-
sion resides in local memory. This complexity arises from
the potential for other hosts’ caches to hold the latest version
due to cacheable accesses.

Compute node 0
Reads——»{ Local coherence directory

CXL memory node

—»[Device coherence directory]

[DRAM } DRAM
In-memory statesl Migrated pages

Figure 8. Read workflow of a naive coherence solution

Figure 8 illustrates the workflow of this naive coherence
solution. A read access from the owning host to a partially
migrated page first queries the local coherence directory to
determine whether any caches within the host contain the
most recent data @). If not found locally (i.e., Invalid state),
the CXL device coherence directory is consulted to check
whether the caches of other hosts hold the latest version @). If
this also yields no result, the corresponding 1-bit in-memory
state is examined. A value of 0 indicates that the most recent
copy resides in CXL memory, prompting data retrieval from

For most server-grade DRAM, each memory line is augmented with addi-
tional ECC bits, which are fetched, verified, updated, or discarded together
with the data upon every memory access. ECC typically occupies 8 bytes
per line, providing several tens of spare bits [27]. These bits have been
leveraged as indices for memory remapping (e.g., Intel Flat Mode [65, 99])
or as in-memory states for maintaining NUMA cache coherence (e.g., Intel
ccNUMA [52]).

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory ~ ASPLOS ’26, March 22-26, 2026, Pittsburgh, PA, USA

there e; conversely, a value of 1 indicates that the latest
copy is stored in local memory, leading to a retrieval from
local memory @. Regardless of the initiating host or the
location of the latest data for partially migrated pages, these
steps must be executed, incurring unnecessary CXL link
round trips that negate the benefits of page migration for
local accesses.

4.3.2 PIPM Coherence State Design. The objective of
PIPM coherence design is to ensure that all local accesses
to a partially migrated page first query the local memory
for the latest data before forwarding requests to the CXL
memory node, and to enable incremental migration based
on the most recent accessor (i.e., migrate to local DRAM if
the most recent accessor is the local host, migrate back to
CXL-DSM upon an inter-host access). To accomplish this, we
redesign the coherence protocol and utilize 1-bit in-memory
states in both local and CXL memory for partially migrated

pages.

Extra States. Existing coherence protocols define M, S, and I
states—representing Modified, Shared, and Invalid states—in
both local coherence directories and device coherence direc-
tories. To realize our PIPM coherence design, we introduce
an additional per-cache-block in-memory bit in both local
and CXL memory, along with a new coherence state (ME)
in the local coherence directory. By default, the in-memory
bit is initialized to 0. When a cache block migrates to lo-
cal DRAM, this bit is set to 1 in both the local DRAM and
CXL-DSM. The coherence directory state combined with the
in-memory bit collectively defines the PIPM coherence state
of a cache block.

In the local coherence directory, the newly introduced
ME state (Migrated-Modified/Exclusive) indicates that the
corresponding cache block has been migrated to the local
memory of the host and is cached exclusively in this host’s
cache. Subsequent local accesses to cache blocks in the ME
state can proceed without querying the device coherence
directory, thus enabling efficient coherence handling. The
encoding for the ME state comprises a new ME state in the
local coherence directory paired with an in-memory bit set
to 1, as illustrated in the upper table of Figure 9. Additionally,
we introduce the I’ state (Migrated-Invalid), representing
that the cache block is migrated to the local memory of
the host but not cached (i.e., Invalid in the directory). The
encoding for the I’ state reuses the invalid (I) state in the
local coherence directory combined with an in-memory bit
set to 1, as depicted in the upper table of Figure 9.

In the device coherence directory, we also introduce the
I’ state to indicate that the corresponding cache block has
been migrated to a host’s local memory. Inter-host accesses
to cache blocks marked as I’ in the device coherence directory
must be directed to the host’s local memory. The encoding of
the I state reuses the Invalid (I) state in the device coherence

directory in conjunction with an in-memory bit set to 1, as
illustrated in the lower table of Figure 9.

4.3.3 PIPM Coherence State Transition. The right side
of Figure 9 illustrates the PIPM coherence state transitions
triggered by various events, including six newly introduced
transitions: local writeback operations (case €)) that initi-
ate incremental migration from CXL memory to a host’s
local memory; inter-host reads and writes (cases €, @, and
@) that trigger incremental migration from local memory
back to CXL memory; and efficient local memory accesses
(cases @ and @). For clarity and simplicity, the standard co-
herence request handling workflow [52, 77], which remains
unchanged, is omitted from the following description.

Case @: Incremental Migration upon Local WriteBack
(Loc-WB)). When the local directory state is M, it indicates
that the local node was the most recent accessor of the cache
block (otherwise, the state would be either S or I) and that
the block has not yet been migrated into local memory (oth-
erwise, it would be ME). Under this condition, a writeback
operation triggers incremental migration. This migration
process involves invalidating the corresponding entries in
both the host and CXL coherence directories as well as the
host’s cache entry, retrieving and flipping the associated
in-memory state bits in both local and CXL memory, and
subsequently performing the incremental migration. Upon
completion, the coherence state transitions from M to I in
both the local host directory and the CXL device directory.

Case @ and @: Local Accesses (Loc-Rd/Loc-Wr/Loc-WB)
to Migrated Cache Blocks. Once a cache block has been
migrated to local memory, € subsequent local memory re-
quests are served directly from local memory, with the host
coherence directory updated accordingly (transitioning from
I’ to ME). Consequently, the CXL directory no longer needs
to allocate an entry for this cache block, thereby eliminating
unnecessary host-device CXL traffic. @ When this cache
block is subsequently evicted from the local cache (transi-
tioning from ME back to I’), only a dirty data writeback and
invalidation of the corresponding host directory entry are
required.

Case @: Migration back to CXL-DSM upon inter-host
memory accesses (Inter-Rd/Inter-Wr)in I’ State. When
no valid cache copies exist (i.e., the migrated cache block is
in the I’ state on both the host and device sides), another
host’s CXL memory access to the migrated line is directed to
the CXL device directory. The CXL directory issues a CXL
memory read to verify the I’ coherence state, after which the
request is forwarded to the local directory of the host cur-
rently owning the migrated data. The migrated host’s local
directory retrieves both the memory line and the associated
in-memory bit, then performs an asynchronous memory
writeback, updating its coherence state from I’ to I. Upon re-
ceiving this response, the CXL directory allocates a directory

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Ganggi Huang, Heiner Litz, & Yuanchao Xu

llnter—RdNVrNVB Local-Rd/Wr/WB Local Coherence States Default “é’ Exotra —>
L Host Dir. State | Mem. State | PIPM State >
Local Coherence Directory Default M/S/I 0 M/S/I) (1)
Dir. states (M/S/I/ME) Extra ME/I 1 ME/I O)

DRAM
Mem. states (0/1) | Migrated Lines

Extra State I’ Description: Migrated to local memory; the latest
version is not in local cache.

Extra State ME Description: Migrated to local memory,
exclusively cached in local cache

Device Coherence State

Gy 7%
LS

Host Side State Transitions

eF—0

Extra State I’ Description: Migrated to local memory

Device Coherence Directory W o
Dir. states (M/S/I) Device Dir. State | Mem. State | PIPM State ! s, I
DRAM Déaf?rtglt M/|S/I (1) M/l’S/I v "4 Y90
Mem. states (0/1) [Non-Migrated Lines X (D<*---»M)

Device Side State Transitions

Figure 9. PIPM coherence design.

entry for the cache line and updates its state to M. Finally,
the retrieved data is cached in the requester host’s cache.

Case @ and @: Migration back to CXL memory upon
inter-host accesses (Inter-Rd/Inter-Wr) in ME state.
When a migrated cache line is exclusively cached at the
local host (i.e., in the ME state on the host side and the I’
state on the device side), inter-host accesses are still routed
through the requester host’s directory, the CXL directory,
and finally the owning host’s local directory. The owning
host’s local directory subsequently updates its coherence
state—transitioning from ME to I for @ Inter-Wr, or from
ME to S for @ Inter-Rd—and initiates an asynchronous
memory writeback to update the in-memory state bit. Upon
receiving the response, the CXL directory allocates an entry
and updates its coherence state accordingly: from I to M for
case @, or from I to S for case @. Finally, the requested data
is cached in the requester host’s cache.

Interaction with global and local remapping tables.
PIPM requires accessing global and local remapping tables
only for shared data access. For local private data (i.e., data
allocated and pinned in local DRAM for security or per-
formance considerations) access, PIPM does not introduce
any remapping table lookups or coherence request handling
modifications. When initiating a memory request, existing
processors that support CXL first perform a simple physical
address range check to route the memory request to the local
memory controller or the CXL RC accordingly. As accesses
to shared data always carry physical addresses within the
CXL-DSM physical address range regardless of whether the
shared data pages are partially migrated or not after virtual-
to-physical address translation and before remapping table
lookup, processors can always distinguish local private data
accesses from shared data accesses after the range check.
For shared data access, on each LLC miss (i.e., when the
local coherence directory is in I state), the requester needs
to first perform a local remapping table lookup to retrieve
the full local coherence state (I or I'). Also, each migrated

memory line access requires a local remapping table lookup.
Global remapping table access occurs only when forwarding
remote access requests (case @), @ and @).

PIPM does not introduce extra CXL directory resource
contention beyond default CXL-DSM but instead reduces
it, as migrated cache lines no longer require CXL directory
entry allocation.

4.4 Space Overhead

The local remapping table on each host’s DRAM requires 4
Bytes per entry to store a 28-bit PFN (capable of indexing
up to 1TB of local DRAM) and a 4-bit access counter. It is
organized as a two-level radix page table [63, 80] with a
fixed root node size of 32MB (8 Bytes per entry, indexing
up to 4M page table pages, where each PT page stores 1K
page table entries) to balance access latency and storage
overhead. It requires only (32MB + 4B/4KB X RSS), which is
approximately 0.1% of the total resident Set Size (RSS) of the
workloads. The global remapping table in CXL-DSM requires
only 2 Bytes per entry (consisting of a 5-bit current ID, a
5-bit candidate ID, and a 6-bit access counter), accounting
for just 0.05% of the total CXL-DSM size. By default, PIPM
requires only a 16KB global remapping cache on the CXL
device and a 1MB local remapping cache on each host’s RC
to effectively cache remapping entries.

4.5 Discussion

Majority-Vote Generality and Scalability. Our majority-
vote mechanism is lightweight and access-driven, allowing
it to generalize across diverse workload behaviors without
relying on workload-specific heuristics. When access pat-
terns are short-term-balanced across hosts, the design cor-
rectly avoids migration and retains data in the CXL memory,
preventing unnecessary movement. As the host count in-
creases, the majority-vote approach continues to suppress
performance-degrading migrations and consistently outper-
forms prior designs. Moreover, PIPM’s implementation as a

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory

system-wide hardware mechanism ensures inherent scalabil-
ity independent of software configurations (e.g., VM count).

5 Evaluation
5.1 Evaluation Methodology

5.1.1 Benchmarks. Our target large-scale multi-host sys-
tems typically run memory-intensive workloads with large
memory footprints that do not fit within a single socket and
large working set sizes that significantly exceed on-die LLC
capacities. Following prior work [15-17, 28, 66], we select
representative large-scale, memory-intensive workloads, as
listed in Table 1.

Table 1. Evaluated workloads.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

optimizes kernel-based page migration by enabling asyn-
chronous migration; (3) Memtis[45], utilizing a state-of-
the-art frequency-based hotness migration policy; and (4)
HeMem[68], another frequency-based hotness migration
method. We also introduce two ablation baselines to sepa-
rately analyze the effectiveness of PIPM’s migration policy
and mechanism: (5) OS-skew, which combines the PIPM
migration policy with a conventional kernel-based migration
mechanism; and (6) HW-static, which employs incremental
migration enabled by the PIPM coherence protocol but with
a static mapping strategy (i.e., without our adaptive migra-
tion policy), analogous to prior hardware-tiering approaches
such as Intel Flat Mode [65, 99]. Under HW-static, CXL-DSM
is uniformly partitioned and statically mapped to each host’s
local memory. We also include an upper-bound estimation,
(7) Local-only, where the workloads run on a single-socket
CPU with sufficiently large DRAM to hold all data.

Table 2. Scaled-down System Configuration.

Architecture

4 hosts, 1 single-socket CPU each host

CPU

4 000 cores, 4GHz, 6-wide, 224-entry ROB, 72-
entry LQ, 56-entry SQ

Private L1-(I/D)

32KB, 8-way, 4 cycle RT (round-trip) latency

Shared LLC

2MB per core, 16-way, 24-cycle RT latency

DRAM

2x DDR5-4800 channels 128GB CXL-DSM; 1x

Benchmark Benchmark Suite | Memory Footprint
SSSP (Single-Source Shortest Paths) | GAPBS [9] (Kron) 48GB
BFS (Breadth-first Search) GAPBS 48GB
PR (Compute the PageRank score) GAPBS 48GB
CC (Connected components) GAPBS 48GB
BC (Betweenness centrality) GAPBS 48GB
TC (Triangle Counting) GAPBS 438GB
XSBench (Computational kernel of | XSBench [81] 42GB
the Monte Carlo neutron transport

algorithm)

streamcluster (Data stream clustering) PARSEC [98] 18GB
fluidanimate (Fluid simulation) PARSEC 10GB
canneal (Annealing simulation) PARSEC 12GB
bodytrack (Annealed particle filter) PARSEC 8GB
TPC-C (Default) (Transaction) Silo [84] 24GB
YCSB (R:W 4:1) (Database) Silo 15GB

5.1.2 Simulation Methodology. We model the multi-host
CXL-DSM architecture using a cycle-level, trace-based tim-
ing simulator [1, 24]. The simulator configuration is detailed
in Table 2. Following prior works [15, 89], our simulation
methodology consists of the following steps: (1) We first ex-
ecute the target multi-threaded workloads on real hardware
and use Intel Pintool [8] to collect instruction and memory
traces for each thread. (2) We then replay the collected mem-
ory traces on the simulator to generate memory mapping
checkpoints at every 1-billion-instruction interval. (3) Fi-
nally, we perform detailed core simulation, beginning after
a warm-up phase, utilizing the corresponding checkpoints
and traces. This methodology enables the simulation of ap-
plications with memory footprints on the order of tens of
gigabytes and sufficiently long runtime (10 billion instruc-
tions per core).

5.1.3 Compared Schemes. We compare PIPM against the
following related works: (1) Native CXL-DSM, the baseline
configuration that does not support data migration to hosts’
local memory; (2) Nomad[90], which employs a state-of-
the-art recency-based hotness migration policy[34, 55] and

DDR5-4800 channel 32GB DRAM per host

tRC-tRCD-tCL-tRP | 48-15-20-15

CXL link latency: 50ns, bandwidth: 5GB/s (per direction)
CXL Directory 2048-set, 16-way per slice, 16 slices, 32-cycle RT
latency, 2GHz
PIPM parameters | 16KB 8-way global remapping cache, 4-cycle RT;

1MB 8-way local remapping cache, 8-cycle RT; Mi-
gration threshold: 8

5.1.4 Correctness and Implementation. We implement
the PIPM cache coherence protocol on top of the MSI proto-
col and verify it using the model checking tool Murg [22],
proving that PIPM coherence does not incur any deadlock,
and does not violate conceived Single-Writer-Multiple-Reader
(SWMR) invariant and Sequential Consistency (SC) model.
For simulation, we implement packet-level coherence be-
haviors for both default CXL-DSM and the PIPM coherence
protocol using a locked-based scheme similar to ZSim [73]’s
implementation. Based on this, we are able to model full
system cache coherency including per-core private cache,
and both on-chip and off-chip network traffic. For all evalua-
tion, we assume the code segment, kernel components (e.g.,
page tables), and thread stacks are treated as private local
data, while heap data (e.g., database instances, graphs) are
shared across hosts. Following prior work about multi-host
CXL-DSM [6, 33, 94], we initially place all shared data in
CXL-DSM.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

N Native CXL-DSM EEl Nomad E= Memtis

B HeMem

Ganggi Huang, Heiner Litz, & Yuanchao Xu

EER OS-skew E3 HW-static B3 PIPM =4 Local-only

= N oww
o o owm

Norm. Performance

Figure 10. End-to-end performance normalized to Native CXL-DSM.

EEE Nomad E= Memtis = HeMem

EEE OS-skew O HW-static EZE PIPM

Local Memory Hit Rates (%)

Figure 11. Local memory hit rates.

For page migration schemes, we assume a 20us 4KB migration-
induced overhead for the initiating core [56, 93], a 5us over-
head for other cores, a 10ms migration interval [68] and ap-
ply optimizations such as batching TLB shootdowns [30, 31]
and multi-threaded, batched page transfers [93] to reduce
page migration overhead. For PIPM, migration decisions are
made immediately upon exceeding the promotion thresh-
old, as it incurs no kernel-induced overhead or whole-page
transfers. We empirically set migration thresholds for both
PIPM (where we observe similar performance with thresh-
old ranging from 4 to 16) and baseline schemes for the best
performance.

5.2 End-to-end Performance

5.2.1 Overall Performance. Figure 10 presents the over-
all performance of all evaluated schemes normalized to the
Native CXL-DSM baseline. PIPM outperforms the other schemes
across all workloads, achieving an average performance
of 1.86x and 0.73X (up to 2.54X and 0.94X) compared to
Native CXL-DSM and Ideal, respectively, underscoring its
substantial performance benefits. Specifically, graph analyt-
ics workloads such as SSSP and PageRank, where worker
threads independently access memory with strong locality
patterns (e.g., adjacency matrix traversals), demonstrate sig-
nificant performance improvements ranging from 142% to
151%. Database workloads such as TPC-C and YCSB, charac-
terized by random and scattered user-thread accesses, yield
more modest performance gains (36%-53%). In contrast, exist-
ing page migration schemes employing traditional hotness-
based policies (Nomad, Memtis, and HeMem) achieve only
marginal improvements over Native CXL-DSM and even
degrade performance by up to 18% in five workloads. This in-
efficiency arises because these single-host-oriented designs

neither account for migration-induced side effects nor op-
timize migration overhead, significantly restricting perfor-
mance potential of page migration in multi-host CXL-DSM
scenarios.

5.2.2 Ablation. The OS-skew baseline, despite employing
the PIPM migration policy, achieves only a 31.5% average
improvement over Native CXL-DSM due to its inefficient and
rigid page-migration mechanism. The HW-static baseline
leverages hardware-based incremental cache block migration
via the PIPM coherence protocol but employs a fixed, static
mapping between CXL-DSM and each host’s local memory.
Consequently, data blocks benefiting from local caching may
be inefficiently mapped into other hosts’ memory, substan-
tially limiting potential performance gains from fine-grained
migration. As a result, HW-static yields a modest average
improvement of only 15.7% over Native CXL-DSM. Overall,
PIPM surpasses both OS-skew and HW-static by an average
of 41.7% and 61.1%, respectively. These results demonstrate
that both the partial incremental migration mechanisms and
the PIPM migration policy are critical for achieving effective
memory management for multi-host CXL-DSM systems.

5.3 Performance Analysis

‘_‘;\? I Nomad E=H Memtis HEH HeMem [OS-skew H=H HW-staic ~EZE PIPM
§ E 40
5830
£620 a
o= 10 i 1t il
E% 0 Hin Bty IR B MR B DAL NP W WECRC MR I
c
33 o0 oiS a(\v‘ c© o \0 s\e a\ 22\ ac,‘(\ cC 05‘0 NO-
& § © 398‘ *5‘0 d'ax\\“\ “(\ \]“ w 2
< ° s“e

Figure 12. Stalling cycles of inter-host memory access nor-
malized to native CXL-DSM total execution time.

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory ~ ASPLOS ’26, March 22-26, 2026, Pittsburgh, PA, USA

5.3.1 Memory Access Characteristics. To further inves-
tigate the effectiveness of PIPM’s migration mechanism, we
evaluate both the local memory hit ratio and the contribu-
tion of inter-host memory access stalls to the total execution
time for all schemes.

Figure 11 presents the local memory hit rates across all
schemes, where misses are directed to either CXL memory
or another host’s memory. PIPM achieves a local memory
hit rate of 56.1% on average, significantly outperforming
Nomad (26.5%), Memtis (31.0%), and HeMem (28.1%). OS-skew
exhibits a relatively higher local hit rate due to its use of the
PIPM migration policy.

Figure 12 illustrates the contribution of stalling cycles
from inter-host memory accesses to overall execution time.
Nomad, Memtis, and HeMem incur higher stall contributions
(averaging 19.1%, 16.6%, and 16.8%, respectively) due to their
whole-page migration strategies, which hinder rapid data
migration between host memory and CXL memory, thus
increasing inter-host memory access frequency. OS-skew
achieves lower stall contributions from inter-host memory
accesses (8.7% on average) owing to the PIPM migration
policy, which effectively prevents migration of pages into a
host’s memory when there are frequent accesses from other
hosts.

HWe-static induces fewer inter-host memory accesses than
kernel-based baselines, contributing only 4.1% to total execu-
tion time. However, as shown in Figure 11, it also results in a
lower local memory access ratio (21.6% on average), due to its
inability to dynamically remap data to hosts that could bet-
ter utilize local memory. In contrast, PIPM demonstrates the
lowest inter-host memory access stall overhead (only 1.5%
of total execution time) while simultaneously maintaining
the highest local memory access ratio (56.1% on average).

EEE Nomad E= Memtis E=A HeMem EEE OS-skew A PIPM-page =1 PIPM-line

O ¢
o
S

o\k (;Cv 05‘0 N0
VRS 6\1\‘3 WY R
Ke Sonaee

Local Memoi

5559 ‘gj;e‘a(\\(\ (;,C o \G c‘(\ s\e «\a\e
o

Figure 13. Average ratios of local memory footprint per host
to total memory footprint.

5.3.2 Memory Consumption. Figure 13 illustrates the
average ratios of local memory footprint per host to the to-
tal memory footprint. Traditional hotness-based migration
policies (Nomad, HeMem, and Memtis) migrate frequently
accessed pages into local memory without considering inter-
host memory access, resulting in average per-host memory
allocations of 7.4%, 6.0%, and 5.2%, respectively. In contrast,
OS-skew selectively migrates pages to local memory, thereby
reducing its average per-host allocation to 4.6%. The HW-
static baseline employs a static 1:1 mapping strategy (similar

to Intel Flat Mode [65, 99]), lacking dynamic remapping capa-
bility and thus maintaining a fixed local memory allocation
of 25% per host. In comparison, PIPM leverages both its mi-
gration policy and partial incremental migration mechanism,
allocating an average of 7.3% of the total memory footprint at
the page level, while performing actual cache line migration
for 5.5% of the total footprint, as shown in PIPM-page and
PIPM-line, respectively.

5.4 Sensitivity Study and Scalability

5.4.1 Sensitivity to CXL Link Latency. Figure 14 shows
the relative performance improvement of PIPM over Native
CXL-DSM under different CXL link latencies. At a higher
link latency of 100ns per direction (representative of configu-
rations with a CXL switch), PIPM achieves an additional per-
formance improvement of 55.7% on average (up to 193.1%),
as the benefits of local memory access become more pro-
nounced.

EEN 50ns (w/o switch) I 100ns (w/ switch)

OoO=_aNWHrOG

Speedup (Norm.)

5559 bﬁ% a(\\(\ cC oo \G o‘(\ S\e‘ “\a\e (\69\! “ac,‘(x QOG\JOS‘O P‘\Ig

Y,

Q Q. 1\5‘0 3“%% Ga(\ O

Jor

Figure 14. Overall IPC Performance Speedup over Native
CXL-DSM under Different CXL Link Latencies.

[N Half (x8 Lanes) EEE Full (x16 Lanes) HE Double (x32 Lanes)

oO=_aNwWwhrOG

Speedup (Norm.)

55‘5"9\)%5‘9“\‘ o o *;beg%\g‘?\‘ma‘m%ﬁqad‘\v°°~;°5b PO
A\

Figure 15. Overall IPC Performance Speedup over Native
CXL-DSM under Different CXL Link Bandwidths.

5.4.2 Sensitivity to CXL Link Bandwidth. We use an
8x scaled-down setting as the default configuration (32 cores
= 4 cores per host, 64 GB/s (40 GB/s effective [15]) = 8
GB/s (5 GB/s) over x16 CXL lanes). As shown in Figure 15,
with half the bandwidth (x8 CXL lanes), PIPM achieves an
48.4% (up to 96%) performance gain over Native CXL-DSM
relative to the x16 lanes setting, as most applications become
both bandwidth- and latency-bound and thus benefit more
from partial incremental migration. With 2x bandwidth (x32
CXL lanes), PIPM retains 97.9% of the relative performance
improvement over Native CXL-DSM achieved under the x16
lanes setting, demonstrating that most workloads still sig-
nificantly benefit from partial incremental migration due to
their latency-bound characteristics.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

EEN 256KB B 512kB EEE 1MB

5559‘)‘0’(&;' St o© 0o \\oe“d(\\ \g’;?\‘\“‘a\e \J“ao\‘ \900\’0‘5‘0 PO
K\

Figure 16. Performance of different local remapping cache
Sizes, normalized to infinite local remapping cache size.

[N OKkB HEE 16KB

Z
~~0.950

Performance

m\\md‘ XpO%yes®

S % cC o \G A\ X e
5P 9\% RGN 5 «?0\%;%\‘“3\
\(e S

Figure 17. Performance of different global remapping cache
sizes, normalized to infinite global remapping cache size.

5.4.3 Sensitivity to Area Overhead. We vary the on-die
buffer capacities of both the local remapping cache and the
global remapping cache to evaluate their impact on end-to-
end performance. As shown in Figure 16 and Figure 17, the
local remapping cache capacity has a higher impact on over-
all performance, as local remapping table lookups are on
the critical path of local memory accesses, whereas global
remapping table accesses occur only on inter-host memory
accesses. We observe that a 16KB global remapping cache is
sufficient to achieve 99.8% of the performance of an ideal in-
finite global remapping cache, while a 1MB local remapping
cache per host achieves 97.8% of the performance of an ideal
infinite local remapping cache. Overall, the area overhead
of PIPM is negligible, requiring only a 1MB local remapping
cache per host on the RC, and a 16KB global remapping cache
on the CXL device.

6 Related Work

In addition to the related work discussed in Section 2 and
Section 3, this section covers other related studies.

Application-level Optimization over CXL-DSM. Recent
works [29, 37, 39, 88, 91, 94, 95] focus on application-level
optimizations for (CXL-DSM-based) large shared memory
pools, including SW prefetching [37, 39], SW-managed co-
herence [91, 94, 95], replications [91, 95]. PIPM is orthogonal
to these works and can even further support application-level
optimizations by exposing software interfaces to programmers.
For example, applications can leverage PIPM’s line-level mi-
gration to enable fine-grained, lock-free prefetching, or ex-
plicitly enable or disable incremental migration for specific
pages based on program semantics to improve performance.
Also, the PIPM coherence can potentially mitigate the on-die

Ganggi Huang, Heiner Litz, & Yuanchao Xu

area overhead of the CXL coherence directory [75, 88] for
supporting CXL 3.0 multi-host coherence, as migrated mem-
ory lines no longer require allocating CXL directory entries
until they are migrated back to CXL-DSM.

Automatic Memory Management. A large number of
prior works explore page management for tiered memory
systems [27, 45, 51, 55, 65, 67-69, 76, 78, 90, 92, 96, 99, 100]
and NUMA systems [32, 34]. In contrast, PIPM targets multi-
host CXL-DSM systems. PIPM tackles the inefficiency of
existing page migration schemes over multi-host CXL-DSM
systems by enabling meticulously combining a coherence-
aware, incremental migration mechanism with page-level
migration policy, PIPM tackles the inefficiency of existing
page migration schemes over multi-host CXL-DSM systems
while maintaining low overhead.

Distributed Shared Memory Systems. Previous distributed
shared memory systems [12, 44, 58, 87] rely on interconnects
with socket-like interfaces (e.g., RDMA). They typically em-
ploy page-based block granularity and locked-based software
cache coherency with manually managed data placement.
With the emerging CXL interconnects and hardware cache-
coherent CXL-DSM introduced in CXL 3.x, distributed shared
memory systems are able to support more efficient, finer-
grained data management at rack scale with less software
modification. Our work built on top of CXL-DSM proposes
architectural support to further unlock the potential of CXL
for distributed shared memory systems.

7 Conclusion

We propose Partial and Incremental Page Migration
(PIPM) for multi-host CXL-DSM, which selectively migrates
frequently accessed cache blocks into local memory and in-
crementally transfers data using intrinsic memory accesses.
We develop architectural support including global and local
remapping tables, PIPM migration policy, and PIPM coher-
ence protocol to effectively enable partial and incremental
page migration. Evaluations show PIPM achieves up to 2.54x
(1.86x average) speedup over existing methods, systemati-
cally overcoming key limitations of multi-host CXL-DSM.

Acknowledgments

We would like to thank the anonymous reviewers from ASP-
LOS 2026 for their insightful and constructive feedback, and
Jian Zhang, for shepherding our paper. We thank the CRSS
IAB members Marvell, Nutanix, ARM, and Cerabyte for their
generous support.

References

[1] 2025. ChampSim. https://github.com/ChampSim/ChampSim.
[2] Steve Abraham. 2016. Amazon Aurora Multi-Master: Scaling out
database write performance. (2016).

https://github.com/ChampSim/ChampSim

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory

[3] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,

[4

[5

G

[7

8

[

[10

[12

(13

(14

(15

(16

[17

(18

flan)

—

—

—

[t

—_ =

—

—

-

[l

—

—

—

[}

Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Sub-
rahmanyam, Lalith Suresh, Kiran Tati, et al. 2018. Remote regions:
a simple abstraction for remote memory. In 2018 USENLX Annual
Technical Conference (USENLX ATC 18). 775-7817.

Hooyoung Ahn, Seonyoung Kim, Yoomi Park, Woojong Han, Shiny-
oung Ahn, Tu Tran, Bharath Ramesh, Hari Subramoni, and Dha-
baleswar K Panda. 2024. Mpi allgather utilizing cxl shared memory
pool in multi-node computing systems. In 2024 IEEE International
Conference on Big Data (BigData). IEEE, 332-337.

Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively prefetch-
ing remote memory with leap. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 843-857.

Chloe Alverti, Stratos Psomadakis, Burak Ocalan, Shashwat Jaiswal,
Tianyin Xu, and Josep Torrellas. 2025. CXLfork: Fast Remote Fork
over CXL Fabrics. (2025), 210-226.

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In
Proceedings of the Fifteenth European Conference on Computer Systems.
1-16.

Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi
Devor, Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons,
Harish Patil, and Ady Tal. 2010. Analyzing Parallel Programs with
PIN. Computer 43, 3 (2010), 34-41. doi:10.1109/MC.2010.60

Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP
benchmark suite. arXiv preprint arXiv:1508.03619 (2015).
blocksandfiles.com. 2024. Intel sees CXL as rack-level disaggregator
with Optane connectivity. https://blocksandfiles.com/2021/08/18/
intel-sees-cxl-as-rack-level-disaggregator/. Online; accessed Jun,
2024.

Robert S Boyer and J Strother Moore. 1991. MJRTY—a fast majority
vote algorithm. In Automated reasoning: essays in honor of Woody
Bledsoe. Springer, 105-117.

Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang
Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng
Wang. 2018. Efficient distributed memory management with RDMA
and caching. Proceedings of the VLDB Endowment 11, 11 (2018), 1604-
1617.

Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al
Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking software
runtimes for disaggregated memory. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. 79-92.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kai-
jie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang,
et al. 2024. A survey on evaluation of large language models. ACM
transactions on intelligent systems and technology 15, 3 (2024), 1-45.
Albert Cho and Alexandros Daglis. 2024. StarNUMA: Mitigating
NUMA Challenges with Memory Pooling . In 2024 57th IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). IEEE Computer
Society, Los Alamitos, CA, USA, 997-1012. doi:10.1109/MICRO61859.
2024.00077

Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2016.
CANDY: Enabling coherent DRAM caches for multi-node systems. In
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (Taipei, Taiwan, 2016-10). IEEE, 1-13. doi:10.1109/
MICRO.2016.7783738

Chia Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014.
CAMEO: A Two-Level Memory Organization with Capacity of Main
Memory and Flexibility of Hardware-Managed Cache. In 2014 47th An-
nual IEEE/ACM International Symposium on Microarchitecture (2014-

12). 1-12. doi:10.1109/MICR0O.2014.63 ISSN: 2379-3155.
Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

[19

—

[20

[t

[22

—

[23

=

[24

[l

[25

=

[26

=

[27

—

(28

=

[29

—

(30

=

(32]

(33

[t

(34]

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143-154.

CXL. 2024. Compute Express Link. https://computeexpresslink.org/.
Online; accessed Jun, 2024.

CXL. 2024. CXL 3.1 Specification. https://computeexpresslink.org/
wp-content/uploads/2024/02/CXL-3.1-Specification.pdf. Online;
accessed Jun, 2024.

Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin,
Guanzhu Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu,
Yuchen Zhang, and Calvin Sun. 2023. Taurus MM: Bringing Multi-
Master to the Cloud. Proc. VLDB Endow. 16, 12 (Aug. 2023), 3488-3500.
doi:10.14778/3611540.3611542

David L Dill. 1996. The Mur ¢ verification system. In International
Conference on Computer Aided Verification. Springer, 390-393.
Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David
Culler, Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey,
Danijela Mijailovic, et al. 2023. Towards an adaptable systems ar-
chitecture for memory tiering at warehouse-scale. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. 727-741.
Nathan Gober, Gino Chacon, Lei Wang, Paul V Gratz, Daniel A
Jimenez, Elvira Teran, Seth Pugsley, and Jinchun Kim. 2022. The
championship simulator: Architectural simulation for education and
competition. arXiv preprint arXiv:2210.14324 (2022).

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. 2017. Efficient memory disaggregation with infin-
iswap. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 649-667.

Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiy-
ing Zhang. 2022. Clio: A hardware-software co-designed disaggre-
gated memory system. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 417-433.

Mark Hildebrand, Julian T. Angeles, Jason Lowe-Power, and
Venkatesh Akella. 2021. A Case Against Hardware Managed DRAM
Caches for NVRAM Based Systems. In 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS).
194-204. doi:10.1109/ISPASS51385.2021.00036

Cheng-Chieh Huang, Rakesh Kumar, Marco Elver, Boris Grot, and
Vijay Nagarajan. 2016. C3D: Mitigating the NUMA bottleneck via
coherent DRAM caches. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2016-10). 1-12. doi:10.
1109/MICRO.2016.7783739

Wentao Huang, Mo Sha, Mian Lu, Yuqiang Chen, Bingsheng He, and
Kian-Lee Tan. [n. d.]. Bandwidth Expansion via CXL: A Pathway to
Accelerating In-Memory Analytical Processing. ([n. d.]).

Ying Huang. 2023. [PATCH -v5 8/9] migrate_pages: batch flushing
TLB. (2023). https://patchew.org/linux/20230213123444.155149-
1-ying.huang@intel.com/20230213123444.155149-9-ying.huang@
intel.com/

Ying Huang. 2023. [PATCH] mm,unmap: avoid flushing TLB in batch
if PTE is inaccessible. (2023). https://Ikml.indiana.edu/hypermail/
linux/kernel/2304.2/05082.html

Ying Huang. 2024. autonuma: Optimize page placement for
memory tiering system - Patchwork. (2024). https://patchwork.
kernel.org/project/linux-mm/patch/20201027063217.211096-2-
ying.huang@intel.com/

Yibo Huang, Haowei Chen, Newton Ni, Vijay Chidambaram, Dixin
Tang, Emmett Witchel, Zhiting Zhu, and Zhipeng Jia. 2025. Tigon: A
distributed database for a CXL pod. In 19th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 25), Boston, MA.
Ying Huang and Hasan Al Maruf. 2021.
https://lwn.net/Articles/876993/. [PATCH 0/5] Transparent
Page Placement for Tiered-Memory.

https://doi.org/10.1109/MC.2010.60
https://blocksandfiles.com/2021/08/18/intel-sees-cxl-as-rack-level-disaggregator/
https://blocksandfiles.com/2021/08/18/intel-sees-cxl-as-rack-level-disaggregator/
https://doi.org/10.1109/MICRO61859.2024.00077
https://doi.org/10.1109/MICRO61859.2024.00077
https://doi.org/10.1109/MICRO.2016.7783738
https://doi.org/10.1109/MICRO.2016.7783738
https://doi.org/10.1109/MICRO.2014.63
https://computeexpresslink.org/
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://doi.org/10.14778/3611540.3611542
https://doi.org/10.1109/ISPASS51385.2021.00036
https://doi.org/10.1109/MICRO.2016.7783739
https://doi.org/10.1109/MICRO.2016.7783739
https://patchew.org/linux/20230213123444.155149-1-ying.huang@intel.com/20230213123444.155149-9-ying.huang@intel.com/
https://patchew.org/linux/20230213123444.155149-1-ying.huang@intel.com/20230213123444.155149-9-ying.huang@intel.com/
https://patchew.org/linux/20230213123444.155149-1-ying.huang@intel.com/20230213123444.155149-9-ying.huang@intel.com/
https://lkml.indiana.edu/hypermail/linux/kernel/2304.2/05082.html
https://lkml.indiana.edu/hypermail/linux/kernel/2304.2/05082.html
https://patchwork.kernel.org/project/linux-mm/patch/20201027063217.211096-2-ying.huang@intel.com/
https://patchwork.kernel.org/project/linux-mm/patch/20201027063217.211096-2-ying.huang@intel.com/
https://patchwork.kernel.org/project/linux-mm/patch/20201027063217.211096-2-ying.huang@intel.com/

[35] SK Hynix. 2024.

—

—

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

SK hynix Develops DDR5 DRAM
CXLTM Memory to Expand the CXL Memory Ecosystem.
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxlItm-
memory-to-expand-the-cxl-memory-ecosystem/. Online; accessed
Jun, 2024.

Sunita Jain, Nagaradhesh Yeleswarapu, Hasan Al Maruf, and Rita
Gupta. 2024. Memory sharing with CXL: Hardware and software
design approaches. arXiv preprint arXiv:2404.03245 (2024).
Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee,
Miryeong Kwon, and Myoungsoo Jung. 2023. CXL-ANNS: Software-
Hardware Collaborative Memory Disaggregation and Computation
for Billion-Scale Approximate Nearest Neighbor Search. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Asso-
ciation, Boston, MA, 585-600. https://www.usenix.org/conference/
atc23/presentation/jang

Houxiang Ji, Srikar Vanavasam, Yang Zhou, Qirong Xia, Jinghan
Huang, Yifan Yuan, Ren Wang, Pekon Gupta, Bhushan Chitlur, Ipoom
Jeong, and Nam Sung Kim. 2024. Demystifying a CXL Type-2 Device:
A Heterogeneous Cooperative Computing Perspective. In 2024 57th
IEEE/ACM International Symposium on Microarchitecture (MICRO).
1504-1517. doi:10.1109/MICRO61859.2024.00110

Changyeon Jo, Hyunik Kim, Hexiang Geng, and Bernhard Egger.
2020. RackMem: A Tailored Caching Layer for Rack Scale Comput-
ing. In Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques (Virtual Event, GA, USA)
(PACT °20). Association for Computing Machinery, New York, NY,
USA, 467-480. doi:10.1145/3410463.3414643

Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten
Schwan. 2017. Heteroos: Os design for heterogeneous memory man-
agement in datacenter. In Proceedings of the 44th Annual International
Symposium on Computer Architecture. 521-534.

Sudarsun Kannan, Yujie Ren, and Abhishek Bhattacharjee. 2021.
Klocs: Kernel-level object contexts for heterogeneous memory sys-
tems. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems. 65-78.

Marks Kevin. 2024. CXL for Storage. https://www.snia.org/
sites/default/files/SDC/Austin/SNIA-RSDC24-Marks-CXL-for-
Storage.pdf.

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agar-
wal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule,
Nan Deng, Junaid Shahid, et al. 2019. Software-defined far memory
in warehouse-scale computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems. 317-330.

Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal,
Lin Zhong, and Abhishek Bhattacharjee. 2021. Mind: In-network
memory management for disaggregated data centers. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
488-504.

Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. 2023. Memtis: Efficient memory tiering with dynamic page
classification and page size determination. In Proceedings of the 29th
Symposium on Operating Systems Principles. 17-34.

Baptiste Lepers and Willy Zwaenepoel. 2023. Johnny Cache: the End
of {DRAM} Cache Conflicts (in Tiered Main Memory Systems). In
17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23). 519-534.

Chuanhan Li, Jishen Zhao, and Yuanchao Xu. 2025. Efficient Security
Support for CXL Memory through Adaptive Incremental Offloaded
(Re-) Encryption. In Proceedings of the 58th IEEE/ACM International
Symposium on Microarchitecture®. 1102-1116.

Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,

-

=

=

=

[l

=

=

[

-

—

—

Ganggi Huang, Heiner Litz, & Yuanchao Xu

Ishwar Agarwal, et al. 2023. Pond: Cxl-based memory pooling sys-
tems for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 574-587.

Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S Berger, Marie
Nguyen, Xun Jian, Sam H Noh, and Huaicheng Li. 2025. Systematic
cxl memory characterization and performance analysis at scale. In
Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2.1203-1217.

Jinshu Liu, Hamid Hadian, Hanchen Xu, and Huaicheng Li. 2025.
Tiered Memory Management Beyond Hotness. In 19th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 25).
731-747.

Jinshu Liu, Hamid Hadian, Hanchen Xu, Huaicheng Li, and Virginia
Tech. [n. d.]. Tiered Memory Management Beyond Hotness. ([n. d.]).
Kevin Loughlin, Stefan Saroiu, Alec Wolman, Yatin A Manerkar, and
Baris Kasikei. 2022. Moesi-prime: preventing coherence-induced ham-
mering in commodity workloads. In Proceedings of the 49th Annual
International Symposium on Computer Architecture. 670-684.

Teng Ma, Zheng Liu, Chengkun Wei, Jialiang Huang, Youwei Zhuo,
Haoyu Li, Ning Zhang, Yijin Guan, Dimin Niu, Mingxing Zhang, et al.
2024. {HydraRPC}:{RPC} in the {CXL} Era. In 2024 USENIX Annual
Technical Conference (USENLX ATC 24). 387-395.

Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel Campello, Andy
Rudoff, and Raju Rangaswami. 2022. MULTI-CLOCK: Dynamic Tier-
ing for Hybrid Memory Systems. In 2022 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). 925-937.
do0i:10.1109/HPCA53966.2022.00072

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf
Chowdhury, Shobhit Kanaujia, and Prakash Chauhan. 2023. Tpp:
Transparent page placement for cxl-enabled tiered-memory. In Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3.742-755.

Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice,
Mike Ignatowski, and Gabriel H. Loh. 2015. Heterogeneous memory
architectures: A HW/SW approach for mixing die-stacked and off-
package memories. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, Burlingame, CA,
USA. doi:10.1109/hpca.2015.7056027

Onur Mutlu. 2013. Memory scaling: A systems architecture perspec-
tive. In 2013 5th IEEE International Memory Workshop. IEEE, 21-25.

[58] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis

Ceze, Simon Kahan, and Mark Oskin. 2015. {Latency-Tolerant} soft-
ware distributed shared memory. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15). 291-305.

nextplatform.com. 2024. A coherent interconnect strategy: CXL
absorbs Gen-Z. https://www.nextplatform.com/2021/11/23/finally-
a-coherent-interconnect-strategy-cxl-absorbs-gen-z/. Online; ac-
cessed Jun, 2024.

nextplatform.com. 2024. CXL and Gen-Z Iron Out a Coherent In-
terconnect Strategy. https://www.nextplatform.com/2020/04/03/cxl-
and-gen-z-iron-out-a-coherent-interconnect-strategy/. Online; ac-
cessed Jun, 2024.

nextplatform.com. 2024. PCI-Express 5.0: The unintended but
formidable datacenter interconnect. https://www.nextplatform.
com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-
datacenter-interconnect//. Online; accessed Jun, 2024.

Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and Daniel Hagi-
mont. 2018. Welcome to zombieland: Practical and energy-efficient
memory disaggregation in a datacenter. In Proceedings of the Thir-
teenth EuroSys Conference. 1-12.

https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang
https://doi.org/10.1109/MICRO61859.2024.00110
https://doi.org/10.1145/3410463.3414643
https://www.snia.org/sites/default/files/SDC/Austin/SNIA-RSDC24-Marks-CXL-for-Storage.pdf
https://www.snia.org/sites/default/files/SDC/Austin/SNIA-RSDC24-Marks-CXL-for-Storage.pdf
https://www.snia.org/sites/default/files/SDC/Austin/SNIA-RSDC24-Marks-CXL-for-Storage.pdf
https://doi.org/10.1109/HPCA53966.2022.00072
https://doi.org/10.1109/hpca.2015.7056027
https://www.nextplatform.com/2021/11/23/finally-a-coherent-interconnect-strategy-cxl-absorbs-gen-z/
https://www.nextplatform.com/2021/11/23/finally-a-coherent-interconnect-strategy-cxl-absorbs-gen-z/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-datacenter-interconnect//
https://www.nextplatform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-datacenter-interconnect//
https://www.nextplatform.com/2021/02/03/pci-express-5-0-the-unintended-but-formidable-datacenter-interconnect//

PIPM: Partial and Incremental Page Migration for Multi-host CXL Disaggregated Shared Memory

(63]

[64]

(65

—

[66

—

(67]

(68]

Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David
Black-Schaffer. 2020. Page Tables: Keeping them Flat and Hot
(Cached). arXiv preprint arXiv:2012.05079 (2020).

Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutso-
vasilis, Andrea Reale, Kostas Katrinis, and H Peter Hofstee. 2020.
Thymesisflow: A software-defined, hw/sw co-designed interconnect
stack for rack-scale memory disaggregation. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 868-880.

Michael D. Powell, Patrick Fleming, Venkidesh Iyer Krishna, Naveen
Lakkakula, Subhiksha Ravisundar, Praveen Mosur, Arijit Biswas,
Pradeep Dubey, Kapil Sood, Andrew Cunningham, and Smita Kumar.
2025. Intel Xeon 6 Product Family. IEEE Micro 45, 3 (2025), 31-40.
doi:10.1109/MM.2025.3553756

Andreas Prodromou, Mitesh Meswani, Nuwan Jayasena, Gabriel Loh,
and Dean M. Tullsen. 2017. MemPod: A Clustered Architecture for
Efficient and Scalable Migration in Flat Address Space Multi-level
Memories. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA) (Austin, TX, 2017-02). IEEE, 433-444.
doi:10.1109/HPCA.2017.39

Zhenlin Qi, Shengan Zheng, Ying Huang, Yifeng Hui, Bowen Zhang,
Linpeng Huang, and Hong Mei. 2025. Chrono: Meticulous Hotness
Measurement and Flexible Page Migration for Memory Tiering. In
Proceedings of the Twentieth European Conference on Computer Systems
(Rotterdam Netherlands, 2025-03-30). ACM, 835-853. d0i:10.1145/
3689031.3717462

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. Hemem: Scalable tiered memory management for big
data applications and real nvm. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles. 392—-407.

[69] Jie Ren, Dong Xu, Junhee Ryu, Kwangsik Shin, Daewoo Kim, and

[70]

(71]

(72]

(73]

(74]

[75]

[76]

(7]

Dong Li. 2024. MTM: Rethinking Memory Profiling and Migration
for Multi-Tiered Large Memory. In Proceedings of the Nineteenth
European Conference on Computer Systems. ACM, Athens Greece,
803-817. doi:10.1145/3627703.3650075

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam
Belay. 2020. { AIFM }:{High-Performance},{ Application-Integrated }
far memory. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). 315-332.

Samsung. 2024. Samsung CXL Solutions - CMM-H.
https://semiconductor.samsung.com/us/news-events/tech-
blog/samsung-cx|-solutions-cmm-h/. Online; accessed Jun,

2024.
Samsung. 2024. Samsung Unveils Industry-First Memory
Module Incorporating New CXL Interconnect Standard.

https://news.samsung.com/global/samsung-unveils-industry-first-
memory-module-incorporating-new-cxl-interconnect-standard.
Online; accessed Jun, 2024.

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accu-
rate microarchitectural simulation of thousand-core systems. ACM
SIGARCH Computer architecture news 41, 3 (2013), 475-486.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
{LegoOS}: A disseminated, distributed {OS} for hardware resource
disaggregation. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 69-87.

Debendra Das Sharma. 2023. Compute Express Link (CXL): Enabling
Heterogeneous Data-Centric Computing With Heterogeneous Mem-
ory Hierarchy. IEEE Micro 43, 2 (2023), 99-109. doi:10.1109/MM.2022.
3228561

Kevin Song, Jiacheng Yang, Sihang Liu, and Gennady Pekhimenko.
2023. Lightweight Frequency-Based Tiering for CXL Memory Sys-
tems. arXiv preprint arXiv:2312.04789 (2023).

Daniel Sorin, Mark Hill, and David Wood. 2022. A primer on memory
consistency and cache coherence. Springer Nature.

(78]

[79

—

(80

=

(81]

82

—

(83

-

(84

[l

(85

[

(86

—

(87

[

(89

—

[90

-

[91]

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Yan Sun, Jongyul Kim, Zeduo Yu, Jiyuan Zhang, Siyuan Chai,
Michael Jaemin Kim, Hwayong Nam, Jaehyun Park, Eojin Na, Yi-
fan Yuan, Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim.
2025. M5: Mastering Page Migration and Memory Management for
CXL-based Tiered Memory Systems. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Rotterdam, Netherlands)
(ASPLOS °25). Association for Computing Machinery, New York, NY,
USA, 604-621. doi:10.1145/3676641.3711999

Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiagi Lou, Ipoom Jeong, et al.
2023. Demystifying cx] memory with genuine cxl-ready systems and
devices. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture. 105-121.

Cristan Szmajda and Gernot Heiser. 2003. Variable radix page table:
A page table for modern architectures. In Asia-Pacific conference on
advances in computer systems architecture. Springer, 290-304.

John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
2014. XSBench-the development and verification of a performance
abstraction for Monte Carlo reactor analysis. The Role of Reactor
Physics toward a Sustainable Future (PHYSOR) (2014).

Tu Tran, Mustafa Abduljabbar, Hooyoung Ahn, Seonyoung Kim,
Yoomi Park, Woojong Han, Shinyoung Ahn, Hari Subramoni, and
Dhabaleswar K. Panda. 2024. OMB-CXL: A Micro-Benchmark Suite
for Evaluating MPI Communication Utilizing Compute Express Link
Memory Devices. In Practice and Experience in Advanced Research
Computing 2024: Human Powered Computing (Providence, RI, USA)
(PEARC ’24). Association for Computing Machinery, New York, NY,
USA, Article 27, 8 pages. doi:10.1145/3626203.3670533

Chun-Wei Tsai, Chin-Feng Lai, Han-Chieh Chao, and Athanasios V
Vasilakos. 2015. Big data analytics: a survey. Journal of Big data 2, 1
(2015), 21.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy transactions in multicore in-memory
databases. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. 18-32.

Midhul Vuppalapati and Rachit Agarwal. 2024. Tiered Memory Man-
agement: Access Latency is the Key!. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles (Austin, TX,
USA) (SOSP ’24). Association for Computing Machinery, New York,
NY, USA, 79-94. doi:10.1145/3694715.3695968

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. 2020. Semeru: A {Memory-Disaggregated} managed
runtime. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). 261-280.

Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu.
2021. Concordia: Distributed shared memory with {In-Network}
cache coherence. In 19th USENIX Conference on File and Storage Tech-
nologies (FAST 21). 277-292.

Zhao Wang, Yiqi Chen, Cong Li, Dimin Niu, Tianchan Guan,
Zhaoyang Du, Xingda Wei, and Guangyu Sun. 2025. Enabling
Efficient Transaction Processing on CXL-Based Memory Sharing.
arXiv:2502.11046 [cs] doi:10.48550/arXiv.2502.11046

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. 2003. SMARTS: accelerating microarchitecture simulation via
rigorous statistical sampling. SIGARCH Comput. Archit. News 31, 2
(May 2003), 84-97. doi:10.1145/871656.859629

Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,
and Ren Wang. 2024. Nomad:{Non-Exclusive} Memory Tiering
via Transactional Page Migration. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24). 19-35.
Tong Xing and Antonio Barbalace. 2025. Rethinking Applications’
Address Space with CXL Shared Memory Pools. In Proceedings of
the 4th Workshop on Heterogeneous Composable and Disaggregated

https://doi.org/10.1109/MM.2025.3553756
https://doi.org/10.1109/HPCA.2017.39
https://doi.org/10.1145/3689031.3717462
https://doi.org/10.1145/3689031.3717462
https://doi.org/10.1145/3627703.3650075
https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://semiconductor.samsung.com/us/news-events/tech-blog/samsung-cxl-solutions-cmm-h/
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard
https://doi.org/10.1109/MM.2022.3228561
https://doi.org/10.1109/MM.2022.3228561
https://doi.org/10.1145/3676641.3711999
https://doi.org/10.1145/3626203.3670533
https://doi.org/10.1145/3694715.3695968
https://arxiv.org/abs/2502.11046 [cs]
https://doi.org/10.48550/arXiv.2502.11046
https://doi.org/10.1145/871656.859629

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

[92]

(93]

[94]

[95]

[96]

Systems (HCDS °25). Association for Computing Machinery, New
York, NY, USA, 52-59. doi:10.1145/3723851.3723858

Dong Xu, Junhee Ryu, Kwangsik Shin, Pengfei Su, and Dong Li.
2024. {FlexMem}: Adaptive Page Profiling and Migration for Tiered
Memory. In 2024 USENIX Annual Technical Conference (USENLX ATC
24). 817-833.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
2019. Nimble page management for tiered memory systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 331-345.
Xinjun Yang, Yinggiang Zhang, Hao Chen, Feifei Li, Gerry Fan, Yang
Kong, Bo Wang, Jing Fang, Yuhui Wang, Tao Huang, Wenpu Hu, Jim
Kao, and Jianping Jiang. 2025. Unlocking the Potential of CXL for
Disaggregated Memory in Cloud-Native Databases. In Companion of
the 2025 International Conference on Management of Data (Berlin, Ger-
many) (SIGMOD/PODS ’25). Association for Computing Machinery,
New York, NY, USA, 689-702. doi:10.1145/3722212.3724460

Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing
Fang, Chuan Sun, and Yuhui Wang. 2024. PolarDB-MP: a multi-
primary cloud-native database via disaggregated shared memory. In
Companion of the 2024 International Conference on Management of
Data. 295-308.

Xinyue Yi, Hongchao Du, Yu Wang, Jie Zhang, Qiao Li, and Chun Ja-
son Xue. 2025. ArtMem: Adaptive Migration in Reinforcement

[97

[

[98

=

[99

-

[100]

Ganggi Huang, Heiner Litz, & Yuanchao Xu

Learning-Enabled Tiered Memory. In Proceedings of the 52nd An-
nual International Symposium on Computer Architecture. ACM, Tokyo
Japan, 405-418. doi:10.1145/3695053.3731001

Yanpeng Yu, Nicolai Oswald, and Anurag Khandelwal. 2025. CORD:
Low-Latency, Bandwidth-Efficient and Scalable Release Consistency
via Directory Ordering. In Proceedings of the 52nd Annual Interna-
tional Symposium on Computer Architecture (Tokyo Japan, 2025-06-21).
ACM, 1311-1326. doi:10.1145/3695053.3731074

Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017.
PARSECS3. 0: A multicore benchmark suite with network stacks and
SPLASH-2X. ACM SIGARCH Computer Architecture News 44, 5 (2017),
1-16.

Yuhong Zhong, Daniel S Berger, Carl Waldspurger, Ishwar Agarwal,
Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D Hill, Mosharaf
Chowdhury, and Asaf Cidon. 2024. Managing Memory Tiers with
CXL in Virtualized Environments. In Symposium on Operating Systems
Design and Implementation.

Zhe Zhou, Yiqi Chen, Tao Zhang, Yang Wang, Ran Shu, Shuotao
Xu, Peng Cheng, Lei Qu, Yongqiang Xiong, Jie Zhang, et al. 2024.
NeoMem: Hardware/Software Co-Design for CXL-Native Memory
Tiering. In 2024 57th IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 1518-1531.

https://doi.org/10.1145/3723851.3723858
https://doi.org/10.1145/3722212.3724460
https://doi.org/10.1145/3695053.3731001
https://doi.org/10.1145/3695053.3731074

	Abstract
	1 Introduction
	2 Background
	2.1 CXL Disaggregated Shared Memory
	2.2 CXL-DSM Cache Coherence over CXL.mem

	3 Motivation
	3.1 Detailed Analysis of Multi-Host Migration
	3.2 Quantitative Evaluation of Multi-Host Migration
	3.3 Other Related Work

	4 Design
	4.1 Overview
	4.2 PIPM Migration Policy
	4.3 PIPM Coherence and Incremental Migration Design
	4.4 Space Overhead
	4.5 Discussion

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 End-to-end Performance
	5.3 Performance Analysis
	5.4 Sensitivity Study and Scalability

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

