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Abstract

The emerging Compute Express Link (CXL) interconnect
supports multi-host cache-coherent disaggregated shared
memory (CXL-DSM). However, existing page migration ap-
proaches, designed primarily for single-host systems, are
inefficient in multi-host CXL-DSM scenarios. To address
this, we propose Partial and Incremental Page Migration
(PIPM), a hardware-based solution that transparently lever-
ages host-side local memory. PIPM is co-designed with the
CXL multi-host coherence protocol, enabling coherent ac-
cess to data residing in local DRAM. To overcome limitations
of existing migration methods, PIPM supports fine-grained
data migration and integrates hardware-based monitoring
and decision-making mechanisms to optimize data place-
ment. Evaluation results demonstrate that PIPM delivers
performance improvements of up to 2.54x (1.86x on average)
over the default multi-host CXL-DSM configuration.

CCS Concepts: « Computer systems organization — n-
tier architectures; Heterogeneous (hybrid) systems; «
Hardware — Memory and dense storage.
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1 Introduction

Emerging applications in AI [14], databases [33], and big-
data analytics [83] increasingly demand higher memory ca-
pacity, greater bandwidth, and lower costs [3, 5, 7, 13, 23, 25,
26, 40, 41, 43, 45-47, 55, 62, 64, 68, 70, 74, 86, 93]. With the
slowdown of DRAM technology scaling [48, 57], architects
have turned to Compute Express Link (CXL) for flexible,
disaggregated shared memory (CXL-DSM), significantly im-
proving efficiency and reducing DRAM costs [20, 48, 55, 60].
The latest CXL standards (CXL 3.x) further support coher-
ent multi-host shared memory, enabling dynamic compute
resource allocation and flexible memory partitioning, en-
hancing throughput and cost efficiency [20, 33, 53, 94, 95].

Recent research highlights substantial benefits of multi-
host CXL-DSM across various applications [4, 6, 33, 37, 53,
82, 88, 94]. For example, HydraRPC uses CXL-DSM to im-
prove RPC scalability [53], CXLfork reduces local mem-
ory consumption by 87% on average for cross-host process
cloning [6], Tigon achieves an average 2.5x throughput im-
provement for databases compared to configurations with-
out CXL-DSM [33], and PolarCXLMem [94] shows an up to
154.4% performance improvement compared to RDMA-based
cloud databases [2, 21, 95].

Despite its potential, CXL-based system performance is
often limited by the high latency of remote CXL memory
accesses [48, 55, 94], which are typically two to three times
slower than local DRAM accesses upon LLC misses [48]. A
common solution is page migration [45, 46, 49, 50, 55, 70,
85, 90]: pages identified as frequently accessed by a host are
migrated from CXL memory to a host’s local memory, con-
verting subsequent remote accesses into low-latency local
accesses.

However, existing page migration schemes designed for
single-host CXL disaggregated memory are ineffective in
multi-host CXL-DSM for two reasons: (1) Local gain, global
pain. In single-host systems, migrating a hot page to local
DRAM is strictly beneficial, assuming sufficient local mem-
ory capacity is available. In a multi-host CXL-DSM, however,
moving a hot page from shared CXL memory to one host’s
local DRAM may harm overall performance, outweighing
the local benefit. To preserve coherence and consistency, the
migrated page needs to become non-cacheable for all other
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hosts. As a result, remote accesses incur extra hops, round-
trips, and address remapping overheads, significantly in-
creasing latency for other hosts accessing the page. (2) Poor
Migration Scalability. The side-effects of page migration
in multi-host CXL-DSM systems pose significant challenges
for supporting efficient and timely migration. However, mi-
gration overheads grow significantly as page migration is
no longer entirely local but instead requires coordination
across hosts, including CXL RPCs [53], per-host page-table
updates and TLB shootdowns.

To address these challenges, we propose Partial and In-
cremental Page Migration (PIPM) for multi-host CXL-
DSM. Partial Migration: Instead of migrating entire pages
into local memory or retaining them fully in CXL memory,
PIPM selectively migrates only those cache blocks frequently
accessed by a host into its local memory, while keeping
less-frequently or remotely accessed blocks in CXL memory.
This selective strategy differentiates local from inter-host
access patterns at a fine granularity, effectively resolving the
"local-gain, global-pain"” issue. Moreover, by maintaining two
possible destinations for cache blocks, PIPM significantly re-
duces migration management overheads, such as page-table
updates and TLB invalidations. Incremental Migration:
Rather than explicitly migrating entire pages, which incurs
substantial data-transfer overhead, PIPM leverages intrinsic
memory accesses of programs to migrate cache blocks in-
crementally and selectively. Specifically, PIPM determines
whether to incrementally migrate cache blocks from CXL
memory into the requester host’s local memory or back to
CXL memory during cache coherence request handling. Con-
sequently, incremental migration involves no additional data
transfers beyond regular cache-fill and eviction operations.
The partial migration policy identifies cache blocks and tar-
get hosts without initiating immediate data transfers, rely-
ing entirely on incremental migration for data movement.
Together, these techniques enable PIPM to systematically
address the previously identified challenges.

We develop architectural support for PIPM, including a
majority-vote migration policy, a two-level hardware remap-
ping table, and PIPM-coherency to effectively enable partial
and incremental page migration. We evaluate our technique
using the Championship simulator [1, 24]. PIPM achieves an
average speedup of 1.86x on multi-host CXL-DSM systems
and surpasses six state-of-the-art methods.

Overall, this paper makes the following contributions:

1. Qualitatively and quantitatively identifies the challenges
of page migration in multi-host CXL-DSM.

2. Introduces partial and incremental page migration to sys-
tematically address these challenges.

3. Presents an architectural design that effectively and effi-
ciently supports partial and incremental page migration.

4. Provides a comprehensive evaluation demonstrating the
effectiveness of PIPM.
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2 Background
2.1 CXL Disaggregated Shared Memory

The CXL 3.0 standard introduces CXL Disaggregated Shared
Memory (CXL-DSM) [10, 35, 59-61, 71, 72], allowing a pool
of CXL memory to be shared coherently across multiple
hosts. This contrasts to prior versions of CXL in which the
CXL pool had to be statically partitioned and each partition
assigned to one particular host. Also note that CXL 3.0 only
allows coherent sharing of the CXL memory pool, while each
host’s local memory remains invisible to other hosts.

Compute node (host) ...|

Compute node (host) 1
Compute node (host) 0

CXL disaggregated
shared memory node

CPU 0

root complex
CXL/PCle
root complex

CXL/PCle

Mem. ctrl.
DRAM

Figure 1. Multi-host CXL-DSM architecture.

Figure 1 illustrates a multi-host CXL-DSM architecture
comprising multiple compute nodes (hosts) connected to a
CXL memory node. Each host or memory node integrates a
CXL/PCle Root Complex (RC) that issues and receives mes-
sages over CXL links. The memory node contains a CXL/PCle
RC, a CXL controller, and one or more memory controllers
connected to multiple memory devices [19, 79, 94]. The
CXL controller manages connections and access to the at-
tached memory. By allowing multiple hosts to attach con-
currently, CXL-DSM enables cache-coherent data sharing
and collaborative computation across hosts. Optional CXL
switches [48, 94, 94] can be inserted between hosts and de-
vices to realize even larger multi-host systems.

2.2 CXL-DSM Cache Coherence over CXL.mem

CXL-DSM supports multi-host cache coherence [20, 36] us-
ing a hierarchical, directory-based MESI protocol. Figure 2
illustrates a simplified organization of the CXL coherence
architecture comprising two cooperating components: (i)
a per-processor local coherence directory and (ii) a device
coherence directory on the CXL memory node. The per-
processor directory records the local coherence state and
the core IDs for each cache line resident in that processor’s
cache (including both local memory and CXL memory). The
device coherence directory records the coherence state and
the processor IDs for each CXL memory cache line that re-
side in processors’ caches. Throughout this paper, without
loss of generality, we assume that each host contains only
one processor to simplify the description.

The coherent CXL memory access workflow proceeds as
follows. A request is first sent to the local coherence directory
to determine whether the requesting processor’s cache holds
the most recent version of the target cache line €)). On a local
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Figure 2. Coherence design of CXL-DSM.

cache miss, the request is forwarded to the device coherence
directory on the CXL memory node @. If the device directory
identifies a processor as the current owner (i.e., in M state),
the request is forwarded to that processor @) to retrieve the
latest data @). The data is then returned to the requester,
and both the device directory state and the requester’s local
directory state are updated @4). Conversely, if no processor
holds the data (i.e., in I state), or if both CXL memory and
a processor’s cache hold clean copies (i.e., in S state), the
request is satisfied directly from the CXL memory, and the
directory states are updated accordingly @.

3 Motivation
3.1 Detailed Analysis of Multi-Host Migration

The CXL 3.1 standard and beyond [20] introduces the concept
of Global Integrated Memory (GIM) [20, 42], allowing each
host to expose part of its local memory into a global, unified
memory address space. A host’s page table can map a page
that resides in its own local memory, in another host’s local
memory, or in CXL memory, thus allowing page migration
between local memory and CXL memory. Inter-host accesses
to another host’s local memory [42, 97] are non-cacheable
to the requester host [20, 38, 42, 97], thus always need to be
routed through CXL root complexes, CXL links, and optional
CXL switches. We present a simplified design consistent
with CXL 3.1 to illustrate the page migration and access
workflows.

Compute node 0 Compute node 1

Core 0 ! Cores
TLB [ Cache [ 5) TLB [ Cache
Uncacheable Page table Local memory
Page table cache block | | "nified PAs Migrated pages
Unified PAs Local coherence @
Unified PA @ —_directo

CXL root complex |z °

CXL memory node

Figure 3. Workflow of accessing of migrated pages.

Workflow of inter-host access of migrated pages. Fig-
ure 3 @-@ illustrates how a host accesses a page that has
been migrated to another host’s local memory. The local
host processor first obtains the unified physical address (PA)
from the TLB and page table and forwards it to the CXL Root
Complex at the CXL memory node @). The root complex
routes the request to the owning host indicated by the uni-
fied PA @. At the owning host, the local coherence directory
is used to determine whether the most recent value resides in
cache or in memory @); the data is then fetched into the own-
ing node’s LLC and returned to the CXL memory node @.
The returned block, which is treated as non-cacheable at
the requester host, is then delivered to the requester core.
Serving this read miss requires a 4-hop traversal for the non-
cacheable access. However, when the data resides in CXL
memory, accesses are cacheable, which requires only two
hops.

Take-away #1: In a multi-host CXL-DSM system, inter-host
accesses to a migrated page are non-cacheable and re-
quire four hops. By contrast, accesses to CXL memory are
cacheable and require at most two hops.

Workflow of local access of migrated pages. The non-
cacheable access design increases the complexity of inter-host
accesses but simplifies local accesses by eliminating coher-
ence checks at the CXL memory node. As shown in Fig-
ure 3 M, when a LLC read miss occurs, the unified PA is
used to consult the local coherence directory to determine
whether any cache within the host holds the most recent
valid copy. If not, the request is served from local memory. As
all inter-host accesses are non-cacheable, the design omits
coherence probes to caches on other hosts, streamlining
local-memory access.

Workflow of page migration. Page migration modifies
a page’s unified PA, which necessitates page table updates
and TLB invalidations across all hosts. Each host uses its
reserved page table to locate the process page tables that use
the previous unified PA of the migrating page, and updates
those entries to the new unified PA. Compared to single-host
CXL disaggregated memory systems, this operation incurs a
higher overhead in multi-host CXL-DSM because it requires
broadcasting CXL RPCs [53] and performing more page table
updates and TLB invalidations.

3.2 Quantitative Evaluation of Multi-Host Migration

Although recent research has investigated page migration
policies and overhead optimization for single-host CXL disag-
gregated memory systems [34, 45, 55, 78, 90, 92, 96, 99, 100],
these approaches are ineffective in multi-host CXL-DSM due
to their lack of awareness regarding the side effects of page
migration and the poor migration scalability from higher
demands in multi-host environments.

We evaluate existing page migration policies, originally de-
signed for single-host CXL disaggregated memory systems,
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Figure 4. Performance breakdown with different page migration intervals, normalized to the no migration baseline.

in a multi-host CXL-DSM environment to quantitatively
assess the performance impact of the two limitations. Ex-
isting page migration policies can be broadly classified into
recency-based [32, 34, 54, 55, 90] and frequency-based meth-
ods [45, 68, 76]. Specifically, we evaluate two state-of-the-art
(SOTA) policies, Nomad (a recency-based method) [90] and
Memtis (a frequency-based method) [45], using the Champi-
onship simulator [1, 24] configured as a four-host CXL-DSM
system, with each host containing a single-socket CPU. Our
evaluation employs memory-intensive benchmarks from
prior studies, drawn from the GAP [9], PARSEC 3.0 [98], XS-
Bench [81], YCSB [18, 84] and TPC-C [84] benchmark suites.
Detailed evaluation settings are described in Section 5.1.
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Figure 5. Percentage of harmful page migration.

3.2.1 Side Effects of Page Migration on multi-host
CXL-DSM. We evaluated the percentage of harmful page
migrations to understand the impact of neglecting the side
effects of page migration in multi-host CXL-DSM. After a
page is migrated from CXL memory to a host’s local memory,
subsequent accesses from that host transition from remote
CXL memory access to local memory access. However, other
hosts experience increased latency and non-cacheable ac-
cesses when referencing the migrated page compared to
scenarios without migration. Thus, we define a page migra-
tion as harmful if it increases the overall execution time. We
report the percentage of harmful page migrations observed
in existing studies.

Figure 5 illustrates the percentage of harmful page mi-
grations. On average, Nomad and Memtis exhibit 34% and
29% harmful migrations, respectively. These migrations neg-
atively impact overall performance by increasing total execu-
tion time; refraining from performing such migrations would

enhance performance. The increase in execution time arises
because migrations convert accesses from other hosts into
inter-host non-cacheable accesses, underscoring the impor-
tance of accounting for side effects in multi-host CXL-DSM
page migration algorithms.

Take-away #2: Neglecting side effects in multi-host CXL-
DSM page migration, existing migration techniques, such
as Nomad and Memtis, result in 34% and 29% performance-
degrading page migrations, respectively.

3.2.2 Poor Migration Scalability. Existing page migra-
tion techniques tailored for single-host systems generally
adopt relatively long migration intervals (10 ms [68, 100] to
a few seconds [32, 34, 55]) to balance migration overhead
and performance benefits. However, the side-effects of page
migration in multi-host CXL-DSM systems necessitate more
efficient and timely migration mechanisms. We further con-
duct evaluations to quantitatively investigate: (1) whether
multi-host CXL-DSM systems benefit from shorter page mi-
gration intervals (i.e., more timely and aggressive migration),
and (2) the overhead breakdown associated with varying
intervals. We report the performance breakdown, including
page transfer overhead (data transfers incurred by migra-
tion), management overhead (e.g., page table updates and
TLB invalidations), and other overheads.

Figure 4 presents the performance breakdown across three
different page migration intervals (100 ms, 10 ms and 1ms),
normalized against a no-migration baseline. The two state-
of-the-art single-host migration methods show limited effec-
tiveness in multi-host scenarios at the long interval (100 ms):
Nomad increases execution time by 10.5% on average, while
Memtis reduces it by only 1.4%. When adopting a shorter
interval (10 ms) for more frequent page migration, execution
time decreases by 4.8% and 12.2% on average. However, at
the 1 ms interval, Nomad and Memtis increase execution
time by 26.1% and 15.4% on average, respectively, due to the
increased management overhead and page transfers.

Take-away #3: Multi-host CXL-DSM systems require
shorter migration intervals to effectively capture page ac-
cesses from multiple hosts.
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Take-away #4: At shorter intervals, page migration over-
head becomes the dominant source of overhead, requiring
efficient page migration.

3.3 Other Related Work

Several recent studies have investigated page migration in
single-host CXL-disaggregated memory systems; however,
their contributions does not address the previously discussed
challenges associated with multi-host CXL-DSM page mi-
gration. They are orthogonal with the objectives pursued by
our work. Specifically, Neomem [100] and M5 [78] offload
hotness detection to the CXL memory side to facilitate ef-
ficient, low-latency access tracking. Colloid [85] balances
memory placement between local and remote memory to
minimize overall latency. Alto and Soar [50] employ MLP-
aware policies to determine and dynamically adjust initial
memory allocations across local and remote memory.

Intel Flat Mode [65, 99] is a recently introduced hardware-
tiering technology designed for single-host CXL-disaggregated
memory systems. Under this scheme, when a host accesses
a cache block residing in CXL memory, the block is trans-
parently swapped with a corresponding block in the host’s
local memory. However, Intel Flat Mode is incompatible with
multi-host CXL-DSM. First, swapping memory lines between
local memory and CXL memory switches the coherence do-
main between cache-coherent CXL-DSM and non-cacheable
local memory, thereby violating coherence requirements.
Second, Intel Flat Mode employs a static one-to-one map-
ping between CXL memory and local DRAM [99], which is
impractical in multi-host environments where each host has
distinct local DRAM regions. In our evaluation, we imple-
ment an Intel Flat Mode-like baseline (referred to as HW-
static), utilizing parts of our design, to allow comparisons
with hardware-tiering approaches.

4 Design
4.1 Overview

Based on the quantitative and qualitative analysis in Sec-
tion 3, an effective and efficient page migration for multi-
host CXL-DSM should consider the side effects of migrating
data from CXL memory to local memory and reduce page
migration overhead.

We attribute the inefficiency of existing single-host page
migration methods to their single-destination and rigid
per-page migration. Specifically, even when certain cache
blocks within a page are frequently accessed by one host
and other blocks are rarely accessed or predominantly ac-
cessed by other hosts, existing strategies either fully migrate
the entire page or retain it entirely within CXL memory.
This strategy fails to exploit optimization opportunities by
treating different cache blocks within the same page sepa-
rately (i.e., selectively migrating cache blocks). Additionally,
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per-page migration at low migration intervals incurs sub-
stantial overhead due to both management operations and
data transfer costs.

We propose Partial and Incremental Page Migration
(PIPM) for multi-host CXL-DSM. Partial Migration selec-
tively migrates only frequently accessed cache blocks of a
page to a host’s local memory while leaving less-used blocks
in CXL memory. This approach differentiates local and inter-
host access patterns at fine granularity, mitigating side ef-
fects associated with per-page migration and significantly
reducing management overhead (e.g., page-table updates
and TLB invalidations). Incremental Migration leverages
intrinsic memory accesses to incrementally migrate cache
blocks upon cache eviction or writeback, avoiding explicit
whole-page migrations and associated data-transfer over-
heads. Collectively, PIPM effectively addresses the previously
identified challenges in multi-host memory management.

We develop architectural support to effectively and ef-
ficiently enable PIPM, facilitating transparent partial and
incremental migration without requiring software modifica-
tions. As illustrated in Figure 6, our design introduces a per-
host Local Remapping Table and a Global Remapping
Table located on CXL memory to track pages undergoing
partial migration. Specifically, the global remapping table
records the migration destination host ID for each CXL-
DSM page, while the local remapping table on each host
stores the physical address mappings of CXL-DSM pages
that migrate to the local memory of that host. We propose
a PIPM Majority-vote Migration Policy that aggregates
page-access information across multiple hosts, enabling glob-
ally optimized decisions regarding the necessity and place-
ment of partially migrated pages. To ensure coherent access
to partially migrated pages, we design the PIPM Coherence
to incorporate partially migrated pages into the coherence
domain, permitting incremental migration and cacheable
access by other hosts.

Local coherence
directory
Mem. ctrl.

l DRAM I Mem. Dir. I Local Remapping Table ]

CXL Controller

directory

CXL memory node
[GIobaI Remapping Tablel Mem. Dir. I DRAM ]

Compute node 0

Figure 6. PIPM design overview.

4.2 PIPM Migration Policy

Existing page migration policies [15, 32, 93] are ineffective
in multi-host CXL-DSM environments due to their neglect
of migration side effects (Takeaways #1 and #2). To address
this, PIPM introduces a hardware-based majority-vote mi-
gration policy inspired by the Boyer-Moore algorithm [11],
enabling globally optimized decisions regarding the neces-
sity and placement of partially migrated pages.
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The intuition behind PIPM majority-vote migration policy
is that partial migration is initiated only when the number
of page accesses from a single host exceeds the combined
accesses from all other hosts by a predefined threshold. It
is important to note that initiating partial migration only
involves updating the local and global remapping tables; thus,
no page-table updates or TLB invalidations are required. The
partial migration step only identifies the host to which cache
blocks should be migrated, without triggering immediate
data transfers.

Compute node ...

Compute node 0
Local remapping cache
PFN

CXL memory node
Global remapping cache 9
PFN Current [ Candidate [ Glob:

Accesses

L
Start migration
| (- igration |

(F;;T o Local (CXL) | hostID | hostID | counter
0£< 5”) 05( gg?) COI:IJTSI’ Inter-host 0x5f7... | 0 (invalid) 5 15
Oxddb... | Oxdf7... | 22 || accesses e 2

Global remapping table

Revoke migration

Local remapping table

Figure 7. Partial migration workflow.

Figure 7 illustrates the architectural components designed
to support the PIPM migration policy. The global remapping
cache records recently accessed CXL pages and is backed
by an in-memory global remapping table. Each entry in the
global remapping table records metadata for a CXL-DSM
page, comprising a 5-bit current host ID, a 5-bit candidate
host ID, and a 6-bit global counter. The local remapping table
of each host only tracks pages partially migrated to that host.
Each entry in the local remapping table contains a 28-bit
PEN (indexing 1TB local DRAM) referring to as the page’s
PFN in local memory, and a 4-bit local counter.

The global and local counters implement the PIPM majority-
vote migration policy for initiating and revoking partial
migration, as described below: The global counter tracks
whether a particular host (indicated by the candidate host
ID) has more accesses than all other hosts to issue partial
migration. Specifically, the global counter is incremented by
one when the access originates from the candidate host and
decremented by one when accessed by other hosts. When
the global counter reaches zero, the next host to access the
page updates the candidate host ID @). If the global counter
reaches a predefined partial migration threshold @), partial
migration of this page is initiated by creating an entry in the
candidate host’s local remapping table. The local PFN for
this entry, allocated by the host’s OS/hypervisor, identifies
the location where partially migrated data from CXL mem-
ory is stored, and the entry’s local counter is initialized to
the migration threshold @). After a page has been partially
migrated, its current host ID is set to that host’s ID.

The local counter, stored in each host’s local remapping
table, records local accesses to partially migrated pages since
local accesses bypass the global counter maintained at the
CXL memory node @. Also, inter-host accesses decrement
the local counter for that page @. If the local counter of
a partially migrated page reaches zero, partial migration
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for the page is revoked by migrating all cache blocks from
local memory back to their original CXL memory location,
removing the corresponding entry from the local remapping
table, and resetting the current host ID in the corresponding
global remapping table entry @.

4.3 PIPM Coherence and Incremental Migration
Design

In existing multi-host CXL-DSM systems, only the hosts’
caches and CXL memory are within the coherence domain.
The hosts’ local memory lies outside this coherence domain,
precluding our proposed PIPM approach, as partially mi-
grated cache blocks in local memory cannot be accessed
coherently and cacheably.

4.3.1 Naive Coherence Solution. A straightforward so-
lution is to introduce a 1-bit in-memory state for each cache
block in the CXL memory to track partially migrated data’.
This state indicates whether the associated cache block holds
the most recent version,; if it does not, the request will be
redirected to the alternative memory (either local or CXL)
to retrieve the latest data. However, this approach is ineffi-
cient for multi-host CXL-DSM because existing coherence
protocols require completing a coherence state check for all
caches in the CXL memory node and initiating a memory
access from the CXL memory node—even if the latest ver-
sion resides in local memory. This complexity arises from
the potential for other hosts’ caches to hold the latest version
due to cacheable accesses.

Compute node 0
Reads——»{ Local coherence directory

CXL memory node

—»[ Device coherence directory ]

[ DRAM } DRAM
In-memory statesl Migrated pages

Figure 8. Read workflow of a naive coherence solution

Figure 8 illustrates the workflow of this naive coherence
solution. A read access from the owning host to a partially
migrated page first queries the local coherence directory to
determine whether any caches within the host contain the
most recent data @). If not found locally (i.e., Invalid state),
the CXL device coherence directory is consulted to check
whether the caches of other hosts hold the latest version @). If
this also yields no result, the corresponding 1-bit in-memory
state is examined. A value of 0 indicates that the most recent
copy resides in CXL memory, prompting data retrieval from

For most server-grade DRAM, each memory line is augmented with addi-
tional ECC bits, which are fetched, verified, updated, or discarded together
with the data upon every memory access. ECC typically occupies 8 bytes
per line, providing several tens of spare bits [27]. These bits have been
leveraged as indices for memory remapping (e.g., Intel Flat Mode [65, 99])
or as in-memory states for maintaining NUMA cache coherence (e.g., Intel
ccNUMA [52]).
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there e; conversely, a value of 1 indicates that the latest
copy is stored in local memory, leading to a retrieval from
local memory @. Regardless of the initiating host or the
location of the latest data for partially migrated pages, these
steps must be executed, incurring unnecessary CXL link
round trips that negate the benefits of page migration for
local accesses.

4.3.2 PIPM Coherence State Design. The objective of
PIPM coherence design is to ensure that all local accesses
to a partially migrated page first query the local memory
for the latest data before forwarding requests to the CXL
memory node, and to enable incremental migration based
on the most recent accessor (i.e., migrate to local DRAM if
the most recent accessor is the local host, migrate back to
CXL-DSM upon an inter-host access). To accomplish this, we
redesign the coherence protocol and utilize 1-bit in-memory
states in both local and CXL memory for partially migrated

pages.

Extra States. Existing coherence protocols define M, S, and I
states—representing Modified, Shared, and Invalid states—in
both local coherence directories and device coherence direc-
tories. To realize our PIPM coherence design, we introduce
an additional per-cache-block in-memory bit in both local
and CXL memory, along with a new coherence state (ME)
in the local coherence directory. By default, the in-memory
bit is initialized to 0. When a cache block migrates to lo-
cal DRAM, this bit is set to 1 in both the local DRAM and
CXL-DSM. The coherence directory state combined with the
in-memory bit collectively defines the PIPM coherence state
of a cache block.

In the local coherence directory, the newly introduced
ME state (Migrated-Modified/Exclusive) indicates that the
corresponding cache block has been migrated to the local
memory of the host and is cached exclusively in this host’s
cache. Subsequent local accesses to cache blocks in the ME
state can proceed without querying the device coherence
directory, thus enabling efficient coherence handling. The
encoding for the ME state comprises a new ME state in the
local coherence directory paired with an in-memory bit set
to 1, as illustrated in the upper table of Figure 9. Additionally,
we introduce the I’ state (Migrated-Invalid), representing
that the cache block is migrated to the local memory of
the host but not cached (i.e., Invalid in the directory). The
encoding for the I’ state reuses the invalid (I) state in the
local coherence directory combined with an in-memory bit
set to 1, as depicted in the upper table of Figure 9.

In the device coherence directory, we also introduce the
I’ state to indicate that the corresponding cache block has
been migrated to a host’s local memory. Inter-host accesses
to cache blocks marked as I’ in the device coherence directory
must be directed to the host’s local memory. The encoding of
the I state reuses the Invalid (I) state in the device coherence

directory in conjunction with an in-memory bit set to 1, as
illustrated in the lower table of Figure 9.

4.3.3 PIPM Coherence State Transition. The right side
of Figure 9 illustrates the PIPM coherence state transitions
triggered by various events, including six newly introduced
transitions: local writeback operations (case €)) that initi-
ate incremental migration from CXL memory to a host’s
local memory; inter-host reads and writes (cases €, @, and
@) that trigger incremental migration from local memory
back to CXL memory; and efficient local memory accesses
(cases @ and @). For clarity and simplicity, the standard co-
herence request handling workflow [52, 77], which remains
unchanged, is omitted from the following description.

Case @: Incremental Migration upon Local WriteBack
(Loc-WB)). When the local directory state is M, it indicates
that the local node was the most recent accessor of the cache
block (otherwise, the state would be either S or I) and that
the block has not yet been migrated into local memory (oth-
erwise, it would be ME). Under this condition, a writeback
operation triggers incremental migration. This migration
process involves invalidating the corresponding entries in
both the host and CXL coherence directories as well as the
host’s cache entry, retrieving and flipping the associated
in-memory state bits in both local and CXL memory, and
subsequently performing the incremental migration. Upon
completion, the coherence state transitions from M to I in
both the local host directory and the CXL device directory.

Case @ and @: Local Accesses (Loc-Rd/Loc-Wr/Loc-WB)
to Migrated Cache Blocks. Once a cache block has been
migrated to local memory, € subsequent local memory re-
quests are served directly from local memory, with the host
coherence directory updated accordingly (transitioning from
I’ to ME). Consequently, the CXL directory no longer needs
to allocate an entry for this cache block, thereby eliminating
unnecessary host-device CXL traffic. @ When this cache
block is subsequently evicted from the local cache (transi-
tioning from ME back to I’), only a dirty data writeback and
invalidation of the corresponding host directory entry are
required.

Case @: Migration back to CXL-DSM upon inter-host
memory accesses (Inter-Rd/Inter-Wr)in I’ State. When
no valid cache copies exist (i.e., the migrated cache block is
in the I’ state on both the host and device sides), another
host’s CXL memory access to the migrated line is directed to
the CXL device directory. The CXL directory issues a CXL
memory read to verify the I’ coherence state, after which the
request is forwarded to the local directory of the host cur-
rently owning the migrated data. The migrated host’s local
directory retrieves both the memory line and the associated
in-memory bit, then performs an asynchronous memory
writeback, updating its coherence state from I’ to I. Upon re-
ceiving this response, the CXL directory allocates a directory
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Figure 9. PIPM coherence design.

entry for the cache line and updates its state to M. Finally,
the retrieved data is cached in the requester host’s cache.

Case @ and @: Migration back to CXL memory upon
inter-host accesses (Inter-Rd/Inter-Wr) in ME state.
When a migrated cache line is exclusively cached at the
local host (i.e., in the ME state on the host side and the I’
state on the device side), inter-host accesses are still routed
through the requester host’s directory, the CXL directory,
and finally the owning host’s local directory. The owning
host’s local directory subsequently updates its coherence
state—transitioning from ME to I for @ Inter-Wr, or from
ME to S for @ Inter-Rd—and initiates an asynchronous
memory writeback to update the in-memory state bit. Upon
receiving the response, the CXL directory allocates an entry
and updates its coherence state accordingly: from I to M for
case @, or from I to S for case @. Finally, the requested data
is cached in the requester host’s cache.

Interaction with global and local remapping tables.
PIPM requires accessing global and local remapping tables
only for shared data access. For local private data (i.e., data
allocated and pinned in local DRAM for security or per-
formance considerations) access, PIPM does not introduce
any remapping table lookups or coherence request handling
modifications. When initiating a memory request, existing
processors that support CXL first perform a simple physical
address range check to route the memory request to the local
memory controller or the CXL RC accordingly. As accesses
to shared data always carry physical addresses within the
CXL-DSM physical address range regardless of whether the
shared data pages are partially migrated or not after virtual-
to-physical address translation and before remapping table
lookup, processors can always distinguish local private data
accesses from shared data accesses after the range check.
For shared data access, on each LLC miss (i.e., when the
local coherence directory is in I state), the requester needs
to first perform a local remapping table lookup to retrieve
the full local coherence state (I or I'). Also, each migrated

memory line access requires a local remapping table lookup.
Global remapping table access occurs only when forwarding
remote access requests (case @), @ and @).

PIPM does not introduce extra CXL directory resource
contention beyond default CXL-DSM but instead reduces
it, as migrated cache lines no longer require CXL directory
entry allocation.

4.4 Space Overhead

The local remapping table on each host’s DRAM requires 4
Bytes per entry to store a 28-bit PFN (capable of indexing
up to 1TB of local DRAM) and a 4-bit access counter. It is
organized as a two-level radix page table [63, 80] with a
fixed root node size of 32MB (8 Bytes per entry, indexing
up to 4M page table pages, where each PT page stores 1K
page table entries) to balance access latency and storage
overhead. It requires only (32MB + 4B/4KB X RSS), which is
approximately 0.1% of the total resident Set Size (RSS) of the
workloads. The global remapping table in CXL-DSM requires
only 2 Bytes per entry (consisting of a 5-bit current ID, a
5-bit candidate ID, and a 6-bit access counter), accounting
for just 0.05% of the total CXL-DSM size. By default, PIPM
requires only a 16KB global remapping cache on the CXL
device and a 1MB local remapping cache on each host’s RC
to effectively cache remapping entries.

4.5 Discussion

Majority-Vote Generality and Scalability. Our majority-
vote mechanism is lightweight and access-driven, allowing
it to generalize across diverse workload behaviors without
relying on workload-specific heuristics. When access pat-
terns are short-term-balanced across hosts, the design cor-
rectly avoids migration and retains data in the CXL memory,
preventing unnecessary movement. As the host count in-
creases, the majority-vote approach continues to suppress
performance-degrading migrations and consistently outper-
forms prior designs. Moreover, PIPM’s implementation as a
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system-wide hardware mechanism ensures inherent scalabil-
ity independent of software configurations (e.g., VM count).

5 Evaluation
5.1 Evaluation Methodology

5.1.1 Benchmarks. Our target large-scale multi-host sys-
tems typically run memory-intensive workloads with large
memory footprints that do not fit within a single socket and
large working set sizes that significantly exceed on-die LLC
capacities. Following prior work [15-17, 28, 66], we select
representative large-scale, memory-intensive workloads, as
listed in Table 1.

Table 1. Evaluated workloads.
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optimizes kernel-based page migration by enabling asyn-
chronous migration; (3) Memtis[45], utilizing a state-of-
the-art frequency-based hotness migration policy; and (4)
HeMem[68], another frequency-based hotness migration
method. We also introduce two ablation baselines to sepa-
rately analyze the effectiveness of PIPM’s migration policy
and mechanism: (5) OS-skew, which combines the PIPM
migration policy with a conventional kernel-based migration
mechanism; and (6) HW-static, which employs incremental
migration enabled by the PIPM coherence protocol but with
a static mapping strategy (i.e., without our adaptive migra-
tion policy), analogous to prior hardware-tiering approaches
such as Intel Flat Mode [65, 99]. Under HW-static, CXL-DSM
is uniformly partitioned and statically mapped to each host’s
local memory. We also include an upper-bound estimation,
(7) Local-only, where the workloads run on a single-socket
CPU with sufficiently large DRAM to hold all data.

Table 2. Scaled-down System Configuration.

Architecture

4 hosts, 1 single-socket CPU each host

CPU

4 000 cores, 4GHz, 6-wide, 224-entry ROB, 72-
entry LQ, 56-entry SQ

Private L1-(I/D)

32KB, 8-way, 4 cycle RT (round-trip) latency

Shared LLC

2MB per core, 16-way, 24-cycle RT latency

DRAM

2x DDR5-4800 channels 128GB CXL-DSM; 1x

Benchmark Benchmark Suite | Memory Footprint
SSSP (Single-Source Shortest Paths) | GAPBS [9] (Kron) 48GB
BFS (Breadth-first Search) GAPBS 48GB
PR (Compute the PageRank score) GAPBS 48GB
CC (Connected components) GAPBS 48GB
BC (Betweenness centrality) GAPBS 48GB
TC (Triangle Counting) GAPBS 438GB
XSBench (Computational kernel of | XSBench [81] 42GB
the Monte Carlo neutron transport

algorithm)

streamcluster (Data stream clustering) PARSEC [98] 18GB
fluidanimate (Fluid simulation) PARSEC 10GB
canneal (Annealing simulation) PARSEC 12GB
bodytrack (Annealed particle filter) PARSEC 8GB
TPC-C (Default) (Transaction) Silo [84] 24GB
YCSB (R:W 4:1) (Database) Silo 15GB

5.1.2 Simulation Methodology. We model the multi-host
CXL-DSM architecture using a cycle-level, trace-based tim-
ing simulator [1, 24]. The simulator configuration is detailed
in Table 2. Following prior works [15, 89], our simulation
methodology consists of the following steps: (1) We first ex-
ecute the target multi-threaded workloads on real hardware
and use Intel Pintool [8] to collect instruction and memory
traces for each thread. (2) We then replay the collected mem-
ory traces on the simulator to generate memory mapping
checkpoints at every 1-billion-instruction interval. (3) Fi-
nally, we perform detailed core simulation, beginning after
a warm-up phase, utilizing the corresponding checkpoints
and traces. This methodology enables the simulation of ap-
plications with memory footprints on the order of tens of
gigabytes and sufficiently long runtime (10 billion instruc-
tions per core).

5.1.3 Compared Schemes. We compare PIPM against the
following related works: (1) Native CXL-DSM, the baseline
configuration that does not support data migration to hosts’
local memory; (2) Nomad[90], which employs a state-of-
the-art recency-based hotness migration policy[34, 55] and

DDR5-4800 channel 32GB DRAM per host

tRC-tRCD-tCL-tRP | 48-15-20-15

CXL link latency: 50ns, bandwidth: 5GB/s (per direction)
CXL Directory 2048-set, 16-way per slice, 16 slices, 32-cycle RT
latency, 2GHz
PIPM parameters | 16KB 8-way global remapping cache, 4-cycle RT;

1MB 8-way local remapping cache, 8-cycle RT; Mi-
gration threshold: 8

5.1.4 Correctness and Implementation. We implement
the PIPM cache coherence protocol on top of the MSI proto-
col and verify it using the model checking tool Murg [22],
proving that PIPM coherence does not incur any deadlock,
and does not violate conceived Single-Writer-Multiple-Reader
(SWMR) invariant and Sequential Consistency (SC) model.
For simulation, we implement packet-level coherence be-
haviors for both default CXL-DSM and the PIPM coherence
protocol using a locked-based scheme similar to ZSim [73]’s
implementation. Based on this, we are able to model full
system cache coherency including per-core private cache,
and both on-chip and off-chip network traffic. For all evalua-
tion, we assume the code segment, kernel components (e.g.,
page tables), and thread stacks are treated as private local
data, while heap data (e.g., database instances, graphs) are
shared across hosts. Following prior work about multi-host
CXL-DSM [6, 33, 94], we initially place all shared data in
CXL-DSM.
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Figure 10. End-to-end performance normalized to Native CXL-DSM.
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Figure 11. Local memory hit rates.

For page migration schemes, we assume a 20us 4KB migration-
induced overhead for the initiating core [56, 93], a 5us over-
head for other cores, a 10ms migration interval [68] and ap-
ply optimizations such as batching TLB shootdowns [30, 31]
and multi-threaded, batched page transfers [93] to reduce
page migration overhead. For PIPM, migration decisions are
made immediately upon exceeding the promotion thresh-
old, as it incurs no kernel-induced overhead or whole-page
transfers. We empirically set migration thresholds for both
PIPM (where we observe similar performance with thresh-
old ranging from 4 to 16) and baseline schemes for the best
performance.

5.2 End-to-end Performance

5.2.1 Overall Performance. Figure 10 presents the over-
all performance of all evaluated schemes normalized to the
Native CXL-DSM baseline. PIPM outperforms the other schemes
across all workloads, achieving an average performance
of 1.86x and 0.73X (up to 2.54X and 0.94X) compared to
Native CXL-DSM and Ideal, respectively, underscoring its
substantial performance benefits. Specifically, graph analyt-
ics workloads such as SSSP and PageRank, where worker
threads independently access memory with strong locality
patterns (e.g., adjacency matrix traversals), demonstrate sig-
nificant performance improvements ranging from 142% to
151%. Database workloads such as TPC-C and YCSB, charac-
terized by random and scattered user-thread accesses, yield
more modest performance gains (36%-53%). In contrast, exist-
ing page migration schemes employing traditional hotness-
based policies (Nomad, Memtis, and HeMem) achieve only
marginal improvements over Native CXL-DSM and even
degrade performance by up to 18% in five workloads. This in-
efficiency arises because these single-host-oriented designs

neither account for migration-induced side effects nor op-
timize migration overhead, significantly restricting perfor-
mance potential of page migration in multi-host CXL-DSM
scenarios.

5.2.2 Ablation. The OS-skew baseline, despite employing
the PIPM migration policy, achieves only a 31.5% average
improvement over Native CXL-DSM due to its inefficient and
rigid page-migration mechanism. The HW-static baseline
leverages hardware-based incremental cache block migration
via the PIPM coherence protocol but employs a fixed, static
mapping between CXL-DSM and each host’s local memory.
Consequently, data blocks benefiting from local caching may
be inefficiently mapped into other hosts’ memory, substan-
tially limiting potential performance gains from fine-grained
migration. As a result, HW-static yields a modest average
improvement of only 15.7% over Native CXL-DSM. Overall,
PIPM surpasses both OS-skew and HW-static by an average
of 41.7% and 61.1%, respectively. These results demonstrate
that both the partial incremental migration mechanisms and
the PIPM migration policy are critical for achieving effective
memory management for multi-host CXL-DSM systems.

5.3 Performance Analysis
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Figure 12. Stalling cycles of inter-host memory access nor-
malized to native CXL-DSM total execution time.
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5.3.1 Memory Access Characteristics. To further inves-
tigate the effectiveness of PIPM’s migration mechanism, we
evaluate both the local memory hit ratio and the contribu-
tion of inter-host memory access stalls to the total execution
time for all schemes.

Figure 11 presents the local memory hit rates across all
schemes, where misses are directed to either CXL memory
or another host’s memory. PIPM achieves a local memory
hit rate of 56.1% on average, significantly outperforming
Nomad (26.5%), Memtis (31.0%), and HeMem (28.1%). OS-skew
exhibits a relatively higher local hit rate due to its use of the
PIPM migration policy.

Figure 12 illustrates the contribution of stalling cycles
from inter-host memory accesses to overall execution time.
Nomad, Memtis, and HeMem incur higher stall contributions
(averaging 19.1%, 16.6%, and 16.8%, respectively) due to their
whole-page migration strategies, which hinder rapid data
migration between host memory and CXL memory, thus
increasing inter-host memory access frequency. OS-skew
achieves lower stall contributions from inter-host memory
accesses (8.7% on average) owing to the PIPM migration
policy, which effectively prevents migration of pages into a
host’s memory when there are frequent accesses from other
hosts.

HWe-static induces fewer inter-host memory accesses than
kernel-based baselines, contributing only 4.1% to total execu-
tion time. However, as shown in Figure 11, it also results in a
lower local memory access ratio (21.6% on average), due to its
inability to dynamically remap data to hosts that could bet-
ter utilize local memory. In contrast, PIPM demonstrates the
lowest inter-host memory access stall overhead (only 1.5%
of total execution time) while simultaneously maintaining
the highest local memory access ratio (56.1% on average).
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Figure 13. Average ratios of local memory footprint per host
to total memory footprint.

5.3.2 Memory Consumption. Figure 13 illustrates the
average ratios of local memory footprint per host to the to-
tal memory footprint. Traditional hotness-based migration
policies (Nomad, HeMem, and Memtis) migrate frequently
accessed pages into local memory without considering inter-
host memory access, resulting in average per-host memory
allocations of 7.4%, 6.0%, and 5.2%, respectively. In contrast,
OS-skew selectively migrates pages to local memory, thereby
reducing its average per-host allocation to 4.6%. The HW-
static baseline employs a static 1:1 mapping strategy (similar

to Intel Flat Mode [65, 99]), lacking dynamic remapping capa-
bility and thus maintaining a fixed local memory allocation
of 25% per host. In comparison, PIPM leverages both its mi-
gration policy and partial incremental migration mechanism,
allocating an average of 7.3% of the total memory footprint at
the page level, while performing actual cache line migration
for 5.5% of the total footprint, as shown in PIPM-page and
PIPM-line, respectively.

5.4 Sensitivity Study and Scalability

5.4.1 Sensitivity to CXL Link Latency. Figure 14 shows
the relative performance improvement of PIPM over Native
CXL-DSM under different CXL link latencies. At a higher
link latency of 100ns per direction (representative of configu-
rations with a CXL switch), PIPM achieves an additional per-
formance improvement of 55.7% on average (up to 193.1%),
as the benefits of local memory access become more pro-
nounced.
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Figure 14. Overall IPC Performance Speedup over Native
CXL-DSM under Different CXL Link Latencies.
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Figure 15. Overall IPC Performance Speedup over Native
CXL-DSM under Different CXL Link Bandwidths.

5.4.2 Sensitivity to CXL Link Bandwidth. We use an
8x scaled-down setting as the default configuration (32 cores
= 4 cores per host, 64 GB/s (40 GB/s effective [15]) = 8
GB/s (5 GB/s) over x16 CXL lanes). As shown in Figure 15,
with half the bandwidth (x8 CXL lanes), PIPM achieves an
48.4% (up to 96%) performance gain over Native CXL-DSM
relative to the x16 lanes setting, as most applications become
both bandwidth- and latency-bound and thus benefit more
from partial incremental migration. With 2x bandwidth (x32
CXL lanes), PIPM retains 97.9% of the relative performance
improvement over Native CXL-DSM achieved under the x16
lanes setting, demonstrating that most workloads still sig-
nificantly benefit from partial incremental migration due to
their latency-bound characteristics.



ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

EEN 256KB B 512kB EEE 1MB

5559‘)‘0’(&;' St o© 0o \\oe“d(\\ \g’;?\‘\“‘a\e \J“ao\‘ \900\’0‘5‘0 PO
K\

Figure 16. Performance of different local remapping cache
Sizes, normalized to infinite local remapping cache size.
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Figure 17. Performance of different global remapping cache
sizes, normalized to infinite global remapping cache size.

5.4.3 Sensitivity to Area Overhead. We vary the on-die
buffer capacities of both the local remapping cache and the
global remapping cache to evaluate their impact on end-to-
end performance. As shown in Figure 16 and Figure 17, the
local remapping cache capacity has a higher impact on over-
all performance, as local remapping table lookups are on
the critical path of local memory accesses, whereas global
remapping table accesses occur only on inter-host memory
accesses. We observe that a 16KB global remapping cache is
sufficient to achieve 99.8% of the performance of an ideal in-
finite global remapping cache, while a 1MB local remapping
cache per host achieves 97.8% of the performance of an ideal
infinite local remapping cache. Overall, the area overhead
of PIPM is negligible, requiring only a 1MB local remapping
cache per host on the RC, and a 16KB global remapping cache
on the CXL device.

6 Related Work

In addition to the related work discussed in Section 2 and
Section 3, this section covers other related studies.

Application-level Optimization over CXL-DSM. Recent
works [29, 37, 39, 88, 91, 94, 95] focus on application-level
optimizations for (CXL-DSM-based) large shared memory
pools, including SW prefetching [37, 39], SW-managed co-
herence [91, 94, 95], replications [91, 95]. PIPM is orthogonal
to these works and can even further support application-level
optimizations by exposing software interfaces to programmers.
For example, applications can leverage PIPM’s line-level mi-
gration to enable fine-grained, lock-free prefetching, or ex-
plicitly enable or disable incremental migration for specific
pages based on program semantics to improve performance.
Also, the PIPM coherence can potentially mitigate the on-die
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area overhead of the CXL coherence directory [75, 88] for
supporting CXL 3.0 multi-host coherence, as migrated mem-
ory lines no longer require allocating CXL directory entries
until they are migrated back to CXL-DSM.

Automatic Memory Management. A large number of
prior works explore page management for tiered memory
systems [27, 45, 51, 55, 65, 67-69, 76, 78, 90, 92, 96, 99, 100]
and NUMA systems [32, 34]. In contrast, PIPM targets multi-
host CXL-DSM systems. PIPM tackles the inefficiency of
existing page migration schemes over multi-host CXL-DSM
systems by enabling meticulously combining a coherence-
aware, incremental migration mechanism with page-level
migration policy, PIPM tackles the inefficiency of existing
page migration schemes over multi-host CXL-DSM systems
while maintaining low overhead.

Distributed Shared Memory Systems. Previous distributed
shared memory systems [12, 44, 58, 87] rely on interconnects
with socket-like interfaces (e.g., RDMA). They typically em-
ploy page-based block granularity and locked-based software
cache coherency with manually managed data placement.
With the emerging CXL interconnects and hardware cache-
coherent CXL-DSM introduced in CXL 3.x, distributed shared
memory systems are able to support more efficient, finer-
grained data management at rack scale with less software
modification. Our work built on top of CXL-DSM proposes
architectural support to further unlock the potential of CXL
for distributed shared memory systems.

7 Conclusion

We propose Partial and Incremental Page Migration
(PIPM) for multi-host CXL-DSM, which selectively migrates
frequently accessed cache blocks into local memory and in-
crementally transfers data using intrinsic memory accesses.
We develop architectural support including global and local
remapping tables, PIPM migration policy, and PIPM coher-
ence protocol to effectively enable partial and incremental
page migration. Evaluations show PIPM achieves up to 2.54x
(1.86x average) speedup over existing methods, systemati-
cally overcoming key limitations of multi-host CXL-DSM.
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