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Abstract
Graph processing engines following either the push-based

or pull-based pattern conceptually consist of a two-level

nested loop structure. Parallelizing and vectorizing these

loops is critical for high overall performance and memory

bandwidth utilization. Outer loop parallelization is simple for

both engine types but suffers from high load imbalance. This

work focuses on inner loop parallelization for pull engines,

which when performed naively leads to a significant increase

in conflicting memory writes that must be synchronized.

Our first contribution is a scheduler-aware interface for
parallel loops that allows us to optimize for the common

case in which each thread executes several consecutive it-

erations. This eliminates most write traffic and avoids all

synchronization, leading to speedups of up to 50×.

Our second contribution is the Vector-Sparse format, which

addresses the obstacles to vectorization that stem from the

commonly-used Compressed-Sparse data structure. Our new

format eliminates unaligned memory accesses and bounds

checks within vector operations, two common problems

when processing low-degree vertices. Vectorization with

Vector-Sparse leads to speedups of up to 2.5×.
Our contributions are embodied inGrazelle, a hybrid graph

processing framework. On a server equipped with four Intel

Xeon E7-4850 v3 processors, Grazelle respectively outper-

forms Ligra, Polymer, GraphMat, and X-Stream by up to

15.2×, 4.6×, 4.7×, and 66.8×.
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Figure 1. Efficiency of Ligra’s inner loop parallelization on

the twitter-2010 graph, running on a four-socket 112-core

server. Vertical axis is logarithmic. Ligra parallelizes its loops

using Intel Cilk Plus, which uses work-stealing [28].

1 Introduction
Graph problems, which operate on data represented as a

set of objects (vertices) and connections (edges), are increas-

ingly important for a wide set of applications including ma-

chine learning, social networking, business intelligence, and

bioinformatics [22, 26]. They are conventionally viewed as

difficult to solve efficiently, especially at scale, as a result of

several defining properties: irregularity in the graph datasets

that leads to unpredictable memory accesses, many small-

sized random accesses, relatively poor data locality, and a

typically low amount of work per memory access [45, 65].

Graph processing engines are usually implemented follow-

ing one of two general patterns: push [23, 51, 55, 58, 61, 65, 67]
or pull [58, 63, 67]. Both patterns conceptually consist of a

two-level nested loop. A push engine (Listing 1) propagates

out-bound updates grouped by source, so the outer loop

iterates over source vertices and the inner loop over the out-

edges associated with each source vertex. Conversely, a pull

engine (Listing 2) aggregates in-bound updates grouped by

destination. Its outer loop iterates over destination vertices,

and its inner loop over in-edges. The read-heavy nature of

a pull engine’s operation leads to higher edge processing

throughput than a push engine. However, because the outer

loop of a push engine iterates over source vertices, a push

engine is better able to leverage the frontier, which facilitates

skipping over inactive source vertices. This trade-off has

given rise to hybrid graph frameworks, which contain both

engines and dynamically switch between them [2, 3, 58].

To leverage the increasing core counts in processor chips,

existing graph processing engines [37, 49, 55, 58, 61, 65, 67]

parallelize their respective outer loops. This has the effect of

dividing up the source (push) or destination (pull) vertices

across multiple threads. Unfortunately, for many real world

graphs such as twitter-2010, parallelizing only the outer
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loop is insufficient as it can lead to significant load imbalance.

In such graphs, vertex degrees differ by several orders of

magnitude; even with dynamic load balancing and work-

stealing [49, 55], threads that process vertices with millions

of edges will be slow. This can be seen in Figure 1, which

compares different loop parallelization configurations for

Ligra [58]. The push engine exhibits a 3× speedup when both

loops are parallelized (PushP) over outer loop parallelization

alone (PushS). We expect similar gains from parallelizing the

inner loop of a pull engine and best performance from a fully-

parallelized hybrid configuration. Surprisingly, the opposite

is the case. While the sequential pull engine (PushP+PullS)

delivers a speedup of up to 9×, the performance of the fully

parallelized hybrid (PushP+PullP) is significantly lower.

Our analysis of the pull engine reveals the following chal-

lenges. When the inner loop executes serially, each thread

repeatedly updates the same destination vertex in cache

or processor registers, writing back to shared memory only

once upon inner loop completion.When the inner loop is par-

allelized, threads must conservatively update destination ver-

tices after each iteration of the inner-loop. Furthermore, since

multiple threads may update the same destination vertex,

synchronization is required. Figure 1 shows that, even if we

ignore the need for synchronization (PushP+PullP-NoSync),
the effect of the numerous conflicting writes is still sig-

nificant. Write conflicts result in cache line thrashing and

spurious write-backs to memory, both of which harm per-

formance [29]. The source of these problems is that the

parallel_for constructs in popular programming models

like Intel Cilk Plus [28] and OpenMP [50] do not allow pro-

grammers to optimize for the common case in which several

iterations of the parallel loop execute on the same thread.

Programmers must pessimistically assume that each itera-

tion will execute independently and treat the loop body as a

stateless function with a single parameter, namely the value

of the for loop iteration counter [39].

Our first contribution is a scheduler-aware interface for
parallel_for (§3) that allows programmers to exploit the

chunking behavior of many schedulers, which results in

many consecutive iterations of a parallel loop executing

on the same thread. This interface provides the flexibility

needed to parallelize the inner loop of a pull engine in such

a way as to make use of thread-local storage and eliminate

synchronization. The scheduler-aware interface considerably

improves the performance of a fully-parallelized pull engine

without restricting the behavior of the scheduler itself. We

observed a peak speedup of 50× with the uk-2007 graph

over a baseline configuration that is parallelized without

using scheduler awareness.

In addition to parallelizing the inner loop of the pull en-

gine, we can also vectorize its operation. While some work

does target SIMT (single-instruction multiple-thread) vector-

ization for GPUs [27, 63], we are unaware of any that does

so for the SIMD (single-instruction multiple-data) model

used on CPUs. Widely-available AVX instructions [30] al-

low for a maximum speedup of 4× (four 64-bit elements per

256-bit vector). Since graph processing is memory-bound

and its memory bandwidth utilization is limited by the low

density of memory operations in the instruction stream [4],

vectorization can provide additional benefit by issuing mul-

tiple load and store operations simultaneously. However, it

is hindered by the two-level Compressed-Sparse format (Fig-

ure 2) frequently used for edge representation [51, 58, 65, 67].

Tight packing of edges leads to unaligned vector loads and

stores, which are slower than properly-aligned versions of

the same [29]. Moreover, when a thread loads a vector of

edges from the edge array, it has to apply additional checks

as the four edges may not belong to the same vertex. These

two issues are particularly expensive for low-degree vertices

and have led recent literature to conclude that vectorization

with Compressed-Sparse is not generally performant [5, 43].

Our second contribution, Vector-Sparse (§4), is a modi-

fied form of the Compressed-Sparse format that enables effi-

cient vectorization of the inner loop using AVX instructions.

Vector-Sparse encodes edges together with outer loop infor-

mation into aligned and padded vectors, which ensures all

memory accesses are properly-aligned. Its bit-level repre-

sentation additionally leverages predicated execution tech-

niques to avoid bounds checks. Inner loop vectorization with

Vector-Sparse leads to a speedup of up to 2.5× compared to

a non-vectorized implementation.

Our two contributions are embodied in Grazelle (§5), a
novel hybrid graph processing framework. We show that on

a server equipped with four Intel Xeon E7-4850 v3 proces-

sors [31] Grazelle respectively outperforms state-of-the-art

frameworks Ligra [58], Polymer [67], GraphMat [61], and

X-Stream [55] by up to 15.2×, 4.6×, 4.7×, and 66.8×.
Grazelle is publicly available on GitHub. It can be accessed

at https://github.com/stanford-mast/Grazelle-PPoPP18.

2 Background
We focus on single-machine, in-memory graph processing

engines because of their demonstrated potential to achieve

significantly higher performance than distributed [12, 20,

34, 35, 54, 57, 65, 68, 69] and out-of-core [37, 54, 55, 69, 71]

engines. Modern servers with several terabytes of DRAM are

sufficient for many real-world problems [38, 41]. In this con-

text, a large body of work covers scheduling across cores [49,

55, 65], graph partitioning across sockets [65, 67], and op-

timizing synchronization and communication [49, 65, 67],

typical concerns for any parallel program [36, 56, 64].

Graph applications execute in two conceptual phases: mes-

sage exchange and local update. During message exchange,

messages are transmitted along edges from source vertices

and aggregated at each destination vertex. During local up-

date, property values associated with each vertex (and, in

some cases, each edge) are updated based on the aggregated
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parallel_for (int vSrc = 0; vSrc < numVertices; ++vSrc) {

if (!frontier.contains(vSrc)) continue;
for (int d = 0; d < vertex[vSrc].outdegree; ++d) {

const int vDst = vertex[vSrc].outneighbor[d];

if (converged.contains(vDst)) continue;
atomicCAS(vertex[vDst].value,

compute(vertex[vSrc].value, vertex[vDst].value)); } }

Listing 1. Push-based message exchange implementation.

incoming messages. Applications execute iteratively, alter-

nating between the two phases until some convergence con-

dition is reached. If a graph processing engine finishes one

phase for all vertices before proceeding to the next, then

the execution is synchronous [62], otherwise it is asynchro-
nous [19]. We focus on synchronous engines because of their

simplicity. Furthermore, recent work has shown that there

is no clear winner between the two types [19, 66].

A common optimization in graph processing is to track the

active subset of vertices, known as the frontier. The frontier
specifies which vertices are involved in a message exchange

iteration. Most often, the frontier signifies which vertices

should transmit out-bound messages. Only vertices whose

property values are modified during one iteration are added

to the frontier for the next. Some applications additionally

track which vertices have converged to a final value and

should therefore ignore all in-bound messages. In Breadth-

First Search, for example, vertices are placed into this set

immediately upon visitation [2, 3, 58]. Other applications,

such as PageRank, cannot use the frontier [23].

A message exchange phase iterates over edges, which are

generally grouped either by source or by destination. These

two groupings lead to two implementation patterns, push
(Listing 1) and pull (Listing 2). A simple way to parallelize

the outer loop for both patterns is to use a parallel_for
construct such as those offered by Intel Cilk Plus [28] and

OpenMP [50]. atomicCAS() is an atomic compare-swap op-

eration, and compute() is a commutative and associative

application-defined operation [19, 58].

Push engines [23, 51, 58, 61, 65, 67] iterate over source

vertices and propagate outbound messages, whereas pull en-
gines [58, 63, 67] iterate over destination vertices and aggre-

gate inbound messages. We refer to the current vertex of the

outer loop as the top-level vertex. Many graph frameworks

use exclusively a push engine [19, 44, 46, 55, 65]. Beamer

et. al. [2, 3] motivated the need for both in the context of

Breadth-First Search, an approach that Shun and Blelloch

have since generalized [58]. A hybrid framework contains

one engine of each type and, for each iteration, selects which

to use based on the state of the frontier. Such a framework

generally selects its pull engine whenever a sufficiently large

part of the graph is contained in the frontier.

Graph processing engines commonly use the Compressed-

Sparse format [40, 51, 58, 65, 67], shown in Figure 2, to

parallel_for (int vDst = 0; vDst < numVertices; ++vDst) {

if (converged.contains(vDst)) continue;
for (int s = 0; s < vertex[vDst].indegree; ++s) {

const int vSrc = vertex[vDst].inneighbor[s];

if (!frontier.contains(vSrc)) continue;
vertex[vDst].value =

compute(vertex[vSrc].value, vertex[vDst].value); } }

Listing 2. Pull-based message exchange implementation.

Vertex Index

Edges 23 ...

[0] [1] [2] [3] [4] [5] [6] [7] [8]

10 50 54 62 10 0 14 54

0 3 5 8 ...

[0] [1] [2] [3]

Figure 2. Compressed-Sparse edge data structure.

represent edges. Each instance can either represent in-

edges (Compressed-Sparse-Column, or CSC) or out-edges

(Compressed-Sparse-Row, or CSR). Thick lines denote bound-

aries between top-level vertices. The vertex index holds each

top-level vertex’s starting position in the edge array. One

end of each edge can be inferred by position within the index,

while the other ends are stored as values in the edge array.

3 Parallelizing with Scheduler Awareness
Our goal is to overcome the two challenges that impede inner

loop parallelization of a pull engine: the increased memory

write operations and the need for synchronization. The key

idea is to structure the pull engine in a manner that is aware

of the way schedulers divide and assign parallel work.

Problem: Consider a parallel_for loop that executes

with multiple threads. Iterations are divided into chunks of

potentially varying sizes that are assigned to threads and

load-balanced by a scheduler. The application-supplied loop

body can be viewed as a LoopIteration() function invoked
by the threading runtime as shown in Figure 3 (black and

red arrows). This function accepts the value of the iteration
index as a parameter. In a nested parallel_for loop, the

iteration index includes a value for each loop level. With

just an iteration index in hand, the loop body function is

necessarily oblivious to the thread locality of surrounding

iterations. It must conservatively assume that all iterations

of the same loop execute in different threads. Hence, it must

write its data into shared memory locations, using synchro-

nization to handle potential conflicts. The function cannot

exploit the chunking behavior of many schedulers, in which

several consecutive iterations execute on the same thread.

Solution: Figure 3 presents the scheduler-aware inter-

face that addresses this problem (black and blue arrows).

The interface allows programmers to define how to execute
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Threading Runtime

Get Work

Done?

No

Yes

FinishChunk()

StartChunk()firstIterationIndex

iterationIndex

Application

LoopIteration()

Traditional Scheduler-Aware

lastIterationIndex 
chunkID

Figure 3. The traditional and scheduler-aware interfaces

between the pull engine and the runtime. Text surrounding

arrows shows function parameters.

variably-sized chunks of iterations. Hence, in addition to the

LoopIteration(), the interface includes the application-

supplied functions StartChunk() and FinishChunk() that

help initialize and complete the processing of a chunk. First

consider the simple case in which a chunk contains some

number of iterations from the inner loop. When a thread

starts executing the chunk, it uses StartChunk() to initialize
a variable in thread-local storage (TLS) to store vertex prop-

erty updates for this chunk (Listing 3). For example, since

PageRank uses summation to aggregate, the initial value

would be 0. Next, it uses LoopIteration() repeatedly to

aggregate vertex property updates based on the messages

from the edges included in this chunk (Listing 4). Finally, it

uses FinishChunk() to save updated property value into a

global merge buffer indexed by chunk identifier (Listing 5).

The merge buffer is preallocated and includes one entry

per chunk of iterations created by the scheduler. When all

threads have completed processing of all available chunks, a

single thread scans the merge buffer and updates the vertex

properties in shared memory (Listing 6).

Next, consider the possibility of a chunk containing inner

loop iterations frommultiple outer loop iterations. To handle

this case, LoopIteration() checks if the current iteration
refers to a different vertex than the last iteration. If so, it

stores the aggregated property update for the previous vertex

directly into the shared memory location for that vertex and

then proceeds to aggregate updates for the new vertex. This

store operation to shared memory is safe to execute without

synchronization. If the scheduler chunks the iteration space

in the nested loop contiguously, there will be at most one

TLS.prevDest = vDst;

TLS.prevDestValue = initialValue();

Listing 3. Scheduler-aware pull engine, StartChunk().

if (TLS.prevDest != vDst) {

vertices[TLS.prevDest].value = TLS.prevDestValue;
TLS.prevDest = vDst;

TLS.prevDestValue = initialValue(); }

TLS.prevDestValue =
compute(TLS.prevDestValue, vertex[vSrc].value);

Listing 4. Scheduler-aware pull engine, LoopIteration().

mergeBuffer[chunkID].lastDest = vDst;

mergeBuffer[chunkID].lastValue = TLS.prevDestValue;

Listing 5. Scheduler-aware pull engine, FinishChunk().

for (int i = 0; i < numChunksExecuted; ++i) {

const int vDst = mergeBuffer[i].lastDest;

vertex[vDst] =

compute(vertex[vDst].value, mergeBuffer[i].lastValue); }

Listing 6. Scheduler-aware pull engine, merge operation.

chunk that includes the last few inner-loop iterations for each

vertex, so only one thread would execute that store operation.

Any other threads targeting the same vertex would write

to the merge buffer. This limitation on how the iteration

space is chunked is reasonable. It prevents the scheduler

from randomizing iterations, which would destroy locality,

but does not restrict the number or size of chunks.

Benefits: The scheduler-aware interface greatly improves

the efficiency of parallelizing the inner-loop of the pull en-

gine. Memory writes in LoopIteration() are almost always

to thread-local variables that are captured perfectly by first-

level caches and can even be register-allocated. There is

no need for synchronization within LoopIteration() or

FinishChunk() as the merge buffer has a seperate slot for

each chunk. The final merge (Listing 6) executes sequentially

in our implementation because it is extremely fast for the

real-world graphs we studied (§6).

The scheduler-aware interface is general enough to be ap-

plied to any graph application implemented synchronously

using a programming model similar to Gather-Apply-Scatter

(GAS) [19] or edgeMap/vertexMap [58]. It can be embed-

ded directly into a graph processing framework without

substantial impact on the graph application writer. Such im-

pact would be limited to providing an implementation of the

initialValue() function.
The performance benefit of scheduler awareness depends

on the number of write operations performed per inner loop
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iteration with the traditional interface, which in turn de-

pends on an application’s aggregation operator. For exam-

ple, PageRank uses summation and thus would perform one

write per inner loop iteration, so scheduler awareness is max-

imally beneficial. Conversely, Connected Components uses

minimization and so could skip some writes if the proposed

value to write is not less than the value already present for a

particular vertex, leading to a reduced benefit. Applications

that already perform only a single write per vertex, such as

Breadth-First Search, would not benefit at all.

Discussion: The merge buffer has one slot per chunk

of iterations. Each slot contains two fields: the last desti-

nation vertex in the chunk (lastDest) and the partially-

aggregated value that was computed for the last destina-

tion vertex (lastValue). If the threading runtime statically

chunks the iteration space, the merge buffer can be allo-

cated at the beginning of the program and reused throughout

the execution of the graph application. Note that statically

chunking the iteration space does not prohibit the runtime

from dynamically assigning and rebalancing chunks across

threads. If the runtime changes the assignment of iterations

to chunks throughout the runtime, it may need to allocate

additional space for merge buffers.

Related Work: Scheduler awareness follows a long line

of work that attempts to improve both the data locality and

the parallelization of irregular applications. Focusing on the

former, we find that the very idea of grouping by top-level

vertex, which underlies the operation of both push-based and

pull-based engines, stems from Ding and Kennedy’s concept

of dynamic locality groups [16]. Works that followed have

proposed techniques to model the reference locality behavior

of programs, reorganized the data layout to enhance reuse,

and demonstrated loop transformations [13, 24, 25, 53, 59, 70].

Ideas such as these are manifested in graph processing work

as improved techniques for partitioning graphs for cache

and NUMA node locality [42, 55, 60, 67].

The second related area of work concerns parallelizing

irregular applications. Classic techniques include specula-

tive parallelization [14, 17, 52] and inspector-executor [1, 47],

both intended to extract parallelism while minimizing shar-

ing and synchronization overheads. Scheduler awareness

shares this goal but differs in approach: it statically trans-

forms parallel loops to avoid sharing altogether rather than

attempting to detect it at run-time. However, it is specifically

applicable to the type of loop exemplified in Listing 2, which

features irregular reads but regular writes.

4 Vectorizing with Vector-Sparse
Our next goal is to overcome the obstacles that Compressed-

Sparse poses to vectorization of the inner loop of the pull

enginewhile retaining asmuch of its compactness as possible.

We propose a new format called Vector-Sparse. Depending
whether top-level vertices are sources or destinations, we

say Vector-Sparse-Source (VSS) or Vector-Sparse-Destination
(VSD) respectively. The new format uses a combination of

padding and predicated execution to eliminate unaligned

accesses and bounds checks when edges are fetched with

vector instructions. It also uses a bit-wise encoding that

provides fast access to outer-loop information as we traverse

the edge array in the inner loop.

Format: Vector-Sparse modifies edge array encoding in

Compressed-Sparse. Figure 4 shows its bit-level encoding

for 256-bit vectors divided into four 64-bit elements. While

the layout is tailored to x86-based processors that support

AVX, its underlying ideas are generalizable to other vector

architectures and longer vectors (e.g., 512-bit vectors in AVX-

512 [33]). Edge weights, though not shown, are supported

by appending a weight vector to each edge vector.

Vector-Sparse uses the bottom 48 bits of each 64-bit vector

element to encode vertices, which functions exactly as does

the edge array in Compressed-Sparse. The upper 16 bits of

each element are used for additional information. The valid

bit indicates whether the corresponding element contains

a valid edge. It is consumed by the AVX operations that

support per-element predication [30]. Invalid elements are

used as padding so that the number of 64-bit elements per

top-level vertex is a multiple of 4 (the vector length). For

example, a top-level vertex with a degree of 7 would occupy

two 256-bit vectors with 7 valid edge elements and 1 invalid.

Its vertex index entry points to the first of the two vectors.

Each vector also contains a 48-bit identifier of the top-level

vertex, encoded in four fields spread across the four 64-bit

elements. This vertex identifier is used when a thread is

processing a chunk of edges in order to detect transitions

between iterations of the outer loop without bounds checks

or accesses to the vertex index.

Vectorization: Listing 7 shows the pseudocode for a vec-
torized pull engine using VSD as the edge data structure.

Frontier checks are omitted for simplicity. Unlike the code

shown in Listing 2, the code for shown here uses a single-

level loop that iterates over vectors. extractSources() and
extractDest() are macros that extract fields from the for-

mat shown in Figure 4. initialValues() is a vectorized

version of initialValue() from Listing 4. maskedGather()
uses the vgatherqpd instruction to perform a gather opera-

tion, overwriting each element in srcVals predicated on the

valid bits loaded to edges. vectorCompute() is a vectorized
version of compute() from Listing 2. The vertex index is not

used in this loop but remains useful to implement frontier

checks. This loop is parallelized across threads per §3.

RelatedWork: There exists a large body of related work
for sparse matrix-vector multiplication (SpMV) [61] that

can be applied to graph processing. Both fields leverage the

Compressed-Sparse format to efficiently represent sparse

matrices [5, 40, 43] and graphs [51, 58, 65, 67].

We are unaware of any prior work that addresses vector-

ization of graph processing following the SIMD model of
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Figure 4. 256-bit edge array element containing up to 4 edges. The number above each field represents its width in bits. Thick

lines represent the boundaries between individual edges.

for (int i = 0; i < numEdgeVectors; ++i) {

const v256 edges = edgeVectors[i];

const v256 vSrc = extractSources(edges);

const int vDst = extractDest(edges);

v256 srcVals = initialValues();

srcVals = maskedGather(vertex[vSrc].value, edges);

vertex[vDst].value =

vectorCompute(srcVals, vertex[vDst].value); }

Listing 7. Pull engine vectorized with Vector-Sparse.

many CPUs. However, recent studies have shown two ways

in which such vectorization can be beneficial. First, Beamer

et. al. recently demonstrated that poor memory operation

density in the instruction stream is a key performance bottle-

neck for graph processing [4], a situation improved through

vectorization. Second, SpMV is well-understood to be heav-

ily memory-bound [40]; vectorized memory operations take

greater advantage of the memory data channel, producing

fewer requests per byte transferred and ultimately improving

the achievable data transfer rate.

A large body of work in the SpMV community focuses

on proposing new ways of representing sparse matrices in

memory, with the goal improving compactness and, as a

result, memory bandwidth utilization [40]. Several formats

glean their efficiency from specific properties of the matrix,

such as low variance in the number of non-zero elements [5,

10, 21, 48], which is often a bad assumption in the context of

graph processing [19]. Others combine non-zero elements

from multiple rows into the same data structure element

as an optimization [8, 9, 43]. These types of layouts would

preclude effective utilization of the frontier, which depends

on the ability to associate large sections of the edge data

structure uniquely with specific top-level vertices so that

they can be skipped easily.

5 Grazelle
Grazelle is a hybrid graph processing framework that em-

bodies the two contributions described in §3 and §4. Its

pull engine is parallelized using the scheduler-aware model,

whereas its push engine uses the traditional approach. In

both cases, threads are created and managed by direct invo-

cation of pthreads functions. Grazelle is implemented in 3

KLOC of C code and 2 KLOC of x86 assembly.

Grazelle’s programming model is based on Gather-Apply-

Scatter (GAS) [19] and edgeMap/vertexMap [58]. It defines

two processing phases, Edge (message exchange) and Vertex
(local update), each terminated by a thread barrier. The Edge

phase has two implementations, Edge-Push and Edge-Pull,

based on the engine pattern (push or pull).

Key data structures include arrays for vertex properties

and edge lists represented using Vector-Sparse. As with pre-

vious work [58, 67], we use two edge lists, one grouped by

source vertex (VSS) and the other grouped by destination

(VSD). Vertex property arrays are indexed using the vertex’s

48-bit identifier. Grazelle additionally supports global vari-

ables as a convenience to the graph application writer. These

variables can be used for any purpose; values are produced

during one phase and can be consumed upon that phase’s

completion. The remainder of this section covers implemen-

tation details not specifically related to scheduler awareness

or vectorization.

Frontier Tracking: Grazelle represents the frontier

densely as a bit-mask containing one bit per vertex indexed

by vertex identifier. We selected a bit-mask because it is ex-

tremely compact and trivial to search: 1 billion vertices would

only require 125MB, and the tzcnt instruction [30] enables

searching through 64 vertices with just a single instruction.

Unlike Grazelle, other engines support dynamically switch-

ing between sparse and dense representations for frontiers

[58, 67]. We quantify the impact of this implementation issue

in §6.3 but otherwise leave it to future work.

Multi-core andNUMA Support: Grazelle pins one soft-
ware thread to each hardware thread (logical core) available

in the system. Each thread is aware of its own group (set

of threads that share a NUMA node), local thread ID within

the group, and global thread ID. For work assignment and

accesses to node-local data structures, threads simply refer to

their local IDs. Accesses to globally-shared data are based on

a thread’s global ID, and thread barriers involve all threads.

The Edge phase is parallelized using a dynamic scheduler

that splits the edge vector array into equally-sized chunks

and assigns chunks to threads as they become available.
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Through experimentationwe found that creating 32n chunks,
where n is the number of threads, achieved near-ideal load

balance. Chunk size is dependent on the input graph, but

scheduling overheads are not. We selected a dynamic sched-

uler over a static scheduler because the latter would suffer

from variability in work per edge, as the structure of the

graph affects vertex locality, which in turn creates differ-

ences in the time taken to execute each edge’s workload. The

Vertex phase is statically scheduled by dividing the vertices

into equal-sized chunks, one chunk per thread. The work is

sufficiently regular that load balancing is not a problem.

Grazelle optimizes for NUMA by performing light-weight

graph partitioning: we divide the edge vector array into

equally-sized pieces, place each piece in locally-allocated

memory on each NUMAnode, and generate a separate vertex

index for each NUMA node’s piece. Since edges are grouped

and sorted in ascending order by top-level vertex, we can eas-

ily determine the range of source (Edge-Push) or destination

(Edge-Pull) vertices that each NUMA node will encounter

during the Edge phase. We use the latter to distribute the

vertex property arrays over NUMA nodes in a manner sim-

ilar to that of Polymer: each array is contiguous in virtual

address space, but address translation allows different parts

of the backing physical memory to be located on different

NUMA nodes [67]. During the Vertex phase, each NUMA

node only updates vertices whose property values are locally

allocated on it, subject to some flexibility to avoid overlaps

and ensure proper alignment. We do not evaluate the effec-

tiveness of our approach and instead refer interested readers

to Polymer’s evaluation of the impact of NUMA on graph

partitioning [67].

6 Evaluation
We used a 4-socket server with Intel Xeon E7-4850 v3 pro-

cessors (14 physical/28 logical cores and 35MB LLC) [31]

and 1 TB of DRAM, running Ubuntu 14.04 LTS. To clearly

separate issues, §6.1 and §6.2 respectively evaluate scheduler

awareness and Vector-Sparse mostly using a single socket,

while the final comparison with existing work in §6.3 uses

all four sockets to also capture NUMA issues.

Input datasets are 6 real-world graphs listed in Table 1.

They are taken from a variety of application areas and fea-

ture a wide variety of sizes and distributions [18, 22, 26].

dimacs-usa and twitter-2010 are commonly used in re-

lated work [37, 49, 55, 58, 67]. dimacs-usa is unique in that

it is a mesh network, having relatively small and consistent

vertex degrees. The others are scale-free graphs with dif-

ferent degree distributions. The in-degree distribution of

uk-2007 is the most skewed of all our input graphs; com-

pared to twitter-2010, uk-2007 contains over 10× more

vertices having in-degree of at least 100,000 [6, 7]. Our plots

refer to the graphs by abbreviation.

Table 1. Graph datasets used for our evaluation.

Abbr. Name Vertices Edges
C cit-Patents [41] 3.7M 16.5M

D dimacs-usa [15] 23.9M 58.3M

L livejournal [41] 4.8M 69.0M

T twitter-2010 [6, 7] 41.7M 1.47B

F friendster [41] 65.6M 1.81B

U uk-2007 [6, 7] 105.9M 3.74B

GraphMat and Polymer, two existing frameworks to which

we compare Grazelle, crash when we attempt to process the

uk-2007 graph. GraphMat indexes edges using 32-bit signed

integers, hence it cannot load correctly a graph with over 3

billion edges. Polymer appears to suffer from an implemen-

tation bug. None of Polymer’s originally-published results

use graphs with more than 3 billion edges [67].

Our evaluation focuses on 3 graph applications: PageRank

(PR), Connected Components (CC), and Breadth-First Search

(BFS). These applications represent diverse behaviors both in

terms of memory accesses and frontier utilization. PageRank

does not use the frontier and uses summation as its aggrega-

tion operator, so vertex property values are updated every

iteration. It therefore can be used to measure peak process-

ing throughput. Connected Components uses the frontier

to activate and deactivate source vertices, thus exhibiting

the most common type of frontier utilization. Its aggrega-

tion operator is minimization, which sometimes allows it to

skip memory write operations if the proposed value to be

written is not actually less than the value already present

for a vertex property. Breadth-First Search is a completely

frontier-driven application. In addition to source vertex acti-

vation and deactivation, it also marks vertices as converged

immediately upon their visitation. Only a single write oper-

ation is ever needed per vertex: the first identified candidate

to be a vertex’s parent becomes its final value.

We omit other applications due to space limitations and

because they would not add further information about the

effectiveness of scheduler awareness or Vector-Sparse. For

example, Collaborative Filtering is very similar to PageRank

in that it does not use the frontier, but differs as it uses edge

weights and supplies a different mathematical formula for

updates to property values [23]. The use of edge weights

adds additional transfers but does not change the access

pattern, and the use of a different kernel simply means an al-

ternate sequence of arithmetic instructions in the inner loop.

Likewise, Single-Source Shortest-Paths uses edge weights

and initializes the frontier to contain just a single vertex. It

otherwise behaves the same way as Connected Components,

all the way down to the use of minimization as its aggrega-

tion operator [58]. The only effect of a difference in frontier

fullness is biassing the execution towards either push or pull.
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6.1 Effectiveness of Scheduler Awareness
Scheduler awareness eliminates write conflicts and reduces

the number of write operations a pull engine needs to per-

form. We expect it to be at its most beneficial when writes

and conflicts are common. We therefore begin our analysis

with a detailed look at PageRank, followed by some insights

as to its impact on Connected Components. Because Breadth-

First Search performs one write per vertex and writes do not

conflict, it is unaffected by scheduler awareness.

We evaluate the effectiveness of scheduler awareness by

comparing two pull engine configurations: one parallelized

using a scheduler-aware interface (Listings 3, 4, 5, and 6) and

one parallelized using a traditional interface (Listing 2 with

the inner for changed to parallel_for and appropriate

atomics added). With the traditional interface, the proba-

bility of write conflicts depends on the number of threads

used, the degree of vertices processed, and the scheduler

granularity (i.e. the number of edges per chunk). Conversely,

the scheduler-aware interface must perform a merge oper-

ation at the end of the nested loop. The incurred overhead

depends on the scheduler granularity (i.e. the number of

chunks created).

Figure 5 quantifies the performance impact of scheduler

awareness for PageRank using the 6 input graphs with a

fixed scheduler granularity of 1,000 edge vectors per chunk,

which roughly approximates the default maximum chunk

size Cilk Plus would use for any of these graphs [32]. For

reference, we also show results for the traditional approach

without synchronization, even though it leads to incorrect

output. Scheduler awareness is clearly beneficial across the

board, irrespective of graph dimensions. The largest benefit

is for uk-2007: the write conflicts with the traditional in-

terface are sufficiently prevalent that scheduler awareness

improves performance by 50×. For such consistently low-

degree graphs as dimacs-usa the speedup drops as low as

15%; in these cases, scheduler awareness removes all syn-

chronization but does not significantly reduce the actual

number of writes performed.

Figure 6 quantifies the sensitivity of PageRank perfor-

mance to chunk size for three representative graphs. Per-

formance with the traditional interface is often strongly de-

pendent on the chunk size, particularly for scale-free graphs

with frequent high-degree vertices. The ideal chunk size is

graph-dependent, and simply switching to a large chunk size

is undesirable because doing so can lead to load imbalance.

Conversely, performance with the scheduler-aware interface

is largely insensitive to chunk size.

Figure 7 illustrates how scheduler awareness improves

multi-core scalability for the same graphs as in Figure 6 by

showing performance as we increase the number of active

physical cores and NUMA nodes. In each test involving mul-

tiple NUMA nodes, the number of active physical cores per

node is kept equal. The chunk size is selected for each graph

based on its result in Figure 6, with the goal of picking a

granularity that produces similar performance between the

two interfaces. All values are normalized to the performance

result of the traditional interface with a single thread. As ex-

pected, scheduler awareness is most effective for graphs with

greater numbers of vertices having high in-degree. In fact,

without scheduler awareness the performance of PageRank

on uk-2007 barely scales with increasing thread count. Nev-

ertheless, even low-degree graphs can benefit from scheduler

awareness, as reflected in the results for dimacs-usa.
We turn our attention now to Connected Components,

which has lower write intensity than PageRank. To isolate

the impact of the reduced write intensity, we present re-

sults for two versions: one implemented as described and

a modified version with higher write intensity. The latter

unconditionally writes values to vertex properties, even if

the value to be written is equal to the value already present.

Due to space limitations, Figure 8 presents only end-to-end

performance results using Grazelle’s default scheduling gran-

ularity (§5) on a single socket with all 28 logical cores active.

Despite its reduced write intensity, Connected Com-

ponents clearly benefits from scheduler awareness.

cit-Patents, for instance, exhibits a speedup of 40%.

Scheduler awareness is unsurprisingly more effective with

the modified version, resulting in a speedup of up to 2.4×.
In the worst case, there is a 3% slowdown for uk-2007 in

Figure 8b. This occurs because Grazelle’s default scheduling

granularity is coarse for this graph (approximately 1 million

vectors per chunk), meaning that the number of write

conflicts is quite small with the traditional interface.

6.2 Effectiveness of Vector-Sparse
Vector-Sparse adds padding to the very compact Compressed-

Sparse layout in order to better support vectorization. In

other words, it trades off some compactness for performance.

Both the compactness loss and the performance gain depend

on the average packing efficiency of the edge vectors. Pack-

ing efficiency is the percentage of valid bits set per vector.

For a 4-element vector, it ranges from 25% (only one edge

is valid) to 100% (all four edges are valid). Figure 9a shows

the average edge vector packing efficiency across all 6 of

our real-world datasets. Figure 9b shows the same for a total

of 30 synthetic graphs generated with the R-MAT genera-

tor [11] included in X-Stream [55]. We show results with 4-,

8-, and 16-element vectors (256-, 512-, and 1024-bit vectors)

to evaluate the effectiveness of Vector-Sparse with current

and future processors. Many real-world graphs, including

both twitter-2010 and uk-2007, have an average degree

of at least 2
5
, which leads to an average packing efficiency

of well over 90% for 4-element vectors and close to that

even for 8-element vectors. With 4-element vectors, packing

efficiency is at least 75% in nearly all cases, suggesting po-

tentially large benefits from vectorization. Unsurprisingly,

packing efficiency drops with wider vectors.
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Figure 5. Performance impact of scheduler awareness on PageRank with a scheduling granularity of 1,000 edge vectors per

chunk. T = Traditional; T-NA = Traditional, Nonatomic; SA = Scheduler-Aware.
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Figure 7.Multi-core scaling of different scheduler interfaces with PageRank. Represented as performance relative to that of

the traditional interface run with a single thread. Higher is better.

We evaluate performance gains from vectorization with

4-element AVX vectors by comparing vectorized implemen-

tations of each phase with non-vectorized implementations

of the same. Our non-vectorized implementation of the Ver-

tex phase targets only a single vertex per iteration. In the

Edge phase, we disable vectorization by replacing vectorized

code, such as the vgatherqpd instruction, with versions that

process a single edge at a time.

We show results separated by Grazelle phase when run-

ning PageRank (Figure 10a) and as end-to-end speedups

across the three applications (Figure 10b). Edge-Pull is clearly

the most responsive to vectorization, showing speedups of

approximately 2× irrespective of input. Edge-Push and Ver-

tex are largely unresponsive to vectorization, the former due

to the lack of AVX atomic-update-scatter instructions and

the latter because of memory bandwidth saturation. PageR-

ank benefits the most from vectorization because Grazelle

exclusively selects Edge-Pull for its execution. Benefits for

other applications depends on the extent to which they use

Edge-Pull, which in turn depends on the frontier size.
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Figure 8. Performance impact of scheduler awareness on

Connected Components with Grazelle’s default scheduler

granularity. Shown as execution time relative to the tradi-

tional interface. Lower is better.

6.3 Comparison with Existing Graph Frameworks
We compare Grazelle to Ligra version 1.5, a July 2015 snap-

shot of Polymer, GraphMat version 1.0, and in-memory X-

Stream version 1.0. Ligra’s pull engine is the state-of-the-art

for a CPU-based implementation, Polymer is a NUMA-aware

derivative of Ligra, GraphMat has previously been cited as

being the best-performing framework [23, 61]. X-Stream is

unique in that it is an edge-centric framework: it creates

cache-sized streaming partitions from an unordered list of

edges and performs in-memory shuffle operations to ex-

change messages between them [55].

Per-application results are shown in Figures 11, 12, and 13.

Lower execution time is better. PageRank results are shown

individually for the push-based and pull-based engines of

Grazelle and Ligra; Polymer’s implementation exclusively

uses a push-based engine, and GraphMat does not contain

a pull-based engine. Connected Components and Breadth-

First Search results are shown for both Ligra and Ligra-Dense,
a modified version of Ligra that maintains engine switching

functionality but uses only a dense frontier representation.

One of Ligra’s key optimizations is the use of both sparse and

dense frontier representations, a feature not implemented

in Grazelle, so we include Ligra-Dense results to facilitate a

fairer comparison.

With the exception of the small cit-Patents graph,

PageRank results clearly favor Grazelle’s pull-based en-

gine, which outperforms Ligra’s pull-based engine, Polymer,

GraphMat, and X-Stream by up to 15.2×, 4.6×, 4.7×, and
66.8×1

respectively, with all four sockets active. Grazelle is

the only framework that uses a pull engine with a paral-

lelized and vectorized inner loop, so the results reflect the

significant processing throughput gains by using scheduler

awareness and Vector-Sparse. Interestingly, Grazelle’s push-

based engine generally outperforms GraphMat, the biggest

difference being 3.6×with all four sockets active. X-Stream’s

1
X-Stream requires that the number of threads be a power of two. It can

therefore only scale to 16 out of the available 28 logical cores per socket.
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Figure 10. Performance impact of vectorization relative to

each corresponding non-vectorized implementation.

performance is uncompetitive, likely due to the significant

overheads of its in-memory shuffle operations.

Connected Components results show Grazelle respec-

tively outperforming Ligra, Ligra-Dense, Polymer, Graph-

Mat, and X-Stream by up to 14.6×, 13.3×, 4.1×, 12.2×, and
223.2× with all four sockets active. These results showcase

the higher processing throughput of Grazelle’s pull engine

even when frontiers shift some iterations to the push en-

gine. GraphMat is built on an engine intended for sparse

matrix-vector multiplication and therefore does not handle

the frontier as efficiently as the other frameworks, hence its

comparatively reduced performance. X-Stream is hampered

both by its relatively low processing throughput (Figure 11)

and its inferior frontier-handling efficiency: an update tar-

geting a vertex in a particular streaming partition requires

loading and processing the entire partition, not just the indi-

vidual vertex being updated [55].

Breadth-First Search results mostly favor Ligra due to its

sparse frontier optimization, which is particularly helpful

because the frontier is often nearly empty. Grazelle’s per-

formance is generally similar to that of Ligra-Dense. This

indicates that our proposed optimizations do not display any

sort of fundamental incompatibility with applications that

extensively use frontier optimizations, even though they do

not specifically benefit such applications. Execution times
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Figure 11. PageRank per-iteration execution time comparison. Lower is better. All plots use a logarithmic scale.
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Figure 12. Connected Components execution time comparison. Lower is better. All plots use a logarithmic scale.
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Figure 13. Breadth-First Search execution time comparison. Lower is better. All plots use a logarithmic scale.

produced by Polymer, GraphMat, and X-Stream are uncom-

petitive with Ligra or Grazelle. Polymer’s implementation

uses exclusively its pull-based engine, and both GraphMat

and X-Stream suffer from the same issues as with Connected

Components.

7 Conclusion
We presented two optimization strategies that improve the

performance of pull-based graph processing engines. The

scheduler-aware interface for parallel loops allows us to elimi-

nate most write traffic and synchronization operations when

parallelizing the inner loop, leading to speedups of up to 50×.

The Vector-Sparse format enables inner loop vectorization,

which improves performance by up to 2.5×. We implemented

both in Grazelle, a hybrid graph processing framework that

respectively outperforms state-of-the-art graph processing

frameworks Ligra, Polymer, GraphMat, and X-Stream by

up to 15.2×, 4.6×, 4.7×, and 66.8×, even in the presence of

frontier optimizations.
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A Artifact Description
A.1 Abstract
This artifact contains all of the source code for Grazelle and

the datasets used to evaluate it in the PPoPP 2018 paper

Making Pull-Based Graph Processing Performant. Validating
our results requires compiling and running Grazelle on these

datasets. Our Makefile-based build system simplifies the task

of replicating our results by pre-setting several experiment

settings based on the figure numbers in the paper.

Grazelle requires an x86-64-based processor with support

for AVX2 instructions (i.e. Intel Haswell or later), and NUMA

tests require multiple sockets. We recommend at least 256GB

DRAM per socket. Grazelle runs on Ubuntu 14.04 or later

with glibc, libnuma (package “libnuma-dev”), and pthreads.

For building, Grazelle requires gcc 4.8.4 or later and either

as 2.24 or nasm 2.10.09 or later, as well as the “make” tool.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: PageRank, Connected Components,

Breadth-First Search

• Program: C and assembly code

• Compilation: gcc 4.8.5, as 2.24 or nasm 2.10.09

• Binary: Not included; provided source code compiles

to an executable targeting x86-64 CPUs that support

AVX2 instructions

• Data set: Publicly available datasets listed in the paper,
converted to Grazelle’s binary graph format

• Run-time environment: Ubuntu 14.04 or later with

glibc, libnuma (package “libnuma-dev”), and pthreads

• Hardware: x86-64-based processor with support for

AVX2 instructions (i.e. Intel Haswell or later); NUMA

tests require multiple sockets; recommended 256GB

DRAM per socket

• Execution: Run the Grazelle binary with appropriate

command-line flags

• Output: Execution statistics such as time, vector pack-

ing efficiency, and so on are printed to standard output

• Publicly available: Yes

A.3 Description
A.3.1 How Delivered
Our artifact is publicly available onGitHub. It can be accessed

at https://github.com/stanford-mast/Grazelle-PPoPP18.

A.3.2 Hardware Dependencies
Grazelle requires an x86-64-based CPU with support for

AVX2 instructions, such as Intel CPUs of Haswell generation

or later. NUMA scaling experiments require multiple CPU

sockets. We recommend 256GB DRAM per socket.

A.3.3 Software Dependencies
Ubuntu 14.04 or later with glibc, libnuma (package “libnuma-

dev”), and pthreads; make; gcc 4.8.4 or later and either as

2.24 or nasm 2.10.09 or later.

A.3.4 Data Sets
All datasets are publicly-available graphs that have been

converted to the binary format Grazelle expects for its in-

put. Directions for obtaining them are included with the

published artifact.

A.4 Installation
Ensure that libnuma is installed and available for linking

with the -lnuma linker option. On Ubuntu, libnuma may be

distributed as the “libnuma-dev” package.

Download the Grazelle source code and extract it to a

directory. To verify the results in the paper, use the docu-

mentedmake targets in the section that follows. To perform a

custom set of tests, type make help for all available options.

A.5 Experiment Workflow
First build Grazelle, then run it using a valid set of command-

line options.

A.5.1 Building Grazelle
By default the build system uses the “as” assembler. If assem-

bler issues are encountered, it is possible that the installed

version of “as” is too old. In that case, “nasm”
2
can be down-

loaded and used instead by placing the binary into a location

covered by the PATH environment variable and switching the

“AS” variable value to “nasm” in the Makefile.

We have grouped experimental configuration flags into

Makefile targets named to correspond to the figures as num-

bered in the paper. Simply type make followed by one of

the following named targets to configure Grazelle for the

experiment that is described.

• fig567-trad, fig567-tradna, fig567-sa: Configures
Grazelle to run the PageRank Scheduler Awareness

experiments (Figures 5, 6, and 7). Suffixes “-trad”,

“-tradna”, and “-sa” produce traditional, traditional-

nonatomic, and scheduler-aware versions respectively.

• fig8a-trad, fig8a-tradna, fig8a-sa, fig8b-trad,
fig8b-tradna, fig8b-sa: Configures Grazelle to run

the Connected Components Scheduler Awareness

experiments (Figure 8). “8a” targets produce write-

intense versions, “8b” targets produce standard

versions, and suffixes “-trad”, “-tradna”, and “-sa”

produce traditional, traditional-nonatomic, and

scheduler-aware versions respectively.

• fig9: Configures Grazelle to output vector packing

efficiency results for vectors of length 4, 8, and 16. The

results of this experiment are shown in Figure 9.

2
NASM is available at http://www.nasm.us.
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• fig10a-edgepull-base, fig10a-edgepull-vec,
fig10a-edgepush-base, fig10a-edgepush-vec,
fig10a-vertex-base, fig10a-vertex-vec: Configures
Grazelle to run the per-phase vectorization perfor-

mance tests (Figure 10a); “edgepull”, “edgepush”, and

“vertex” respectively identify the phase of execution,

and “base” and “vec” respectively identify the baseline

and vectorized implementations.

• fig10b-pr-base, fig10b-pr-vec, fig10b-cc-base,
fig10b-cc-vec, fig10b-bfs-base, fig10b-bfs-vec:
Configures Grazelle to run the end-to-end application

vectorization performance tests (Figure 10b); “pr”,

“cc”, and “bfs” identify the application, and “base” and

“vec” respectively identify the baseline and vectorized

implementations.

• fig11-pull, fig11-push, fig12, fig13: Configures

Grazelle for performance comparisons with other

frameworks (Figures 11, 12, and 13).

A.5.2 Running Grazelle
Once Grazelle is built, it can be run by typing its executable

name and supplying appropriate command-line flags. Doc-

umentation is available by using -h as the command-line

flag; however, for convenience the most common flags are

documented here.

• -i [graph-path]: Obligatory graph filename. Both

the “-push” and “-pull” files must be located in the

same directory, and the name of the graph should be

specified without the “-push” or “-pull” suffix. Grazelle

adds these suffixes automatically to the path specified

to this command-line option.

• -u [numa-nodes]: Comma-delimited list of NUMA

nodes Grazelle should use to run the graph application.

For example, -u 0,2 specifies that nodes 0 and 2 should
be used. By default only the first node in the system is

used.

• -n [num-threads]: Total number of threads that

should be used for running the graph application. By

default Grazelle uses all available threads on the con-

figured NUMA node(s).

• -N [num-iterations]: Number of iterations of

PageRank to run (ignored for the other applications).

Defaults to 1.

• -s [sched-granularity]: Scheduling granularity to

use, expressed as number of edge vectors per unit of

work. Default behavior is to create 32N units of work,

where N is the number of threads.

• -o [output-file]: If specified, causes Grazelle to

write output produced by the running application to

the specified file. For PageRank this is the final rank

of each vertex, for Connected Components this is the

component identifier of each vertex, and for Breadth-

First Search this is the parent of each vertex.

A.6 Evaluation and Expected Results
Grazelle’s output takes the form of execution statistics

printed to standard output. Of particular interest is the run-

ning time, which is the result we recorded for many of the

graphs in the paper. PageRank output includes a “PageRank

Sum” field, which is a simple correctness check that should

always show a value very close to 1.0.

For Connected Components and Breadth-First Search the

number of iterations is controlled automatically by the appli-

cation. For PageRank, it is a good idea to use the -N option
to set the number of iterations to a number high enough to

get steady-state behavior. We suggest the iteration counts

shown in Table 2.

Table 2. Suggested PageRank iteration counts.

Graph fig10a-vertex-* All Others
cit-Patents 1024 1024

dimacs-usa 256 256

livejournal 1024 256

twitter-2010 64 16

friendster 64 16

uk-2007 32 16

A.7 Notes
Each invocation of the Grazelle executable produces a sin-

gle data point. Reproducing figures generally requires data

points obtained from multiple invocations that are then com-

pared. For example, replicating Figure 10 requires compar-

ing corresponding data points obtained using baseline and

vectorized configurations, and replicating Figure 7 requires

sweeping the -n command-line parameter.

We used the “perf” tool to generate Figure 5b. We are not

able to supply a script to automate the process of generat-

ing that graph, as it involved manually looking at traces to

capture time percentages spent in specific functions.

Reproducing Figures 11, 12, and 13 requires comparing per-

formance results produced by Grazelle with those produced

by other frameworks. Instructions and resources needed to

obtain, build, and run these other frameworks are included

in the published artifact.
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