
Outback: Fast and Communication-efficient Index for Key-Value
Store on Disaggregated Memory

Yi Liu
University of California Santa Cruz

yliu634@ucsc.edu

Minghao Xie
University of California Santa Cruz

mhxie@ucsc.edu

Shouqian Shi
University of California Santa Cruz

sshi27@ucsc.edu

Yuanchao Xu
University of California Santa Cruz

yxu314@ucsc.edu

Heiner Litz
University of California Santa Cruz

hlitz@ucsc.edu

Chen Qian
University of California Santa Cruz

qian@ucsc.edu

ABSTRACT

Disaggregated memory systems achieve resource utilization ef-
ficiency and system scalability by distributing computation and
memory resources into distinct pools of nodes. RDMA is an attrac-
tive solution to support high-throughput communication between
different disaggregated resource pools. However, existing RDMA
solutions face a dilemma: one-sided RDMA completely bypasses
computation at memory nodes, but its communication takes mul-
tiple round trips; two-sided RDMA achieves one-round-trip com-
munication but requires non-trivial computation for index lookups
at memory nodes, which violates the principle of disaggregated
memory. This work presents Outback, a novel indexing solution for
key-value stores with a one-round-trip RDMA-based network that
does not incur computation-heavy tasks at memory nodes. Outback
is the first to utilize dynamic minimal perfect hashing and separates
its index into two components: one memory-efficient and compute-
heavy component at compute nodes and the other memory-heavy
and compute-efficient component at memory nodes. We implement
a prototype of Outback and evaluate its performance in a public
cloud. The experimental results show that Outback achieves higher
throughput than both the state-of-the-art one-sided RDMA and
two-sided RDMA-based in-memory KVS by 1.06-5.03×, due to the
unique strength of applying a separated perfect hashing index.

PVLDB Reference Format:

Yi Liu, Minghao Xie, Shouqian Shi, Yuanchao Xu, Heiner Litz, and Chen

Qian. Outback: Fast and Communication-efficient Index for Key-Value

Store on Disaggregated Memory. PVLDB, 18(2): 335-348, 2024.

doi:10.14778/3705829.3705849

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/yliu634/outback.

1 INTRODUCTION
Disaggregated memory systems [33, 39, 42, 43, 47, 49, 53, 61] repre-
sent a transformative departure from traditional computing archi-
tectures, distributing memory storage and computational resources

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705849

’

(a) An example of one-sided RDMA. (b) An example of two-sided RDMA.

Figure 1: Examples of two types of RDMA systems.

into distinct pools of nodes – compute pools include nodes that
carry rich CPU resources, and memory pools include nodes that
carry rich DRAM and storage resources. This framework is preva-
lent in contemporary data centers and cloud infrastructures [60, 62],
providing benefits such as enhanced resource utilization efficiency
and flexibility to scale the system out by deploying more hardware.
Disaggregated memory systems can harness Remote Direct Mem-
ory Access (RDMA)-capable networks [14, 26, 40, 43, 46], featuring
substantial throughput capacities (ranging from 40 to 400 Gbps)
and small latency within the microsecond range. Memory-intensive
applications, such as transaction systems [11, 52, 57, 58] and key-
value stores (KVSs) [14, 20, 28, 66], store the data and index data
structures at the memory nodes and perform computation tasks at
the compute nodes.

Existing RDMA networks for disaggregated memory can be
categorized into two types. 1) One-sided RDMA [28, 34, 37, 48, 66]
as shown in Fig. 1(a). This type of network completely separates
computation and memory access tasks. Each data request requires
multiple round trips of communication between the compute node
and the memory node. At least two round trips are necessary:
one to access the index and the other to access the stored data.
Note that many indices require multiple layers of accesses [37,
48], hence they need much more than two round trips [36, 37]. 2)
Two-sided RDMA or RDMA RPC [21, 22], as depicted in Fig. 1(b),
involves computation tasks on both compute and memory nodes,
requiring only a single round-trip communication for each request.
However, two-sided RDMA cannot bypass the CPU on the memory
node, necessitating the CPU on the memory node to execute the
computation of the index structure, such as hash computations and
key comparisons. Since the CPU resource on a memory node is
very limited in disaggregated systems, this design may lead to CPU

335

https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3705829.3705849&domain=pdf&date_stamp=2024-10-01


bottlenecks and potentially higher latency compared to one-sided
RDMA [17, 48].

A natural question arises: "Can we design a one-round-trip
RDMA-based network that does not incur computation-heavy tasks
on memory nodes?" Achieving this goal is extremely challenging
because putting the index on memory nodes leads to CPU bottle-
necks while putting the index on compute nodes causes memory
bottlenecks and consistency issues.

This paper presents the first solution to this research problem.
Our key innovation is to design and implement an RDMA RPC-
based system, called Outback, which decouples its index into two
components. The first component is memory-efficient and includes
most computation operations of the index, which is placed onto
the compute nodes. The second component contributes to the most
memory cost of the index, but its computation is trivial, and it
is on the memory nodes. Such a design principle of decoupling
the index is ideal for disaggregated memory systems: all compu-
tation tasks for Get requests and the majority of computation for
data Insert requests are offloaded on compute nodes, while mem-
ory nodes focus on providing service for memory read and write.
Hence, this approach is particularly effective for real-world work-
loads dominated by Get requests. It is also well-suited for emerging
disaggregated memory systems equipped with SmartNICs with
limited computation resources [1, 6, 54].

Similar to prior one-round-trip RDMA networks [21, 22], Out-
back also relies on two-sided RDMA. We implement Outback as a
distributed KVS application. The index design of Outback is mo-
tivated by a recent advance of dynamic minimal perfect hashing
(DMPH), called Ludo hashing [44]. The original design of Ludo
hashing did not decouple the index into computation-heavy and
memory-heavy components, but its perfect hashing property offers
the opportunity for a novel decoupling approach that allows data
Get requests in one round trip with trivial computation on memory
nodes. For data Insert requests, we design additional operations
to update the index on both the compute and memory nodes to
ensure data consistency.

Overall, this paper makes the following contributions:
• We present a novel solution that provides one-round-trip

RDMA with RPC that incurs minimal computation tasks on
memory nodes. The design principle of decoupling the in-
dex works effectively for emerging disaggregated memory
systems.

• We design the Outback system as a distributed KVS. We
design a decoupled index based on a recent data structure
of DMPH. We also designed the algorithms and protocols
for supporting data operations and system updates.

• We implement a prototype of Outback and evaluate the
performance on YCSB workloads [12] and four real-world
datasets from SOSD [35]. The experimental results show
that Outback achieves higher throughput than both the
state-of-the-art one-sided RDMA and two-sided RDMA-
based in-memory KVS by 1.06-5.03×.

2 BACKGROUND

2.1 Disaggregated Memory with RDMA

Disaggregated memory systems with RDMA can be categorized
into two types: one-sided RDMA systems [28, 34, 37, 48, 66], and

Figure 2: Ludo hashing.

two-sided RDMA (RDMA-RPC) systems [21, 22]. An example of
one-sided RDMA systems [28, 34, 37, 48, 66] is illustrated in Fig. 1(a).
These systems support applications such as KVS and transaction
systems with various index data structures, including B/B+ trees,
hash tables, radix trees, and learned indexes. However, it is widely
recognized that multiple round-trip communications are needed
for each Get request: at least one for querying the index and one
for reading data. The high communication cost results in both long
latency and network congestion.

Two-sided RDMA-based systems [21, 22] have been investigated
to dispatch compute nodes’ requests to the memory node via RPC
over the RDMA network with only one round trip. As depicted in
Fig. 1(b), a data index, such as a B-Tree or hash table, is maintained
at the memory node. When a data query occurs, in addition to
polling the RNIC and posting messages, the CPU of the memory
node is responsible for traversing the index. The memory node
has to perform computational tasks, including hash computation,
fingerprint checking, and key comparisons. This process introduces
additional computational overhead and memory accesses. Existing
solutions [11, 29, 66] that store keys’ fingerprints in their hash
tables to save memory usage also introduce extra computation. For
example, if the memory node employs the state-of-the-art (2,4)-
Cuckoo hash table [38], each Get request requires one fingerprint
computation and, at most eight rounds of fingerprint checking.

2.2 Dynamic minimal perfect hashing

In this subsection, we first introduce the background of DMPH and
then present an existing MPH implementation, Ludo hashing [44].

Perfect hashing [16] represents a family of schemes that designs
and manipulates hash algorithms to distribute keys to different
buckets in a hash table without collisions. Since it is impractical to
find a single hash function that generates no collisions for a large
set of keys, a common approach is to use two levels of mapping.
The first level maps keys to a number of groups, each of which
contains several keys. The second level addresses key collisions
inside each group. Minimal perfect hashing maps𝑛 keys to exactly𝑛
buckets, but it is inflexible for key insertions and only applicable to a
static set. To allow key dynamics, dynamic minimal perfect hashing
(DMPH) may use (1+𝜖)𝑛 positions for 𝑛 keys [44, 64]. One primary
advantage of perfect hashing is that it does not need to store the keys
in the hash table. Since perfect hashing eliminates collisions, a key
query does not need to compare keys to address collisions. Avoiding
storing keys can significantly reduce memory costs, because as a
secondary index, the size of keys (usually hundreds of bits) is much
longer than the queried value in a hash table (usually a storage
address in tens of bits).

336



One of the most recent solutions of DMPH is called Ludo hash-
ing [44]. As shown in Fig. 2, Ludo hashing [44] first uses a data
structure calledOthello [56], a dynamic implementation of Bloomier
filters [8] with two arrays, as the bucket locator to distribute keys
into different buckets, each of which includes exactly 4 slots. Then,
in each bucket 𝐵𝑖 , Ludo hashing uses brute force to find a hash
seed 𝑠𝑖 such that the hash function with 𝑠𝑖 can map the 4 keys in
the bucket to 4 different slots without collision. Hence, there is no
need to store keys in the table for collision resolution. The space
cost of Ludo is 3.76 + 1.05𝑙 bits per key, where 𝑙 is the length of the
record value, which is claimed to be the smallest memory cost in
the literature [44]. The bucket locator leverages Othello arrays [56],
which costs 2.33 bits per key. Each bucket contains a 5-bit long
seed shared by four keys in Ludo, i.e., 1.25/0.95 bits per key when
we set the load factor as 95%. Also, the majority of memory cost is
for storing the values in the buckets, costing 1.05𝑙 bits per key. We
observed that the computation for looking up the slot only needs
the bucket locator and the seeds, which are memory efficient. On
the other side, the hash table buckets/slots part storing all data
values contributed to most memory of this index, but it requires
little computation.

3 MEASUREMENT AND MOTIVATION
Wewonder if, we remove the computation cost at the memory node,
will RDMA-RPC demonstrate much higher throughput than the
state-of-the-art one-sided RDMA? If the answer is "Yes", then

there is a great opportunity to design a high-throughput

RDMA-based KVS by reducing the computation cost at the

memory node.

Toward this objective, we conduct experiments to analyze the
throughput performance of both one-sided RDMA and RDMA-RPC
systems with 9 r320 servers in CloudLab [15], each is configured
with a Mellanox CX3 adapter (50Gbits). We compare the perfor-
mance of the following systems with Get-only workload. (1) RACE
hashing [66], a state-of-the-art one-sided RDMA-based scheme. Its
hashing index is crafted for disaggregated memory, facilitating data
retrieval within two round trips. (2) RPC-hash table, a two-sided
RDMA method whose compute nodes and memory nodes commu-
nicate in RDMA unreliable datagram (UD) mode. Each memory
node maintains a chained hash table in its local memory to handle
remote data requests. (3) RPC-Dummy. A hypothetical RDMA-RPC
method that incurs minimal computation cost at each memory
node. RPC-Dummy only implements one memory access and then
returns any data in the accessed memory at the memory node, with
no extra computation tasks. RPC-Dummy’s throughput can be con-
sidered the upper bound among all possible RDMA-RPC systems.
We use this method to explore the performance potential of our
design objectives. We vary the number of memory node threads as
1, 2, and 4 in RPC-based approaches, and each memory node thread
maintains one Queue Pair (QP) and runs in a distinct CPU core.

The results are shown in Fig. 3(a). For one memory node thread
(one core), RPC-hash table achieves a throughput similar to that
of RACE hashing. For RACE hashing, multiple reasons limit its
throughput, including the two round trips to complete one data Get
operation andmultiple RC connections of the compute node threads
that incur resource contention in the RNIC cache [10]. RPC-hash
table requires only one round trip, but the complexity of querying

RACE hashing (One-sided RDMA scheme)
RPC-hash table (w./ 1, 2, and 4 server threads)
RPC-Dummy (w./ 1, 2, and 4 server threads)

(a) Throughput of different systems with limited number of memory node threads.

(b) The CPU time breakdown on a memory node with one thread.

Figure 3: Observations from the microbenchmarks.

the index on the memory node introduces extra latency and limits
its throughput. The throughput of RPC-hash table increases cor-
respondingly when we increase the number of threads to 2 and 4.
In contrast, RACE hashing maintains a static performance. RPC-
Dummy can outperform RPC-hash table by around 2× under the
cases of both single and multiple memory node threads. Hence an
RDMA-RPC network that introduces little computation overhead to
the memory node can achieve higher throughput than both existing
one-sided RDMA and RDMA-RPC solutions. The results suggest
that RPC-based KVS has a potential for throughput improvement
by reducing computation tasks at memory nodes, which motivates
the design of this project.

CPU utilization breakdown for RPC-based approaches.

We run RDMA-RPC with different indices: hash table, Btree, and
learned index, at the memory node. The CPU time consumed by
these four RPC-based KVS systems while handling an equal num-
ber of data Get requests is normalized and presented in Fig. 3(b),
with the number of compute node threads fixed at 64. RPC-Dummy
takes the least time. Other approaches consume more time in differ-
ent amounts. For RPC-Btree, in addition to the communication
overheads for polling mlx4_poll_qp (4.03%), posting messages
mlx4_post_send (7.52%) and UD transport (6.85%) from connection
management, the most CPU-consuming event is the RPC callback
function (70.59%), which executes local index lookup and data ac-
cess. In all four schemes, the RPC callback function consumes the
most CPU time, and the variations in CPU consumption among
them are mainly attributed to differences in the RPC callback func-
tion. RPC-Btree consumes the most CPU time for RPC callback,
followed by RPC-hash table. RPC-Dummy spends the least CPU
time on the RPC callback function (46.11%) and serves the most data
requests because there is no computation burden for the memory
node in RPC-Dummy. In disaggregated systems, tasks such as com-
puting hash functions on a hash table, traversing tree nodes in a

337



Compute Pool

Compute Nodes Shard

Compute Node1

Memory Pool

Memory Node Shard

Memory Node

Compute Node2

Figure 4: Outback overview

B-Tree, and executing learned models on a learned index are not ide-
ally suited for memory nodes. The throughput of RDMA-RPC

methods is mainly limited by CPU usage during the RPC

callback function for index lookups and data reads. High

CPU consumption from complex index computations on

memory nodes reduces throughput, particularly when CPU

resources are constrained, indicating that optimizing these

computations can enhance performance.

4 DESIGN OF OUTBACK

4.1 Overview

Based on the motivation presented in the previous section, we de-
sign and implement an RDMA-RPC network that aims to minimize
computation tasks on memory nodes, consequently enhancing the
system throughput. This section presents the design of Outback, a
scalable RDMA RPC-based disaggregated KVS that tackles the per-
formance limitations of existing RDMA RPC and one-sided RDMA-
based schemes. To accomplish this design objective, we decouple
the index of Outback into two components: 1) a computation-heavy
component running on compute nodes, and 2) a memory-heavy
component running on memory nodes. In particular, DMPH pro-
vides an opportunity for this decoupling. By carefully examining
the DMPH’s read and insertion operations, we observe that the
final step consistently is directly retrieving the value from a spe-
cific memory location, while all the previous steps are employed to
determine that location. Contrary to DMPH, other hash tables ne-
cessitate retrieving the key from the hashed location by key probing
and comparison, and only when the key matches the search key, the
value can be returned. The distinctive process of DMPH motivates
us to store all values in the memory-heavy components because
they can be read without extra computation. And the steps to deter-
mine the location of the value can be placed in the compute-heavy
component running on the compute nodes.

Outback requires only a single round trip for data requests while
supporting a large number of concurrent compute nodes’s requests.
In contrast to other RDMA RPC-based approaches [20, 22], Outback
substantially reduces CPU resources required on the memory node.
In the following, we elaborate on the components maintained in
the compute pool and memory pool of Outback.

Fig. 4 depicts the overall structure of Outback, which leverages a
shared-nothing architecture [47] for separating data into different
shards with consistent hashing [23]. The compute pool comprises
multiple compute shards, each accommodating several compute

Figure 5: The data layout in a DMPH bucket.

nodes. Note that the configuration for the number of shards and
the number of compute nodes depends on the memory budget
in compute nodes and the whole size of the datasets. For each
shard, an index is built based on the keys of the shard, and the
returned values of the index represent the memory locations that
store the corresponding data associated with the keys. The index is
decoupled into the compute-heavy andmemory-heavy components.
Each compute node is allocated a memory budget for caching the
compute-heavy component, including the bucket locator and the
seeds. The default setting is there are 64 million keys in a shard,
and the memory overhead on each compute node is less than 50MB
(§5.8). This is considered a small overhead because recent one-sided
RDMA solutions cost over 300 MB on each compute node for index
caching and other purposes [28, 50]. All compute nodes in the same
shard will connect to the memory node with RDMA RPC for data
operations and one-sided RDMA for new bucket locator fetching
after index resizing – the details will be explained in §4.4. Each shard
consists of one memory node, which contains the most updated
bucket seeds, overflowed cache, DMPH buckets, and KV data in the
shard. The DMPH buckets store the data addresses in the KV data
memory space of the keys in the shard. The latest bucket seeds are
maintained to ensure the consistency of data insertion. Additionally,
the overflowed cache for KV pairs is used to temporarily hold the
pair of the new key and the address, which cannot be inserted
into DMPH buckets without the need for hash table resizing. We
leverage a hash table to work as the overflowed cache in Outback.
The KV data in each shard is replicated to two other shards, serving
as replicas with checkpoints. These two replica shards can be chosen
as the two successive shards in the consistent hashing ring. Each
key’s primary replica shard is referred to as the primary shard of the
key. Each shard is identified by a uuid. We assume there is a service
layer in front of the compute nodes responsible for only forwarding
data requests to one of the compute nodes in the primary shard
based on the key’s hash value in the consistent hashing ring. After
the memory node in the primary shard completes a data update
operation, it forwards the update to its replica shards. To ensure
load balance among compute nodes within a shard, the service layer
maintains a counter for each shard and distributes requests to the
compute nodes in a round-robin fashion.

4.2 Decoupled DMPH index

In this section, we explain the detailed data structure and its com-
ponents maintained in the compute node and the memory node.
We reuse the design of Ludo hashing as introduced in §2. There are
two candidate buckets for each key, and the bucket locator runs a
data structure called Othello [56] to determine which bucket the
value of the search key is stored in. Each Ludo bucket contains one

338



Addr

(a) Get operation.

Addr

(b) Insert operation.

Addr

(c) Update and Delete operation.

Figure 6: Data operation protocols in Outback.

seed and four slots. By computing a hash value with the search key
and the seed, the key is mapped to an exact slot of the bucket with-
out colliding with other keys within the same bucket. The value
stored in the slot represents the key’s data address and is utilized
to retrieve the corresponding data.

We decouple the entire data structure of Ludo hashing into two
components. The compute-heavy component running on each com-
pute node stores both the bucket locator and the seeds for all DMPH
buckets. This component completes all computations related to find-
ing the location that stores the value of the search key and costs
only 3.76𝑛 bits – 2.33𝑛 bits for the bucket locator and 1.43𝑛 bits
for the seeds, where 𝑛 refers to the number of KV pairs in a shard.
Within the memory node, the memory-heavy component consists
of all DMPH buckets that store the data addresses for all keys in
the shard. Assuming the load factor of the DMPH table is set to 𝜖
with a default value of 0.95, the number of DMPH buckets will be
𝑛/(4 · 𝜖) as each bucket accommodates four slots. The detailed lay-
out for each DMPH bucket is illustrated in Fig. 5, and each bucket
is 32-Byte long with four packed slots. There are four fields in each
slot: cache bit (1 bit), fingerprint (6 bits), length (9 bits), and data
address (48 bits). The cache bit serves as an indicator to identify
whether another key(s) share the same slot, with its index stored
in the overflowed cache. Meanwhile, the 6-bit fingerprint is only
utilized during the index update process to verify if the KV data
referenced by the address in this slot corresponds to the search key
or not. This fingerprint check is exclusively applied during data
write requests, and any false positives do not impact the final result.
This is because a comprehensive recheck of the full key occurs after
accessing the actual KV data block on the compute node side. Note
that read requests do not need to check the fingerprint. The address
signifies the starting offsets of the KV block, while the length indi-
cates the byte length of the entire KV block in the underlying KV
data area. In the underlying data area, the KV block is compactly
stored with four fields. The initial two numbers, each occupying 8
bytes, denote the length of the key and the subsequent value field.

The overflowed cache accommodates the key-address pair that
cannot be inserted into the mapped DMPH bucket without modify-
ing the bucket locator or resizing the entire hash table.

For an estimation, if 𝜖 = 0.95, the component at the compute
node contributes to only 5.5% of the total memory size of the index

while the component at the memory node accounts for the larger
portion of 94.5%.

4.3 Outback operations and protocols

This subsection presents the data operations and the corresponding
protocol of Outback, including the data Get, Insert, Update, and
Delete operations, as shown in Fig. 6.

4.3.1 Data Get operation. As shown in Fig. 6(a), the compute node
maintains the bucket locator (two Othello arrays 𝐴 and 𝐵) and the
seed array 𝑠 . Meanwhile, the memory node maintains the DMPH
buckets that store KV addresses and the KV data in a disjoint mem-
ory area. When there is a data Get request for key 𝑘 , the compute
node will � compute the bucket index from the bucket locator by
looking up two bits on the two arrays, respectively. Assuming the
bucket index that stores the queried key is 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 , the compute
node will then proceed to � compute the slot number within the
bucket with the hash function and the seed 𝑠 [𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡]. At this
point, the compute node� gets both the bucket index and slot index
in the MPH buckets, and it � posts them to memory nodes with
RDMA_SEND in the opaque fields. After the memory node gets
the message and parses the index numbers of the bucket and slot,
𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 and 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 , it will � go directly to the MPH buckets
to access the exact slot without any extra computation. Then, the
memory node � gets the data offset in the underlying KV data area
from the last 48-bit field of the slot. At last, � the KV data will be
read back and returned to the initiating compute node for full key
check. For example, when a compute node requests data for key 5, it
computes the bucket index 10 and slot index 0 based on the bucket
locator and the locally stored seeds. Then, the pair of indices (10,0)
is sent to the memory node. The data index stored in the indicated
slot of the memory node is read, and the corresponding data block
is returned. Lastly, the compute node checks the cache bit and a
full key to see if the MakeupGet is needed.

There could be some KV pairs that are temporarily inserted into
the overflowed cache during the updates and reconstruction of
the index. In this circumstance, the compute node is tasked with
checking the cache bit, ensuring that the returned full key aligns
with the queried one. If the key does not match the requested one,
and the cache bit in the slot is set to 1, the compute node will
initiate another Get makeup request with the 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 specified
as -1, signaling the memory node that the returned key does not
match the requested key. While it is possible to offload the full key

339



comparison task to the memory node, saving one round trip, this
approach introduces computation overheads on the limited remote
core resources. To make the common case easy, we opt to assign
the full key check task to compute nodes.

Makeup Get request. When the KV data returned to the com-
pute node does not match the requested key, there are two reasons:
(1) The requested key is kept in the overflowed cache. The KV pair
is inserted after the DPMH table is constructed, and the hashed slot
is occupied by another key. (2) The requested key is in another slot
of the hashed bucket. This case results from changing the order of
keys based on the new seed within the bucket when the inserted
key can fit into the current DMPH table (detailed in Section 4.3.2).
Due to the above two situations, the compute node will send the
makeup Get request with the 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 as -1 to the memory node.
The memory node will search the overflowed cache first; if there
is a cached item matching the full key of the requested key, it will
read the data and return it to the compute node. If not, it will read
out all the KV blocks referred by the hashed bucket (at most four)
and compare the keys until it finds the requested key. Additionally,
the new seed will be returned back to the compute node if the key is
found in another slot, and the compute node will update the copied
seeds array for this bucket locally.
4.3.2 Data Insert operation. The main idea of implementing the
data Insert operation of Outback is to determine if we can insert
the key into the index without significant changes to the current
bucket locator. If an Insert operation only requires changing the
value in one DMPH bucket, Outback can make this change directly.
However, if a Insert operation will cause the index to resize, which
usually happens after a number of insertions, Outback needs to en-
sure the correctness of the Insert operation and following lookups
during index resizing. As shown in Fig. 6(b), like Get operation, the
compute node will get 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 and 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 from the bucket
locator and the seeds through multiple hashing computations. Dif-
ferent from Get, the RPC message posted to QP should include the
full key. Thus, the memory node can parse the 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 , 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 ,
and the key from the message and execute the following steps. �
the memory node will write the data into the underlying data area,
then it can get the data length and the address (offset in the data
area) for indexing. After the memory node composes the value from
the corresponding slot with the cache bit (set to zero by default),
fingerprint, length as well as address, it � will try to insert it in the
DMPH table.

We discuss the rest of Insert in three cases:
• Insertwithout bucket locator and seed change. The mem-

ory node checks the slot indicated by 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 and 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 . If
the length field is empty (length is 0), signifying there is no key
associated with this slot, the memory node inserts the composed
slot value (Fig. 5) into this location and returns SUCCESS to the
compute node. Conversely, if the length is non-zero, indicating that
an existing key is using this slot, the memory node proceeds to
check the fingerprint and compares the full key to determine if the
original key in this slot matches the inserted key. If they match,
the insertion is resolved and treated as an Update operation. The
fingerprint can prevent the memory node from reading the full key
in the KV data area if they are not the same.

• Insertwith seed changes but the bucket locator remains

the same. If the key associated with the targeted slot does not

match the newly inserted one, an examination is made to deter-
mine if there is another available slot within this bucket. Assuming
there are only three keys in this bucket, and the slot indicated by
𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 is already occupied by a different key, the memory node
endeavors to find a new seed that accommodates all four keys in
the bucket without causing collisions, thereby preserving perfect
hashing policy in this bucket. The other three keys are read from
the underlying KV data area, and the memory node employs a
brute-force approach to identify a new seed for perfect hashing
within this bucket. Importantly, the bucket locator does not need
to change because all four keys remain in the same bucket. Subse-
quently, the updated seed for this bucket is returned to the compute
node, which then propagates this modification to other compute
nodes in the same shard.

• Insert data to overflowed cache. When all four slots within
the bucket are occupied, and the memory node is unable to find an
empty slot for the inserted key, the pair of the key and the KV block
address will be � placed in the overflowed cache. Also, the cache
bit in the conflicted DMPH slot will be set to 1 to indicate at least
one key in the overflowed cache sharing the same hash slot. Instead,
when the number of KV pairs in the overflowed cache reaches a
predefined threshold, the memory node initiates the index resizing
process to accommodate more KV pairs in a new DMPH table.

The data insertion process on each memory node works as fol-
lows. At first, the memory node will lock the data operations on
the targeted bucket to prevent the potential data operations on this
bucket. The inserted key might have been stored in the DMPH table
before. Thus, the memory node will check if the insert request can
be resolved to a data update operation by comparing the fingerprint
and the underlying full key. Then, the memory node first writes the
KV block to the underlying data area and processes the data insert
request based on the stored bucket keys into the mentioned three
cases. Finally, the memory node unlocks the bucket after it finishes
the data insert operation. Note that the data insert request tuple
sent by the compute node consists of the KV pair and 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 ,
not including 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 . The reason is that the memory node keeps
the most update seeds array in the shard and can use the seeds to do
the hash computation as the slot locator. Also, the bucket locator is
not maintained in the memory node, and the data insert operation
will not modify it after the DMPH table is constructed every time.
This choice is made because modifying the bucket locator requires
changing seeds for keys in at least two buckets, leading to more
computational overhead.

4.3.3 Data Update and Delete operations. For data update and dele-
tion, the compute node also acquires the 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 and 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡
from the bucket locator and the seeds array. Like the Insert oper-
ation, the compute node transmits the full key to the memory node.
As illustrated in Fig. 6(c), the memory node directly accesses the
address of the KV data from the DMPH bucket and verifies whether
the requested key matches the underlying data. Once the memory
node confirms the key, for Delete, it marks the length of the slot
value as zero and returns the corresponding status. In the case of
Update, it writes the new data to the underlying data area. If the
cache bit is set to 1 and the keys differ, the memory node will go to
the overflowed cache to get the data address.

340



2 1 2
2 1 2

00 01 10 11
Directory 

index

Hash tables 
indices

00 01 10 11

Hash 
tables 

Local 
depth

Compute node Memory node

Directory 
index

Figure 7: Extendible hashing in Outback.

4.3.4 Concurrency control. Each bucket in the DMPH table within
the memory node has a mutex lock. Prior to executing any Insert,
Update, or Delete operation, the relevant bucket is locked, blocking
any access to its indices. Subsequently, the operation is executed
and the lock is released. During the lock period, all other operations
targeting this bucket are buffered and only processed once the lock
is released.

4.4 Index resizing

When the number of KV pairs in the overflowed cache surpasses
a predefined threshold, index resizing and reconstruction become
necessary to accommodate the KV pairs into a new hash table.
This resizing process introduces two challenges: (1) managing data
operation requests during resizing and (2) efficiently coordinating
the compute node and memory node to transfer the bucket locator
and seeds.

To support data requests on runtime while index resizing, we
apply extendible hashing [32, 66] to allocate a new DMPH table
to accommodate more keys’ indices, and a directory index is used
to identify the multiple DMPH tables, which is an additional hash
layer as shown in Fig. 7. This approach reduces the number of
keys that need to be moved during index resizing and shortens
the resizing duration. Compute nodes maintain the bucket locator
and seeds array for each single hash table, while memory nodes
store the most update seeds array and DMPH tables, as well as local
depth array [32, 66].

In each shard, we have two size thresholds for overflowed cache;
One is for slowing down insertions, 𝑠𝑠𝑙𝑜𝑤 . The memory node reach-
ing this threshold will enter the index resizing process. The other
threshold is the size when the memory node stops any follow-
ing insertions 𝑠𝑠𝑡𝑜𝑝 even if the index resizing is not finished and
𝑠𝑠𝑡𝑜𝑝 > 𝑠𝑠𝑙𝑜𝑤 . We set 𝑠𝑠𝑙𝑜𝑤 as the load factor of the DMPH table
becomes 97%, or the overflowed cache is filled with half of the size.
𝑠𝑠𝑙𝑜𝑤 is set when the overflowed cache is filled with over 90% space.

As shown in Fig. 8, when � the overflowed cache size reaches
𝑠𝑠𝑙𝑜𝑤 after an Insert request from a compute node, � the memory
node will return the status PRE_RESIZE to the compute node, and
the compute node will create a new connection manager for prepar-
ing and listening to build a one-sided RDMA connection with the
memory node. The memory node will return PRE_RESIZE to the
data requests for all compute nodes in this shard and count up the
number of compute nodes that got the information. After all the
compute nodes get it or the overflowed cache size reaches 𝑠𝑠𝑡𝑜𝑝 ,
The memory node will build the one-sided RDMA connection (RC)
with all compute nodes. The registered memory area in the memory
node consists of five fields: (1) The value of the first eight bytes
𝑁𝑐𝑁𝑜𝑑𝑒 indicates the number of compute nodes in this shard, but

Figure 8: Index resizing in Outback.

it is set to zero at the beginning to indicate that the new index has
not been completely reconstructed. After it finishes, the value will
be set to the number of compute nodes in this shard; (2) the second
value of the following eight bytes 𝑙𝑒𝑛 refers to the total length of the
newly written bucket locator arrays and seeds array; (3) 𝐺𝑙𝑜𝑏𝑎𝑙𝑑
refers Global depth [32] value in current extendible hashing; (4)
newly computed seeds array; and (5) bucket locator arrays 𝐴 and 𝐵.

On the compute node, once a connection is established with
the memory node, it continuously sends RDMA_READ requests
to retrieve the first two values 𝑁𝑐𝑁𝑜𝑑𝑒 and 𝑙𝑒𝑛 in the registered
memory of the memory node. If 𝑁𝑐𝑁𝑜𝑑𝑒 is greater than zero, that
means the bucket locator arrays and the seeds array have been
successfully constructed and written into the memory area. � The
compute node then issues another RDMA_READ requests to fetch
all the subsequent 𝑙𝑒𝑛 data. Additionally, an atomic primitive of
fetch-and-add FAA is executed to decrement 𝑁𝑐𝑁𝑜𝑑𝑒 by one, signi-
fying the completion of a compute node fetching the new index
data.

Before the new bucket locator and seeds array is constructed,
upon receiving an Insert or Delete request, the memory node
returns a FALSE status to compute nodes. Then, the memory node
caches the Insert/Delete requests and implements them later
after the index data moves to the new DMPH table. For Get and
Update requests, the memory node will continue serving it on
the stale DMPH table. The reason is that no new data insertion
would be implemented during resizing, and the keys’ 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡
and 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 will not change.

Once all compute nodes have obtained the new bucket locator
arrays and seeds, 𝑁𝑐𝑁𝑜𝑑𝑒 in the memory node becomes zero. The
memory node detects this change through periodic checks at a fre-
quency of 2 times a second. It proceeds to discard the bucket locator
arrays to free up memory space, as they will remain unchanged
until the next MPH resizing. The memory node will also delete all
moved keys in the stale DMPH table by marking the length field
as 0. Then, the reliable connections with all the compute nodes
will be terminated by the memory node, and all the compute nodes
shift to use both the DMPH tables with the extendible hashing for
processing data requests.

Note that all hash table-based disaggregated KVS require en-
largement and shrinking capacity at runtime. The computation
time for the extendible hashing layer is the same for Outback and
prior works [14, 32, 66]. In Section 5.9, we will show the influence
on Outback throughput during index resizing.

341



4.5 Analysis

In this section, we provide the theoretical analysis of the time
complexity of the various data operations, as well as the estimation
of the memory cost in both compute nodes and memory nodes.
Time complexity. For Get operations, each compute node is tasked
with determining locations of the DMPH bucket and slot that stores
the address of the requested KV. This involves two hash compu-
tations, namely ℎ𝑎𝑠ℎ𝐴 (𝑘) and ℎ𝑎𝑠ℎ𝐵 (𝑘), to access two bits in the
bucket locator arrays. Subsequently, an additional hash computa-
tion with the bucket seed is performed to locate the specific slot.
Then, the memory node can access the slot without further compu-
tation and proceed to read data from the referenced KV block. By
default, we use a (2,4)-Cuckoo hash table [38] as a fallback table if
no seeds can perfectly hash the four elements. In the worst case,
accessing the Cuckoo hash table requires two additional hash com-
putations and at most 8 key checks, resulting in a time complexity
of O(1) for operations involving the Cuckoo hash table. Therefore,
the worst case complexity remains O(1). For both the compute node
and the memory node, the data Get operation incurs a small con-
stant time. This time complexity extends to data update and data
removal operations.

The only difference in Insert lies in the potential time overhead
incurred in finding a new seed for the keys in the bucket. To address
this, we have set a maximum number of trying times to 256 (8-bit
seed). The reason is that we have not encountered a scenario in
which no seed can be found within [0, 255] to separate those four
keys without collision. We also have a fallback table (storing the
key and the KV block address) to deal with rare cases when a group
of keys appears that cannot be distributed into distinct slots by
MPH. Statistically, we have observed no buckets that cannot be
perfectly hashed with a seed length of 8. Therefore, the time cost
associated with data insertion is also constant.
Memory usage. In compute nodes, the memory usage is allocated
to the bucket locator and bucket seeds. According to Ludo [44], the
bucket locator arrays consume 2.33 bits per key. The 8-bit seed is
shared among four keys in a bucket. Assuming there are 𝑛 KV pairs
in a shard, with a load factor of 𝜖 for the MPH table, the memory
cost in a compute node is calculated as (2.33 + 2/𝜖)𝑛 bits.

In addition to the underlying KV data, memory nodes allocate
memory to encompass the latest bucket seeds, DMPH buckets, and
the overflowed cache. Each bucket incurs a cost of 32 bytes, and the
cache item contains the full key size and the data address. Given
a cache size of𝑚 and a cache item size of 𝑐 bits, the overall space
budget (in bits) for indexing in a memory node is 66𝑛/𝜖 +𝑚 · 𝑐 .

4.6 Discussion
General applicability on traditional data structures. The de-
sign principle of Outback can boost data search in traditional data
structures with the capability of serving range queries. Specifically,
perfect hashing can boost the search process with one-time hash
computation with low memory costs that can be cached in compute
nodes. For example, the binary search in B/B+ tree leaf nodes can
be replaced by perfect hashing computation by searching a seed
for hashing keys in leaf nodes.

Ship computation to data. Outback decouples the process of
DMPH into a memory-heavy component at memory nodes and a
compute-heavy component at compute nodes and allows them to

communicate via RDMA-RPC primitives. However, the memory
accessing based on the given 𝑖𝑛𝑑_𝑏𝑢𝑐𝑘𝑒𝑡 and 𝑖𝑛𝑑_𝑠𝑙𝑜𝑡 still needs
a weak power computation unit close to data [55]. We can apply
Outback to another two promising approaches without using two-
sided RDMA verbs.

• Extended RDMA READ verb. PRISM [7] proposes and simulates
an extended one-sided RDMA indirect reading verb RDMA_READ
(ptr addr, size len, bool indirect), where indirect indicates if
RNIC is supposed to read back the data pointed by the addr. This
embedded one-sided RDMA verb can free the memory node’s
CPU and offload the memory reading task in Outback to RNICs.
The reason is that Outback can get the exact requested data
address without potential data probing.

• Performance capacity of Outback with hardware accelerators. In-
network computation [63] has gained attention for accelerating
data services in distributed systems by offloading tasks to in-
network computation devices [18, 59] such as SmartNICs/DPUs
and CXL [2]. The idea of Outback can reduce the computation
burden on SmartNICs by employing one round-trip, one-sided
RDMA_READ. For example, a SmartNIC [6, 30, 41, 45] can be
placed on the memory node side, and function as an additional
computation unit, and indirect data access tasks can be offloaded
to it [51]. After the compute nodes in Outback issue a one-sided
RDMA to read the queried key’s slot and retrieve the address from
the DMPH buckets, the SmartNIC can read the memory again via
the PCIe switch and obtain the queried data through an additional
PCIe round trip. The computation and data search tasks offloaded
to the SmartNIC can be alleviated with the assistance of DMPH
for the least computation burden.

Shared-nothing architecture. Outback utilizes a shared-nothing
architecture [47] to prevent the update of cached seeds across com-
pute nodes in different shards. The number of KV pairs in each
shard depends on the overall size of the database and the number
of shards. A greater number of shards results in fewer KV pairs
on each memory node. Consequently, the memory allocation for
DMPH seeds and bucket locator on each compute node can be
reduced, although additional memory nodes are required. Deter-
mining the granularity for sharding KV pairs has always been a
tradeoff [65], and it is recommended to choose the configuration
based on the specific application.

5 PERFORMANCE EVALUATION
5.1 Methodology

Testbed.We run experiments in two environments. 1) 6 r650 ma-
chines from a public cluster CloudLab [15]; each of them is equipped
with one Two 36-core Intel Xeon Platinum 8360Y CPU at 2.4GHz,
256 GiB DRAM and one Dual-port Mellanox ConnectX-6 (CX-6) 100
GbE NIC with Driver version as MLNX_OFED_LINUX-4.9-5.1.0.0.
We conduct experiments with two shards, and each shard contains
3 machines. We use one machine as the memory node and the other
two as compute nodes. The memory node registers the memory
with huge pages to reduce RNIC’s page cache misses, which is
beneficial for memory-intensive applications [50, 66]. On compute
nodes, we use two coroutines on each client thread to increase the
query efficiency (See analysis in Section. 5.5). This is the default ex-
periment environment unless otherwise stated. 2) 9 r320 machines
in CloudLab [15], each of them is equipped with one Xeon E5-2450

342



(a) Workload A. (b) Workload B. (c) Workload C. (d) Workload D. (e) Workload F.

Figure 9: Throughput under YCSB benchmark with single memory node thread with Mellanox CX-6.

(a) Workload A. (b) Workload B. (c) Workload C. (d) Workload D. (e) Workload F.

Figure 10: Throughput under YCSB benchmark with Mellanox CX-3 RNICs.

CPU (8 cores, 2.1Ghz), 16 GiB DRAM, and one Mellanox MX354A
Dual port FDR CX3 adapter. We use 1 machine as the memory
node and the other 8 as compute nodes. We utilize 64-byte RDMA
messages for all workloads to encapsulate various operation types
(RC READ, UD SEND, and UD RECV), ensuring each request is
padded to span two cache lines [21]. We do not use batching at any
layer to minimize the latency in all evaluations.
Workloads. To evaluate the overall performance of Outback and
other baselines, we employ YCSB [3, 12] workloads along with
two diverse real-world datasets [35]. These datasets are (1) FB, en-
compassing a random assortment of Facebook user IDs to analyze
patterns within social media interactions; (2) OSM, providing digi-
tized infrastructure footprints from Open Street Map to represent
geographical and spatial data usage; To ensure the datasets reflect
general, unsorted data conditions, we shuffle them if initially sorted
upon loading. Unless specified, we use 8B keys and 8B address
values to configure all workloads like existing schemes [25, 28]
for comprehensive evaluations. For each run, we precondition the
memory node and warm up the database with 64 million KV pairs
at first and then issue 10M requests to the benchmark on top of it.
Baselines. We develop a prototype of Outback based on RDMA
libraries rlib and r2 [52] with over 4000 LoC in C++. We compare
Outback with the other three baselines, one is a recently proposed
one-sided RDMA scheme, RACE hashing [66], which utilizes RDMA
RC READs for its operations; The other two are two-sided RDMA
schemes that operate on RDMA SENDS/RECVs, differing in their un-
derlying data structures – MICA [20, 29] and Cluster hashing [11].

• RACEhashing. RACE hashing [66] is a representative one-sided
RDMA scheme developed recently. It offloads all data operations
to compute nodes to free the memory node CPU with one-sided
RDMAprimitives. RACEHashing adopts an RDMA-friendly hash
table to combine the overflow bucket for collided keys and the
hashed bucket. Thus, all the candidate buckets containing the

requested key can be read back together. We develop RACE hash-
ing with over 1,400 lines of C++ code, excluding the benchmark
part that is shared with other baselines.

• RDMA RPC-MICA. RPC-MICA is a two-sided RDMA-based
scheme with a data structure MICA [20, 29], which is an efficient
hopscotch hash table and it has been used in existing two-sided
RDMA [20, 22]. The overflowed KV pairs can be stored in the
bucket adjacent to its hashed bucket. We implement hash com-
putation for the bucket number on the compute node and send
the queried key’s fingerprint and bucket number to save com-
putation on the memory node. We apply the open-source code
from MICA [29] in our benchmark, utilizing it as the underlying
data structure for the RPC-based approach without batching.

• RDMA RPC-Cluster hashing. RPC-Cluster hashing is a two-
sided RDMA baseline with Cluster hashing, a chained-based
hash table with associativity, running on memory nodes [11, 52].
The overflow keys that are hashed to a full bucket will be put
in the linked indirect bucket. Each slot in a bucket includes 14
bits of fingerprint for key comparison. We apply the open-source
code [4] of the cluster hashing as the data backend of our RPC-
based scheme suit.

5.2 Performance on YCSB

Performance with CX-6 RNICs. We show the throughput of all
evaluated methods by increasing the request load of running 8,
12, 20, 72, 108, and 144 compute node threads in a shard. On the
memory node, we consistently allocate only one thread to run on
a single core. As shown in Fig 9, these five figures illustrate the
throughput and latency results under YCSB workloads A, B, C, D,
and F, respectively.

Get and Update workloads (YCSB A and B). YCSB A and
B workloads include 50% and 5% data Update respectively and
the remaining is Get. Outback can achieve 5.50 and 5.82 Mops

343



throughput for YCSB A and B, as shown in Fig. 9(a) and Fig. 9(b).
All other methods show lower throughput with the same number
of threads. Outback can provide up to 1.07× and 1.06× throughput
improvements onworkloads A and B respectively, compared to RPC-
cluster hashing. Compared to other RPC baselines with associative
hash tables, the memory node in Outback is offloaded with less
computation because it only needs to read the targeted key, and no
data probing or traversing is needed to find the targeted value of
the key. RACE hashing requires three round trips for updating data
consistently, significantly increasing the latency and limiting the
throughput. By comparing the results between workloads A and
B, when more Update requests are issued, Outback spends more
computation resources for value rewriting and key checking by
reading the underlying KV blocks indicated by the computed MPH
slot. Hence, Outback under YCSB B provides higher throughput
than Outback under YCSB A.

Get-only workload (YCSB C). For Get-only workload, Out-
back can achieve 6.01 Mops throughput. When the number of com-
pute node threads reaches 72, Outback outperforms RACE hashing,
MICA, and Cluster hashing by 1.31×, 2.43×, and 1.11× on total
throughput, respectively. The performance of RACE hashing is
bottle-necked by its two round trips and the limited RNIC memory
to cache queue pair (QP) state of a larger number of reliable con-
nections. Outback reduces the average memory node’s CPU time
for data Get request with less computation overhead than the other
two RPC-based baselines while looking up a key.

Get and Insert workloads (YCSB D and F). YCSB D contains
5% Insert and 95% Get operations. YCSB F contains 25% Insert,
25% Update, and 50% Get operations. Under YCSB D, Outback still
shows the highest throughput among all methods. For Insert oper-
ations, Outback will check if a slot in the target bucket is available.
Key-checking is also required, and a new seed will be calculated if
the target slot stores an existing value. The high rate of Insert op-
erations in YCSB F pulls the throughput down to 3.62 Mops, which
is similar to RPC-Clustering hashing (3.64 Mops) when the number
of client threads reaches 144.

Performance with CX-3 RNICs. As shown in Fig. 10, we show
the throughput with the 4 memory node threads and a set of com-
pute node threads numbers 8, 16, 24, 32, 48, and 64, respectively.
Outback can consistently achieve the highest throughput for read-
intensive workloads (A, B, C, and D). Significantly, Outback outper-
forms RACE hashing, MICA, and Cluster hashing by 5.03×, 1.79×,
and 1.23× on total throughput for workload C, respectively. When
we use a weaker CPU, the advantage of Outback is more signifi-
cant. Unfortunately, CloudLab does not offer a weaker CPU with a
high-performance network.

In summary, Outback demonstrates the highest throughput for
most types of workload (YCSB A, B, C, and D). For a workload that
is Insert-intensive such as YCSB F, Outback provides comparable
throughput to other RDMA-RPC methods but still higher than that
of one-sided RDMA.

5.3 Evaluations on Real-World Datasets

We leverage the SOSD datasets [35] for evaluations. Fig. 11 illus-
trates throughput results with the number of compute node threads
as 8, 12, 20, 72, 108, and 144 in a shard. We set the number of mem-
ory node threads to 1. Each compute node thread issues 10 million

(a) Dataset FB, uniform workload. (b) Dataset OSM, uniform workload.

(c) Dataset FB, zipfian workload. (d) Dataset OSM, uniform workload.

Figure 11: Data Get throughput performance with SOSD

datasets with uniform and zipfian-0.99 workloads.

key lookup requests selected from the datasets in a uniform or
zipfian distribution.

Compared to RACE, Outback achieves throughput of 1.38×,
1.35×, 1.39×, and 1.38× respectively on these four different settings
when the number of threads reaches 144. RACE’s performance is
constrained by the multiple round trips. Compared to RPC-MICA
and Cluster hashing, Outback achieves a throughput of 2.03× and
1.1× respectively on dataset FB when the threads number reaches
144 in Fig. 11(a). The reason that Outback can outperform them
is that Outback can go directly to access data without extra check
computation and indirect data accessing to probe the hash chain
or buckets. Also, Outback outperforms RACE hashing, RPC-MICA
and RPC-CLuster hashing by 1.35×, 2.05×, and 1.13× respectively
on dataset FB when the workload follows the Zipfian distribution,
as shown in Fig. 11(c). We observe the same trend in performance
comparison with the dataset OSM.

5.4 Scalability with memory node threads

In this set of experiments, we vary the number of memory node
threads from 1 to 3 and observe the throughput of different meth-
ods using real-world datasets FB and OSM. To exhaust the CPU
resources on the memory node side, we use four r650 servers as
compute nodes with 288 compute node threads.

Fig. 12 shows the throughput of three RDMA-RPC schemes, by
varying the memory node threads from 1 to 3. The throughput of
Outback is around 1.10-1.21× of Cluster hashing and around 3× of
MICA for dataset FB. The results of the two datasets exhibit the
fact that as the number of compute node threads increases, the per-
formance ratio between Outback and RPC-Cluster hashing/MICA
remains similar. The reason is that Outback can ease the CPU bur-
den on the memory node and allow it to handle more data requests
from the compute node threads by offloading the computation of
indexing to compute nodes.

344



(a) Scalability with memory node threads
on dataset FB.

(b) Scalability with memory node threads
on dataset OSM.

Figure 12: Throughput vs. the number of memory node

threads.

(a) Latency-throughput curve on YCSB-C
with 1 memory node thread.

(b) Latency-throughput curve on YCSB-C
with 2 memory node threads.

Figure 13: Latency vs. the number of coroutines.

The fact that Outback achieves higher relative throughput to
other RPC methods under a small number of memory node threads
actually demonstrates the main advantage of Outback: achieving
high performance when the memory node carries weak CPU power
in a disaggregated memory system.

Note that the aim of Outback is not to saturate RNIC but

to increase the throughput when there are limited CPU re-

sources in a memory node with two-sided RDMA primitives.

The results in this section show that Outback can achieve

higher CPU efficiency with the same throughput goal, and

Outback can realize higher throughput with the same CPU

resources. In disaggregated systems, this canmotivate the in-

dustry to satisfy the user’s throughput goal with less TCO by

reducing the CPU resources equipped on memory-optimized

cloud instances [5].

5.5 Influence of the number of coroutines

The coroutines within compute node threads are designed to yield
upon dispatching a request and resume operation upon receiving
responses from two-sided RPCs. The default setup of Outback uses
two coroutines per thread, but we extend our evaluation to explore
the influence of one or more per thread to ascertain the optimal con-
figuration for maximizing server CPU utilization. Fig. 13 studies the
latency-throughput performance of Outback in YCSB-C workload
with different numbers of coroutines in a compute node thread. In
Fig. 12(a), we have only one worker thread in the memory node and
vary the total of compute node threads as 8,20,72,144 and 216 dis-
tributed among three compute nodes, respectively. We can observe
that a larger number of coroutines results in higher throughput
when the number of compute node threads is less than 72, and the
latency doubles or triples after the throughput reaches around 6

Figure 14: Influence of differ-

ent load factor set in DMPH.

Figure 15: Influence of the

varied number of KV pairs.

Figure 16: Memory usage on compute node with the varied

number of KV pairs.

Mops, the maximum throughput one memory thread can support.
This phenomenon is similar when the number of memory node
threads is 2, as shown in Fig. 12(b), because the CPU resource on the
memory node can handle 144 compute node threads, and the total
throughput of a memory node can reach to 9.89 Mops. However, the
extra coroutines will incur high latency of the data query after the
number of memory node threads becomes a bottleneck for serving
216 threads.

5.6 Influence of load factor in DMPH

The load factor in a hash table is the ratio of stored elements to the
total number of available slots or buckets. Maintaining an optimal
load factor balances memory usage and data operation throughput.
We evaluate the data Get throughput in Outback with varied load
factors from 0.75 to 0.95.

As shown in Fig. 14, Outback can achieve around 6 Mops with 72
data query threads from compute nodes in a shard for the dataset FB.
Similarly, the influence of the varied load factors on the throughput
is trivial based on the results of the dataset OSM.

5.7 Influence of the number of KV pairs

Fig. 15 studies the impact of the number of KV pairs in each shard.
We load 20M, 50M, and 80M KV pairs in Outback and evaluate
the data Get throughput on two real-world datasets, respectively.
Outback’s read throughput decreases from 6.02 to 5.83 Mops as
database size enlarges on the dataset FB. Similarly, we can observe
the data read throughput decreases by 3.1% on the dataset OSM.

5.8 Memory usage in compute nodes

In a disaggregated memory system, compute nodes are regarded
as the ones with rich computing resources but limited memory
space. To make the memory node serve data requests with the
least computation based on RDMA RPC primitives, we offload as
much computation to the compute side with the help of DMPH.
In this section, we evaluate the memory cost of Outback on each
compute node with the varied number of KV pairs in each shard.
Thememory usage on a compute node consists of the bucket locator
and the seeds array.

345



resizing

resizing resizing

Figure 17: Influence of extendible hashing resizing.

As shown in Fig. 16, we vary the load factor used in the DMPH
table from 0.80 to 0.95, and we use an 8-bit seed for keys in each
bucket. The memory usage at each compute node for 20 million
KV pairs per shard is around 12.5MB, and the cost is below 60MB
for 100M KV pairs per shard. This is considered a small overhead
because recent one-sided RDMA solutions cost hundreds of MBs
or more on each compute node for index caching and other pur-
poses [28, 50]. For example, in XStore [50], 100 million key-value
pairs require over 600MB of memory at a compute node without
including the cache.

5.9 Throughput during index resizing

We evaluate the throughput changes during index reconstruction
and resizing. In this set of experiments, we bulk-load 20M keys
to the database with the initial DMPH table to warm up, and we
set one compute node with 8, 12, and 16 threads connecting to the
memory node running only one thread, respectively. This emulates
a challenging scenario because the memory node has limited com-
puting resources to handle both resizing and lookups. The workload
running on compute nodes is YCSB D, which contains 5% data in-
sert and 95% read. As shown in Fig. 17, it takes around 3 seconds to
recalculate the bucket locator and the seed for each bucket. Outback
still supports partial Get requests during resizing with a decreased
throughput by approximately 52% with only one thread in the mem-
ory node. The CPU contention causes a performance drop, and the
performance goes back to normal after resizing.

5.10 Summary of evaluation

Data lookup throughput. Outback achieves 1.11-2.43× and 1.23-
5.03× higher throughput than baselines with Mellanox CX-6 100Gb
and CX-3 50Gb RNICs in data search workload, respectively.
Memory usage. The memory usage at each compute node for 20
million KV pairs per shard is around 12.5MB per shard, around 5
bits per key, with a load factor of 0.85 in DMPH.
Scalability of memory node threads. When the compute nodes
with enough threads exhaust the compute capability on thememory
node, Outback can achieve at least 18% performance advantage over
other RPC-based baselines on read workload.
Load factors in Outback. The load factor value in DMPH causes
a trivial impact on data lookup throughput with the same compute
complexity. We recommend 0.8-0.9 to achieve the balance between
memory usage and low frequent resizing, as the low load factor
supports more incremental data insertion into the hash table.

6 RELATED WORK
RDMA-based storage systems. Existing RDMA-based storage
can be classified into one-sided RDMA, RPC, or hybrid methods.
One-sided RDMA-based approaches [9, 11, 14, 28, 34, 66] can by-
pass the memory node’s CPU, managing data by RDMA_READ,

RDMA_WRITE and other atomic verbs. Two-sided RDMA-based
schemes [21, 22, 24, 31, 54] need only one round trip but suffer from
the remote CPU bottleneck, posing challenges in saturating RNIC
bandwidth due to the computation burden for the callback data ser-
vice. The index data structures of existing two-sided RDMA, such
as hash table [29, 36], learned index [27, 28] and Blink Tree [65],
put the memory node’s CPU in charge of nontrivial computation
tasks. The hybrid methods [17, 20, 37, 52] combine two of the above
approaches to boost the throughput.

In addition to examining design primitives and communication
protocols within RDMA-based systems. Cowbird [9] frees the CPU
burden in compute nodes by offloading RDMA posting tasks on
in-network computation devices (e.g. programmable switch [19]),
so that the compute node can focus on computation duties. Smart-
NIC [7, 41, 45, 51] can also be put in the network interface and
works as an extra compute core on the critical data path, and it
enables compute nodes to access data without network or RPC
overhead. Note that the computation resource required in memory
nodes of Outback can also be offloaded to SmartNIC or SmartSSD,
whose SOCs are closer to data.

Minimal perfect hashing for networked systems. Perfect
hashing offers a rapid method for data indexing, effectively prevent-
ing hash collisions. Moreover, DMPH enhances memory efficiency
by eliminating the need to store keys and mapping 𝑁 elements into
(1 + 𝜖)𝑁 space within the table. Besides the Ludo hashing shown
in § 2, Setsep [64] leverages a novel two-level hashing scheme that
distributes billions of keys across cluster servers with a memory
cost of 0.5 + 1.5𝑙 bits/key. BuRR [13] is another MPH scheme that
involves manipulating a matrix for each key, and the multiplication
values of keys determine various ranks within the bucket.

7 CONCLUSION
This paper introduces Outback, an RDMA RPC-based index for key-
value stores on disaggregated memory, designed to achieve high
throughput with lower CPU utilization. The key innovation of Out-
back is the division of the data index into two distinct components:
a compute-intensive component cached on compute nodes and a
memory-intensive component residing on memory nodes. The per-
formance improvements stem from the memory node’s ability to
access underlying data with minimal computational overhead with
perfect hashing. We also design protocols for Outback that support
data operations and index resizing using extendible hashing, en-
suring both the correctness of operations and system consistency
during updates. We conduct extensive experiments to evaluate the
performance of Outback. The results show that Outback achieves
higher throughput and requires smaller memory space on compute
nodes, compared to the state-of-the-art baselines under most types
of workload, especially for Get-heavy workload.

ACKNOWLEDGMENTS
We thank our three anonymous reviewers for their insightful sug-
gestions and comments. This research was supported by the IAB
members of the Center for Research in Systems and Storage (CRSS),
and the National Science Foundation (NSF) under grants CNS-
1841545, CCF-1942754, CNS-2322919, CNS-2420632, CNS-2426031,
and CNS-2426940. The views expressed are those of the authors
and do not necessarily reflect those of the funding agencies.

346



REFERENCES
[1] [n.d.]. AMD Alveo™ Adaptable Accelerator Cards. https://www.amd.com/en/

products/accelerators/alveo.html
[2] [n.d.]. Compute Express Link: The Breakthrough CPU-to-Device Interconnect.

https://www.computeexpresslink.org/about-cxl
[3] [n.d.]. https://github.com/basicthinker/YCSB-C.
[4] [n.d.]. https://github.com/SJTU-IPADS/drtm.
[5] [n.d.]. Memory Optimized Amazon EC2 Instance. https://aws.amazon.com/ec2/

instance-types/?nc1=h_ls
[6] [n.d.]. NVIDIA BlueField Networking Platform. https://nvidia.com/en-us/

networking/products/data-processing-unit
[7] Matthew Burke, Sowmya Dharanipragada, Shannon Joyner, Adriana Szekeres,

Jacob Nelson, Irene Zhang, and Dan RK Ports. 2021. PRISM: Rethinking the
RDMA interface for distributed systems. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 228–242.

[8] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, andAyellet Tal. 2004. The bloomier
filter: an efficient data structure for static support lookup tables. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. Citeseer,
30–39.

[9] Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang. 2023. Cowbird:
Freeing CPUs to Compute by Offloading the Disaggregation of Memory. In
Proceedings of the ACM SIGCOMM 2023 Conference. 1060–1073.

[10] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on reli-
able connection with efficient resource sharing. In Proceedings of the Fourteenth
EuroSys Conference 2019. 1–14.

[11] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast
and general distributed transactions using RDMA and HTM. In Proceedings of
the Eleventh European Conference on Computer Systems. 1–17.

[12] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[13] Peter C Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer.
2021. Fast succinct retrieval and approximate membership using ribbon. arXiv
preprint arXiv:2109.01892 (2021).

[14] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast remote memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 401–414.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[16] Edward A Fox, Lenwood S Heath, Qi Fan Chen, and Amjad M Daoud. 1992.
Practical minimal perfect hash functions for large databases. Commun. ACM 35,
1 (1992), 105–121.

[17] Shukai Han, Mi Zhang, Dejun Jiang, and Jin Xiong. 2023. Exploiting Hybrid
Index Scheme for RDMA-based Key-Value Stores. In Proceedings of the 16th ACM
International Conference on Systems and Storage. 49–59.

[18] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon,
and Myoungsoo Jung. 2023. {CXL-ANNS}:{Software-Hardware} collaborative
memory disaggregation and computation for {Billion-Scale} approximate near-
est neighbor search. In 2023 USENIX Annual Technical Conference (USENIX ATC
23). 585–600.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Symposium on Operating
Systems Principles. 121–136.

[20] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
efficiently for key-value services. In Proceedings of the 2014 ACM Conference on
SIGCOMM. 295–306.

[21] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design guide-
lines for high performance RDMA systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). 437–450.

[22] Anuj Kalia, Michael Kaminsky, and David GAndersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 185–201.

[23] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing.

[24] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex: Remote flash =
local flash. ACM SIGARCH Computer Architecture News 45, 1 (2017), 345–359.

[25] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 international
conference on management of data. 489–504.

[26] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K Aguilera, Kimberly
Keeton, and Vijay Chidambaram. 2022. DINOMO: an elastic, scalable, high-
performance key-value store for disaggregated persistent memory. Proceedings
of the VLDB Endowment 15, 13 (2022), 4023–4037.

[27] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: a fine-grained
learned index scheme for scalable and concurrent memory systems. Proceedings
of the VLDB Endowment 15, 2 (2021), 321–334.

[28] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. 2023. ROLEX:
A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Memory
Systems. In 21st USENIX Conference on File and Storage Technologies (FAST 23).
99–114.

[29] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
14). 429–444.

[30] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro, Brent E Stephens, Hassan
Wassel, and Aditya Akella. 2023. RingLeader: Efficiently Offloading Intra-Server
Orchestration to NICs. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). 1293–1308.

[31] Yi Liu, Shouqian Shi, Minghao Xie, Heiner Litz, and Chen Qian. 2023. Smash:
Flexible, fast, and resource-efficient placement and lookup of distributed storage.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 7, 2
(2023), 1–22.

[32] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
hashing on persistent memory. arXiv preprint arXiv:2003.07302 (2020).

[33] Baotong Lu, Kaisong Huang, Chieh-Jan Mike Liang, Tianzheng Wang, and Eric
Lo. 2024. DEX: Scalable Range Indexing on Disaggregated Memory [Extended
Version]. arXiv:2405.14502 [cs.DB]

[34] Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang, Michael R Lyu,
and Yangfan Zhou. 2023. SMART: A High-Performance Adaptive Radix Tree
for Disaggregated Memory. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). USENIX Association.

[35] Ryan Marcus, Andreas Kipf, and Alex van Renen. 2019. Searching on Sorted
Data. https://doi.org/10.7910/DVN/JGVF9A

[36] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13). 103–114.

[37] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and
Jinyang Li. 2016. Balancing CPU and Network in the Cell Distributed B-Tree
Store. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). 451–464.

[38] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[39] Xi Pang and Jianguo Wang. 2024. Understanding the performance implications
of the design principles in storage-disaggregated databases. Proceedings of the
ACM on Management of Data 2, 3 (2024), 1–26.

[40] Waleed Reda, Marco Canini, Dejan Kostić, and Simon Peter. 2022. {RDMA} is
Turing complete, we just did not know it yet!. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). 71–85.

[41] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-
murthy. 2021. Xenic: SmartNIC-accelerated distributed transactions. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
740–755.

[42] Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang. 2022. Towards a fully
disaggregated and programmable data center. In Proceedings of the 13th ACM
SIGOPS Asia-Pacific Workshop on Systems. 18–28.

[43] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su, Yangfan Zhou,
and Michael R Lyu. 2023. FUSEE: A Fully Memory-Disaggregated Key-Value
Store. In 21st USENIX Conference on File and Storage Technologies (FAST 23).
81–98.

[44] Shouqian Shi and Chen Qian. 2020. Ludo hashing: Compact, fast, and dynamic
key-value lookups for practical network systems. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 2 (2020), 1–32.

[45] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.
2020. StRoM: smart remote memory. In Proceedings of the Fifteenth European
Conference on Computer Systems. 1–16.

[46] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating persistent
memory and controlling them remotely: An exploration of passive disaggregated
Key-Value stores. In 2020 USENIX Annual Technical Conference (USENIX ATC 20).
33–48.

[47] Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In
Companion of the 2023 International Conference on Management of Data. 37–44.

[48] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A write-optimized dis-
tributed b+ tree index on disaggregated memory. In Proceedings of the 2022
International Conference on Management of Data. 1033–1048.

[49] Ruihong Wang, Jianguo Wang, Stratos Idreos, M Tamer Özsu, and Walid G Aref.
2022. The case for distributed shared-memory databases with RDMA-enabled
memory disaggregation. arXiv preprint arXiv:2207.03027 (2022).

[50] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based Ordered
Key-Value Store using Remote Learned Cache. In 14th USENIX Symposium on

347



Operating Systems Design and Implementation (OSDI 20). 117–135.
[51] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. 2023.

Characterizing Off-path SmartNIC for Accelerating Distributed Systems. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 23).
987–1004.

[52] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 233–251.

[53] Chenyuan Wu, Mohammad Javad Amiri, Jared Asch, Heena Nagda, Qizhen
Zhang, and Boon Thau Loo. 2022. FlexChain: an elastic disaggregated blockchain.
Proceedings of the VLDB Endowment 16, 1 (2022), 23–36.

[54] Minghao Xie, Chen Qian, and Heiner Litz. 2020. Reflex4arm: Supporting 100gbe
flash storage disaggregation on arm soc. In OCP Future Technology Symposium.

[55] Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowdhury. 2021. Ship compute
or ship data? why not both?. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). 633–651.

[56] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. 2017. A concise for-
warding information base for scalable and fast name lookups. In 2017 IEEE 25th
International Conference on Network Protocols (ICNP). IEEE, 1–10.

[57] Ming Zhang, Yu Hua, and Zhijun Yang. 2024. Motor: Enabling Multi-Versioning
for Distributed Transactions on Disaggregated Memory. In 18th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 24). USENIX
Association.

[58] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory. In
20th USENIX Conference on File and Storage Technologies (FAST 22). 51–68.

[59] Penghao Zhang, Heng Pan, Zhenyu Li, Penglai Cui, Ru Jia, Peng He, Zhibin
Zhang, Gareth Tyson, and Gaogang Xie. 2021. NetSHa: In-network acceleration

of LSH-based distributed search. IEEE Transactions on Parallel and Distributed
Systems 33, 9 (2021), 2213–2229.

[60] Qizhen Zhang, Philip A Bernstein, Daniel S Berger, and Badrish Chandramouli.
2021. Redy: remote dynamic memory cache. arXiv preprint arXiv:2112.12946
(2021).

[61] Qizhen Zhang, Yifan Cai, Sebastian Angel, Ang Chen, Vincent Liu, and
Boon Thau Loo. 2020. Rethinking data management systems for disaggregated
data centers. In Conference on Innovative Data Systems Research.

[62] Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent Liu,
and Boon Thau Loo. 2020. Understanding the effect of data center resource
disaggregation on production dbmss. Proceedings of the VLDB Endowment 13, 9
(2020).

[63] Changgang Zheng, Haoyue Tang, Mingyuan Zang, Xinpeng Hong, Aosong Feng,
Leandros Tassiulas, and Noa Zilberman. 2023. DINC: Toward distributed in-
network computing. Proceedings of the ACM on Networking 1, CoNEXT3 (2023),
1–25.

[64] Dong Zhou, Bin Fan, Hyeontaek Lim, David G Andersen, Michael Kaminsky,
Michael Mitzenmacher, Ren Wang, and Ajaypal Singh. 2015. Scaling up clustered
network appliances with ScaleBricks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 241–254.

[65] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing distributed tree-based index structures for fast
rdma-capable networks. In Proceedings of the 2019 International Conference on
Management of Data. 741–758.

[66] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. 2021. One-
sided RDMA-Conscious Extendible Hashing for Disaggregated Memory. In 2021
USENIX Annual Technical Conference (USENIX ATC 21). 15–29.

348


