
Enabling Multi-tenancy on SSDs with Accurate IO
Interference Modeling

Lokesh N. Jaliminche
∗

University of California, Santa Cruz, USA

ljalimin@ucsc.edu

Chandranil (Nil) Chakraborttii

Trinity College, Hartford, USA

nil.chakraborttii@trincoll.edu

Changho Choi

Samsung Semiconductor, Inc, USA

changho.c@samsung.com

Heiner Litz

University of California, Santa Cruz, USA

hlitz@ucsc.edu

ABSTRACT
Technological advancements in the past decades have sub-

stantially increased the capacity and performance of Solid

State Drives (SSDs). Provisioning such high-capacity SSDs

among tenants can reap multiple benefits, such as elevated

performance, efficient resource utilization, and cost savings

through reduced Total Cost of Ownership. However, work-

loads perform poorly when co-located with others on the

same SSD due to IO Interference, potentially violating Ser-

vice Level Objectives (SLOs). High overprovisioning can ad-

dress the SLO issue, however, it entails low utilization. Prior

works proposed Machine Learning (ML) techniques to pre-

dict SSD performance in the presence of interfering tenants

for optimizing workload placement. However, we find that

these works suffer from two notable limitations. First, pre-

vious ML models do not capture interference impact due to

the non-uniform workload characteristics and SSD internals.

Second, they fail to compute interference of an arbitrary

number of workloads due to a lack of feature aggregation.

As a result, these works still offer low utilization and can

only enforce weak SLOs. To address these limitations, we

propose a Gray-box feature representation and aggregation

technique to capture the IO interference impact of multiple

non-uniform workloads based on internal SSD character-

istics. Our technique improves prediction accuracy by 12x

(lower mean absolute error) over prior works, resulting in

up to 60% higher resource utilization or enforcing up to 2.5×
stricter SLOs.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0387-4/23/11.

https://doi.org/10.1145/3620678.3624657

CCS CONCEPTS
• Computing methodologies→ Modeling methodologies; •
Information systems→ Storage management.

KEYWORDS
IO Interference, Performance Modeling, Machine Learning,

Resource Allocation, SSDs, Performance Isolation

ACM Reference Format:
Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho

Choi, and Heiner Litz. 2023. Enabling Multi-tenancy on SSDs with

Accurate IO Interference Modeling. In ACM Symposium on Cloud
Computing (SoCC ’23), October 30–November 1, 2023, Santa Cruz,
CA, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.

1145/3620678.3624657

1 BACKGROUND AND INTRODUCTION

Figure 1: Postgres performance degradation due to IO
Interference

Modern SSDs support multi-terabyte of storage capacity

by exploiting techniques such as planar scaling [74], 3D in-

tegration [50], and multi-level cells [49]. This trend seems to

persist with SSDs utilizing Host Memory Buffer(HMB) [36].

In addition, SSD manufacturers have also been scaling the

IO bandwidth of SSDs by utilizing multiple parallel NAND

chips, multiple channels, and multi-plane operations [63]. As

a result, single workloads can now rarely utilize the perfor-

mance and capacity offered by a modern SSD. Public cloud

https://orcid.org/
https://doi.org/10.1145/3620678.3624657
https://doi.org/10.1145/3620678.3624657
https://doi.org/10.1145/3620678.3624657

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

providers leverage this trend by partitioning physical SSDs

into multiple virtual SSDs and leasing them to customers as

individual storage resources [37, 38, 48, 70]. This greatly im-

proves resource utilization and cost-effectiveness. However,

it also introduces the challenge of IO interference, which can

significantly degrade performance for the tenants sharing

the SSD. To demonstrate this effect, we conduct an exper-

iment running TPC-H [14] queries on PostgreSQL while

concurrently scheduling multiple interfering workloads on

the same SSD. Figure 1 shows that, as the IO bandwidth of

the Interfering Workloads increases, PostgreSQL suffers sig-

nificant performance degradation as query execution time

increases by up to 150%. This happens due to the internal

structure of SSDs, which leads to contention in accessing

shared resources (such as flash chips) across workloads. In

such cases, tenants’ service level objectives (SLO) can be vio-

lated, resulting in high over-provisioning, affecting resource

utilization and cost-effectiveness [6].

Prior works propose several approaches to address the

challenge of IO interference. These approaches can be broadly

divided into two categories. The first category involvesworks

suggesting changes to the internal architecture of SSDs [11,

27, 29, 30, 32, 41, 47, 62, 65, 67] isolating physical resources.

While these techniques can reduce interference, they are dif-

ficult to adapt, and often waste resources due to static parti-

tioning as they can only support a small number of workloads

or tenants. Furthermore, partitioning SSD resources reduces

the number of effective resources applications can use, limit-

ing performance. The second category of works uses black-

box Machine Learning (ML) algorithms to model the device

performance in the presence of IO interference and inform re-

source allocation strategies improving efficiency and utiliza-

tion while maintaining adequate performance [12, 13, 15, 52].

These approaches are easy to adapt as they do not require

changes to SSD architecture. Since they do not isolate the

physical resources, applications can utilize all the resources

available, improving overall performance and utilization.

Unfortunately, determining IO interference is non-trivial

due to the large variety of workload characteristics and inter-

nal SSD architectures. In particular, the workload character-

istics affecting IO interference include the read and write in-

tensity, IO size, IO alignment, access patterns, and burstiness.

At the same time, SSDs respond differently to such workload

characteristics based on their internal organization of chan-

nels, flash chips, and their implemented allocation policies.

Consequently, prior works [12, 13, 15, 52] suffer from the

following shortcomings.

First, they are limited to predicting workload interference

between two or, at most, a small, fixed number of work-

loads. Multiple workloads cannot be supported easily as

their ML models cannot simultaneously accept an arbitrary

number of feature sets (one for each workload). Second, prior

works are incapable of extracting complex behaviors such

as burstiness from an observed workload as they consider

only a limited feature set, such as IO size, IO intensity, and

IO access patterns (sequential and random). Third, because

black-box prediction models lack the understanding of an

SSD’s internal device architecture, without extensive fea-

ture engineering, they cannot determine the behavior of a

particular architecture for a given workload.

We address these challenges with a novel gray-box feature

representation and aggregation technique. We first perform

a detailed quantitative analysis of workload characteristics

to determine their precise effects on IO interference. Then,

we propose new features that can accurately represent the

non-uniform nature of workloads (such as variability in IO

size and burstiness of the workloads) and their interference

impact on SSD’s performance. We refer to our technique as

gray-box, as we relate each of our observations to the device

architecture. For instance, we find that for our analyzed SSDs,

the interference impact of IO size can be captured by cate-

gorizing them according to their alignment with the page

size of the SSD. Furthermore, we introduce a new feature

aggregation technique that enables interference prediction

across an arbitrary number of workloads by aggregating

their features to represent a single aggregated workload. In

summary, we make the following contributions.

(1) A root cause analysis of SSD internals and workload char-

acteristics for modeling IO interference (Section3).

(2)A novel feature representation and aggregation technique

for representing and aggregating IO workload characteristics

enabling multi-workload interference representation with

its usage model (Section 4, 5).

(3) An evaluation on several real-world workload traces (Al-

ibaba [42] and Tencent [75]), outperforming prior works by

up to 12×(lower mean absolute error) (Section 6).

(4)Demonstrating increased resource utilization and reduced

TCO by reducing the number of SSDs for workload place-

ment (Section 6.2).

2 SSD INTERNALS ANALYSIS
In this section, we briefly introduce the internal architecture

of modern SSDs and then highlight specific SSD properties

that cause IO interference. Based on these observations, Sec-

tion 4 will introduce the necessary features to support our

machine-learning mechanism.

2.1 Internal Device Parallelism
Figure 2 shows the basic architecture of a modern SSD con-

sisting of a controller, DRAM, and multiple flash chips. Mul-

tiple flash chips are connected to the controller via channels,

while each flash chip consists of planes, blocks, and pages.

SSDs leverage parallel flash chips and channels to boost

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Figure 2: Basic SSD Architecture

performance [1, 23–26, 56]. However, concurrent usage of

hardware resources (e.g., memory channels) introduces con-

tention, causing performance degradation[25, 41]. In sec-

tion 3.2 and 3.3, we analyze how such contention impacts IO

interference.

As flash memory cannot be written without a prior erase

operation, SSDs utilize out-of-place updates and sophisti-

cated allocation policies to distribute write traffic equally

across flash chips. Consequently, spatial address patterns

such as sequential or random accesses do not necessarily

determine the physical location of a sector. In contrast, reads

cannot be load-balanced across flash chips as the physical

location is determined on each write operation. We study

how such spatial IO access patterns affect interference in

section 3.5

2.2 Read and Write Amplification
Read respectively write amplification is defined as the ratio

of data accessed from the SSD and the data requested by

software [72]. Such read/write amplification happens due

to garbage collection [22] but also because of unaligned IO

sizes and unaligned IO offsets [31, 33, 44, 72].

Unaligned IO Size operations occur if reads or writes
access an amount of data that is not a multiple of the page

size (4K). Particularly, if write operations are smaller than

the page size, a read-modify-write (RMW) operation must be

performed. Similarly, when read operations are smaller than

the page size, the entire page is fetched into a read buffer,

and the required data is subsequently extracted from the

relevant offset. In both scenarios, an excessive amount of

data is read and written, causing read or write amplification.

We will analyze this effect in section 3.1.

Unaligned IO offset Operations occur if reads or writes
utilize addresses that are not page-aligned, causing RMW

operations on multiple pages, significantly increasing read

and write amplification compared to aligned offset oper-

ations [72]. We analyze the impact on IO interference of

unaligned IO offsets in section 3.6.

2.3 Read Write Assymetry
NAND flash writes require high voltages to re-program the

floating gate transistors, taking substantially longer than

reads [46, 69]. Flash chips only support one outstanding

operation (read, write, or erase) at a time. As a result, a heavy

write workload can reduce the overall read performance. In

section 3.4, we evaluate how read-write asymmetry affects

the performance of neighboring workloads.

3 WORKLOAD CHARACTERISTICS
ANALYSIS

This section analyzes the effect of specific IO workload prop-

erties on interference. We are particularly interested in inves-

tigating non-linear effects as their representation requires

more sophisticated IO interference modeling. We use this

analysis as a guide for proposing our SSD-specific feature

representation. In particular, we analyze the following work-

load properties:

• IO Size

• IO Rate

• IO Depth

• IO Type

• Temporal and Spatial IO access Pattern

To enable a thorough understanding of each of the above

properties corresponding to SSD internals, we perform our

experiments with two types of SSDs, shown in Table 1. We

utilize the flexible IO tester (FIO) [3] to develop synthetic

benchmarks where we define interferering workloads (IW)

and generally one workload under test (WUT). We run these

benchmarks and observe the performance degradation for

the WUT. For each benchmark, we vary one of the above

properties for IW, keeping all the other properties constant,

allowing us to understand the IO interference impact of that

specific property. We use a lower IO rate for the SATA SSD

compared to the NVMe SSD in line with their maximum

supported bandwidth. We describe the FIO features used

in each benchmark in their respective sections in a tabular

format.

We use libaio [16] as the IO engine and use 8 threads to gen-

erate each IO workload for all the experiments. To analyze

the IO interference impact caused by a particular IO metric,

we use the delta between the IO bandwidth degradation ob-

served by the WUT (y-axis) corresponding to variation in

that IO metric (x-axis). To calculate the difference (Delta), we

first calculate the average IO bandwidth degradation by cap-

turing theWUT’s average IO bandwidth running in isolation

and then compare it against the bandwidth when exposed

to IO interference (Equation 1). Then we calculate the Delta

between the two corresponding benchmarks to observe the

variation in the IO interference impact corresponding to dif-

ferent values of a particular IO metric (Equation 2). This

applies to all the experiments except for section 3.2 and 3.3,

where we evaluate the average bandwidth degradation for

WUT when run against an IW.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

Hardware/Software Configuration
CPU Intel Xeon @ 2.00GHz,

2 Sockets, 14 Cores,

2 Threads per core,

DRAM 80GB

SSD 1 (NVMe) Samsung PM1735 (3.4TB)

Peak Read BW: ≈6GB/s
Peak Write BW: ≈3GB/s
Peak Mixed BW: ≈3GB/s

SSD 2 (SATA) Samsung 870 EVO (1.8TB)

Peak Read BW: ≈512MB/s

Peak Write BW: ≈512MB/s

Peak Mixed BW: ≈300-512MB/s

Benchmarking Tool FIO

Operating System Ubuntu 20.04.4 LTS

Table 1: System Setup for Experiments

Due to space constraints, our analysis primarily focuses

on the read metrics, omitting the write sensitivity analysis.

While write performance is important for tasks such as write-

ahead-logging, modern SSDs generally complete writes as

soon as they are absorbed by the battery-backed DRAM

write buffer and DRAM is less susceptible to interference

than flash. Nevertheless, as we will show in section 6, our

feature representation and aggregation technique (discussed

in section 4) takes into account the impact of IO interference

on both read and write workloads.

Bandwidth Degradation =

Non-Interference BW − Interference BW
Non-Interference BW

× 100
(1)

Delta Bandwidth Degradation =

|BW Degradation(A) − BW Degradation(B)| (2)

3.1 IO Size Misalignment

Workload FIO parameters
(IO type, IO size, IO rate, IO depth)

WUT(NVMe) randread,4k,524288,128 (2GB/Sec)

WUT(SATA) randread, 4k,65536,128 (0.25GB/Sec)

IW(NVMe) randwrite,4K:8K,349520,128(2GB/Sec)

randwrite,6k,349520,128(2GB/Sec)

IW(SATA) randwrite,4K:8K,43680,128(0.25GB/Sec)

randwrite,6k,43680,128(0.25GB/Sec)

Table 2: IO Size Sensitivity Experiment

To analyze the IO size impact on IO interference, we define

several IWs sweeping their IO sizes from 4 KB to 1024 KB.

It is generally accepted that larger IO sizes have a higher

IO interference impact since a higher amount of data for IO

occupies more SSD resources. So we focus on comparing the

IO interference impact between the aligned vs. unaligned

IO sizes corresponding to the page size of the SSD (4KB).

For a fair comparison, we use similar IO bandwidth across

all the IWs. To keep the IO rate and depth constant, we

use two 4KB aligned sizes whose average results in 4KB

unaligned size. This allows us to ensure that only the IO size

property of the IWs is varied. For instance, Table 2 shows

the configuration of IWs where we use two page-aligned

IO sizes of 4KB and 8KB that achieves the IO bandwidth of

2GB/Sec (each IO size is responsible for 50% of the total IO

rate). For the corresponding page-unaligned workload, we

use a 6KB IO size that has exactly same IO rate and IO depth.

The WUT uses a fixed size of 4KB across all the IWs.

Figure 3: IO Size Misalignment Sensitivity

From Figure 3, we observe that for NVMe SSD, the delta

between bandwidth degradation caused by aligned and un-

aligned size workloads is ≈ 20%, which decreases as IO sizes

increase. This stark difference in performance degradation

caused by aligned and unaligned IO size is explained by the

read amplification and write amplification issue explored in

section 2.2. This delta keeps decreasing for higher IO sizes

because an increase in the IO size increases the number of

aligned writes vs. unaligned writes. For instance, a 6 KB IO

size causes one aligned write and one unaligned write. How-

ever, 1026KB causes 256 aligned writes and one unaligned

write reducing the IO interference impact of unalignedwrites.

However, for SATA SSD, we do not see a significant differ-

ence in the IO interference impact of aligned vs unaligned

writes even for smaller writes. We attribute this effect to

the data transfer latency of the SATA interface, which is

significantly higher than the NVMe interface [66], hiding

the impact of unaligned writes in SSDs.

3.2 IO Rate
To understand IO interference sensitivity to the IO rate, we

devise a single WUT and several IWs sweeping only the IO

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

rate (Table 3). We only discuss the results for the NVMe SSD

as our observations apply equally to the SATA SSD. From

Figure 4, we can see that the IO interference impact of IW

keeps increasing from 0 to≈ 30% as we increase the IO rate of

the interfering workload. We see this effect as an increase in

the IO rate increases the contention for accessing the internal

SSD resources (Section 2.1), such as memory channels and

flash chips, consequently affecting the performance of the

WUT. However, the IO interference impact is similar for the

IO rate from 314k to 524k (≈ 15−18%). Such behavior can

arise from the correlation between the cost of IO operations

and the IO rate. For instance, while contending for the IO

resources with similar IO depth, because less expensive IO

requests get served faster, such workloads can maintain a

higher IO rate, especially when contending with larger IO

sizes workloads. As a result, they suffer lesser IO interference.

This effect can change with the IO depth, which we will

discuss in section 3.3

Workload FIO parameters
(IO type, IO size, IO rate, IO depth)

WUT (NVMe) randread,4k, 524288,128 (2GB/Sec)

WUT (SATA) randread,4k, 65536,128 (0.25GB/Sec)

IW (NVMe) randwrite,4k, 104k - 629K, 128

(0.4 - 2.4GB/Sec)

IW (SATA) randwrite,4k, 4k - 65K, 128

(0.02 - 0.25GB/Sec)

Table 3: IO rate sensitivity experiment

Figure 4: IO rate sensitivity

3.3 IO Depth
To understand the effect of IO depth, we design an exper-

iment where we sweep the IO depth of the IWs from 8 to

16384, keeping IOPS constant (shown in Table 4). We only

discuss the results for the NVMe SSD as our observations

apply equally to the SATA SSD. Figure 5 shows that as we

Workload FIO parameters
(IO type, IO size, IO rate, IO depth)

WUT (NVMe) randread, 4k, 524288, 128(2GB/Sec)

WUT (SATA) randread, 4k, 65536, 128(0.25GB/Sec)

IW (NVMe) randwrite, 4k, 524288, 8 - 16384

(2GB/Sec)

IW (SATA) randwrite, 4k, 65536, 8 - 16384

(0.25GB/Sec)

Table 4: IO depth sensitivity experiment

Figure 5: IO Depth Sensitivity

increase the IO depth, WUT suffers higher bandwidth degra-

dation, increasing from 0 to 30%. We see such effect due to

increased contention to access the SSD resources correspond-

ing to IO depth. However, we see a step function where IO

depths 64-256 and 8192-16384 have similar IO interference

impacts. We see such behavior because IO depth generally

helps to achieve certain required IO bandwidth. Once the

required bandwidth of the workload is already met, further

increases in IO depth do not cause higher IO interference,

which is the case for the IO depths 8192-16384.

3.4 IO Type

Workload FIO parameters
(IO type, IO size, IO rate, IO depth)

WUT(NVMe) randread, 4k, 524288, 128 (2GB/Sec)

WUT (SATA) randread, 4k, 65536, 128 (0.25GB/Sec)

IW (NVMe) randread, 4k, 524288, 128 (2GB/Sec)

randwrite, 4k, 524288, 128 (2GB/Sec)

IW (SATA) randread, 4k, 65536, 128 (0.25GB/Sec)

randwrite, 4k, 65536, 128 (0.25GB/Sec)

Table 5: IO Type Sensitivity Experiment

This section analyzes the IO interference impact of read vs.

write workloads. So we only vary the IO type of the IWs (Ta-

ble 5). From Figure 6, we can see that the delta between the

bandwidth degradation caused by read and write workloads

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

Figure 6: IO Type Sensitivity

is ≈ 30% for NVMe SSD and ≈ 10% for SATA SSD. This

essentially happens as writes are significantly more expen-

sive than read requests due to the physical nature of SSD

discussed in section 2.3.

3.5 Spatial IO Access Patterns

Workload FIO parameters
(IO type, IO size, IO rate, IO depth)

WUT (NVMe) randread, 4k, 524288, 128 (2GB/Sec)

read, 4k, 524288, 128 (2GB/Sec)

WUT (SATA) randread, 4k, 65536, 128(0.25GB/Sec)

read, 4k, 65536, 128 (0.25GB/Sec)

IW (NVMe) randwrite, 4k, 524288, 128 (2GB/Sec)

write, 4k, 524288, 128 (2GB/Sec)

IW (SATA) randwrite, 4k, 65536, 128(0.25GB/Sec)

write, 4k, 65536, 128 (0.25GB/Sec)

Table 6: IO Access Pattern Sensitivity Experiment

Figure 7: Spatial IO access pattern Sensitivity

This section analyzes the interference impact of spatial IO

access patterns, such as sequential vs. random. In this exper-

iment, we define two read-only WUTs and two write-only

IWs for both NVMe and SATA SSD, only varying their IO

access patterns (Table 6). Then we run all four configuration

permutations. For NVMe SSD, Figure 7 shows that the delta

between bandwidth degradation caused by sequential and

random IW is less than ≈ 5%. We attribute this behavior to

the write allocation policies described in section 2.1. The

probability of accessing a particular flash chip is the same

for all chips as long as a sufficient number of outstanding

requests and some IO request buffering capability exists in

the system [35, 44]. However, for the SATA SSD, we see a

higher delta between the performance degradation caused

by the random and sequential IWs, ≈ 10% for sequential

and ≈ 20% for random WUT. This can be explained by our

discussion in section 3.2, where we show that operations

with a shorter completion time could maintain a higher IO

rate and suffer less IO interference. Sequential operations

are more efficient than random operations as SSD manufac-

turers employ optimization techniques, such as prefetching

and IO striping [9, 46, 71], increasing overall IO efficiency.

As a result, the more efficient sequential WUTs suffer less. In

the SATA SSD, such behavior is more evident due to limited

hardware resources and less efficient write operations than

NVMe SSD.

3.6 IO Offset Alignment

Workload FIO parameters
(IO type, IO size, IO rate, IO depth)

WUT (NVMe) randread, 4k, 524288, 128 (2GB/Sec)

WUT (SATA) randread,4k, 65536,16 (0.25GB/Sec)

IW (NVMe) randwrite, 4k, 524288, 128 (2GB/Sec)

write:17k, 4k, 524288, 128 (2GB/Sec)

IW (SATA) randwrite, 4k, 65536, 128(0.25GB/Sec)

write:17k, 4k, 65536, 128(0.25GB/Sec)

Table 7: IO offset Alignment Sensitivity Experiment

Figure 8: IO interference due to IO offset alignment

To explore the IO interference caused by different IO offset

alignments, we devise a single WUT and several IWs that

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

generate two types of IWs. IWs with page-aligned and page-

unaligned offset IOs. Note that using FIO with "write:17k" IO

type performs page unaligned offset IOs by skipping 17k after

each write operation. We do this for multiple IO sizes (Ta-

ble 7). We only explain the results for SATA SSD; similar

observations apply to NVMe SSD. Figure 8 shows that the

delta between the bandwidth degradation caused by aligned

and unaligned offset IWs is ≈ 10%, and it keeps decreas-

ing as the IO size increases. We attribute this delta to RMW

(read-modify–write) operations caused by unaligned offset

IOs explained in section 2.2. The decrease in IO interference

impact is explained in section 3.1, where an increase in IO

size leads to lower unaligned operations than aligned oper-

ations. Note that un-aligned offset IOs shows a higher IO

interference impact than un-aligned size IOs, as crossing the

page boundary can cause RMW operations on two pages,

making it significantly expensive. For instance, 4k unaligned

IO offset cause two RMW operations as no direct flash writes

can be performed. While in the case of 6k IO size on aligned

offset cause only one RMW operation.

3.7 Temporal IO Access Patterns

Workload
FIO parameters
(IO type, IO size, IO rate, IO depth,

startdelay, thinktime, thinktime)

WUT (NVMe) randread,4k, 524288,32, 0, 0, 0

(Avg:2GB/Sec, Std:0)

WUT (SATA) randread,4k, 65536,32, 0, 0, 0

(Avg:0.25GB/Sec, Std:0)

IW Uniform randwrite, 4k, 262144,128, 0, 0, 0

(NVMe) (Avg:1024MB/s, Std:0)

IW Bursty randwrite, 4k, 53608,128, 1s, 1s, 1s

(NVMe) randwrite, 4k, 470680,128,0,1s,1s

(Avg: 1024MB/s, Std: 1152MB/s)

IW Uniform randwrite, 4k, 32768,128, 0, 0, 0

(SATA) (Avg:128MB/s, Std:0)

IW Bursty randwrite, 4k, 12496,128, 1s, 1s, 1s

(SATA) randwrite, 4k, 50000,128,0,1s,1s

(Avg: 128MB/s, Std: 144MB/s)

Table 8: Uniform vs Bursty IO Sensitivity Experiment

This section analyzes the degree of interference caused by

temporality of IO access patterns. In particular, we compare

bursty workloads against uniform workloads. As per our

knowledge, no prior work has considered the varying IO

interference of temporal access patterns, although bursty

workloads are common in real-world scenarios. For this

experiment, we define two IWs. The first IW generates a

uniform IO rate (uniform IW), i.e., the bandwidth remains

Figure 9: Temporal (uniform vs. bursty) IO access pat-
tern induced performance degradation

the same throughout its lifetime, while the other workload

(bursty IW) exhibits a variable IO rate. To generate the bursty

IW and control the IW’s burstiness, we define two FIO jobs

that generate varying IOPS during their execution. We uti-

lize FIO job parameters such as startdelay, thinktime and
thinktime_iotime (the last three parameters in Table 8). To

setup a single bursty IW, we synchronize four FIO jobs by

overlapping their start delay (startdelay), idle phase (think-
time), and IO phase (thinktime_iotime), generating an average
bandwidth, standard deviation values of approximately 1024,

1152, and 128, 144 for NVMe-SSD and SATA-SSD experiment

respectively.

We explain the results for NVMe-SSD; similar observa-

tions apply to the SATA-SSD experiment. Figure 9 shows that

the delta between the bandwidth degradation caused by uni-

form vs. bursty workload is approximately ≈ 25%, which we

explain as follows. The aggregated IO bandwidth of theWUT

(2GB/s) and uniform IW (1 GB/s) is accommodated by the

peak bandwidth of the device (3 GB/s), as shown in Table 1.

As long as the aggregate bandwidth is lower than or equal

to the peak bandwidth of the device, performance interfer-

ence is limited. However, for bursty interference workloads,

the real-time bandwidth varies over time and sometimes ex-

ceeds the device’s peak bandwidth, causing interference. As

a result, burstiness affects the available percentage of peak

bandwidth that can be utilized without causing interference

showing the insufficiency of average IO rate and bandwidth

to predict performance interference. Next, we discuss our

proposed approach to represent burstiness.

Representing Burstiness: The burstiness of a workload
can be described with a time series of IOPS values. However,

such time series have an unbounded size and are difficult to

aggregate. Furthermore, we would need to know the exact

phase difference between the WUT and the IW to compute

interference. We propose a different technique to represent

the burstiness of a workload based on the standard deviation

from its mean. To evaluate the applicability of the standard

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

deviation, we devise an experiment where we expose the

WUT to several bursty IWs with variable IO rates. Our re-

sults in Figure 10 demonstrate a strong correlation between

the average bandwidth and standard deviation of the IWs

with the average bandwidth achieved by WUT, showing that

standard deviation is a good proxy for bursty interference.

Figure 10: Correlating Std. Dev. and IO Interference

4 GRAY-BOX FEATURE APPROACH
Prior works [6, 7, 12, 13, 15, 52] lack important features while

building IO Interference prediction models. Consequently,

they suffer from the following shortcomings. First, they can-

not represent IO interference caused by SSD internals, which

is important because IO interference changes significantly

corresponding to IO size and offset alignment due to the

physical nature of the SSD (discussed in section 3.1 and 3.6).

Second, traditional features such as average IO bandwidth

alone cannot represent the bursty behavior of theworkloads

and fails to represent their IO interference impact, which

can be significantly different from uniform workloads (see

section 3.7).

To address these issues, we define our Gray-box feature

set that considers workload properties corresponding to SSD

internals to represent IO interference impact accurately. We

refer to our features as Gray-box because we relate each SSD

property affecting IO interference (discussed in section 2)

while representing the IO workloads.

4.1 Gray-box Features
Table 9 lists our proposed features for representing an IW.

We utilize 8 features, each considering IO type (read and

write) and IO size alignment classes (page aligned and page

unaligned size), following our analysis in section 2 and sec-

tion 3. Since a single IW could have varying IO sizes, we

represent the IO sizes used by the IW by taking the weighted

mean of all the IO sizes observed in the workload correspond-

ing to their IO rate. To consider the IO Interference impact

of burstiness of the workload (discussed in section 3.7), we

utilize the average and standard deviation of the IO rate

and IO bandwidth, which are valid proxies for representing

burstiness (Section 3.7). In our feature set, we utilize both IO

rate and IO bandwidth as these features also represent queu-

ing contention inside an SSD. IO bandwidth, together with

weighted mean size and avg IO rate, represents contention

to utilize resources such as flash chips. To consider the effect

of the IO offsets (discussed in section 3.6), we calculate the

ratio of unaligned offset IOs in their respective categories.

Similarly, we calculate the ratio of random IOs capturing the

effect of spatial IO access patterns (discussed in section 3.5).

In section 6, we evaluate the prediction accuracy enabled

by our proposed features, demonstrating that our proposed

features are sufficient to represent IO interference impact

accurately. Next, we describe our methodology for feature

aggregation from multiple workloads and its importance.

Features

Read / Write

Aligned

Size IOs

Unaligned

Size IOs

Weighted Mean Size 𝑊𝑀𝑎𝑠 𝑊𝑀𝑢𝑠

Average IO Rate 𝐴𝑅𝑎𝑠 𝐴𝑅𝑢𝑠
Std. Dev. IO Rate 𝑆𝑅𝑎𝑠 𝑆𝑅𝑢𝑠
Average IO BW 𝐴𝐵𝑎𝑠 𝐴𝐵𝑢𝑠
Std. Dev. IO BW 𝑊𝑀𝑎𝑠 𝑊𝑀𝑢𝑠

Unaligned Offset Ratio 𝑈𝑎𝑠 𝑈𝑢𝑠

IO Depth 𝐷

Random Ratio 𝑅𝑟𝑎𝑡𝑖𝑜

Table 9: Gray-box Features

4.2 Gray-box Feature Aggregation

Figure 11: Supporting Arbitrary Number of Workloads

In a real-world environment, estimating the number of

workloads that can share the SSD is difficult as it is subject to

their SLOs. For instance, while a few workloads with strict

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

SLOs can be colocated, many workloads with flexible SLOs

can be colocated on the same SSD. Essentially, the ML model

should be able to predict the IO Interference impact of the

arbitrary number of workloads. Nevertheless, predicting IO

interference with an arbitrary number of workloads poses a

challenge as training ML models with a fixed number (N) of

workloads can render the model ineffective in predicting IO

interference beyond N workloads. Alternatively, increasing

the feature space to support predictions for a higher number

of workloads makes the training and inference difficult and

sometimes infeasible due to the curse of dimensionality (Fig-

ure 11) [76]. Therefore, we propose our Gray-box feature
aggregation technique to aggregate the individual features

of N IWs without losing their IO interference characteris-

tics. This technique enables the ML model to generalize its

predictions to an arbitrary number of workloads. Next, we

explain the process for feature aggregation.

First, we preprocess the block traces of interfering work-

loads and represent them with our proposed Gray-box fea-
tures (Section 4.1). As shown in Table 9 we first separate IO

traffic according to their IO type and size alignment. In the

following, we describe how to aggregate features in the Ta-

ble’s first column (Aligned Size IOs). The same methodology

applies to calculating the feature values in another column.

To calculate the aggregated Weighted Mean Size (𝑊𝑀𝑎𝑠) of

N IWs, we use equation 3 using average rate as weight (𝐴𝑅𝑎𝑠).

To aggregate the average and standard deviation values of

IO rate and bandwidth (𝐴𝑅𝑎𝑠 , 𝑆𝑅𝑎𝑠 , 𝐴𝐵𝑎𝑠 , 𝑆𝐵𝑎𝑠), we utilize

equations 4 and 5, respectively. IO depth features should be

aggregated by summing up the IO depths of N IWs. For cal-

culating the aggregated ratios, we utilize equation 6, where

we first multiply the fraction of unaligned offset ratio by the

average IO rate (𝐴𝑅𝑎𝑠) for all the IWs and then calculate the

aggregated ratio(equation 6). Sequential to random ratio is

aggregated similarly; the only difference is that the fraction

is multiplied by the average IO rate across both aligned and

unaligned IO size traffic (average aligned(𝐴𝑅𝑎𝑠) + average

unaligned IO rate(𝐴𝑅𝑢𝑠)).

Agg_Weighted_Mean(Sizei, Ratei) =

∑𝑁
𝑖=1 (𝑆𝑖𝑧𝑒 i · 𝑅𝑎𝑡𝑒 i)∑𝑁

𝑖=1 𝑆𝑖𝑧𝑒 i
(3)

Aggregate_Avg(Xi) =

𝑁∑︁
𝑖=1

𝑋 i (4)

Aggregate_Std(Yi) =

√√√
𝑁∑︁
𝑖=1

𝑌 i

2
(5)

Aggregated Ratio =

∑𝑁
𝑖=1𝑈𝑖 × Avg IO Rate𝑖∑𝑁

𝑖=1 Avg IO Rate𝑖

(6)

5 USAGE MODEL

Figure 12: Usage Model

Algorithm 1 Resource Allocation

1: function gray_box_resource_allocation(workload)

2: GroupCount, allocations← global_allocations

3: assigned← False

4: slo_violation← False

5: for 𝑖 in range (GroupCount) do
6: t_group← allocations[𝑖] +workload
7: for 𝑗 in range (len(t_group)) do
8: 𝑤 ← t_group[𝑗]
9: 𝑔← [all the workloads in t_group except w]
10: if SLO_Violation(w, g) then
11: slo_violation← True

12: break
13: end if
14: end for
15: if not slo_violation then
16: allocations[i].append(workload)

17: break
18: end if
19: end for
20: if not assigned then
21: allocations.append([workload)
22: GroupCount← GroupCount + 1
23: end if
24: global_allocations← GroupCount, allocations

25: end function

Figure 12 shows a high-level usage model of the Gray-box

Resource Allocator. Submitted workloads are retrieved from

a queue and looked up in a database of previously seen work-

loads. If the workload is already known (Yes), the Gray-box

Allocator queries the SSD cluster for existing allocations to

determine candidate SSDs that could absorb the new work-

load. To handle workload identification, we use a unique

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

identifier corresponding to extracted gray-box features from

their trace profiles. In the real world, it can be a workload

ID in a private cloud or a signature in a public cloud. We

recognize that signature identification can be difficult and

may require more complex mechanisms capturing various

phases of a workload [4, 53, 59]. We intend to investigate

such mechanisms in our future work.

The allocator utilizes Algorithm 1 to find the best candi-

date location. In particular, it iterates through all candidate

locations with enough storage capacity to house the work-

load and then utilizes the ML model to assess whether the

new workload (WUT) suffers or causes SLO violations when

colocated with the preexisting workloads (IW) on that SSD.

The two-nested loop in Algorithm 1 is required as in addition

to analyzing whether the new workload can be scheduled

without violating its SLO, we also need to ensure that the

already provisioned workloads’ SLOs are not violated. As a

result, the worst-case execution time of the allocation mech-

anism is given by the number of candidate locations (SSDs

that provide sufficient storage capacity) times the number of

pre-existing workloads on these candidate locations. Each

model inference task takes less than 400 microseconds on

the Intel Xeon server (see Table 1) we use for our experi-

ments, and hence for a 1000 SSD cluster allocation can be

performed in less than 10 seconds. The two-nested loop in

Algorithm 1 can be unrolled and parallelized. By batching

inference tasks and leveraging GPUs, we envision allocation

can be performed in a few milliseconds.

For predicting the expected performance for the newwork-

load (bandwidth or latency) under interference, theMLmodel

utilizes Gray-box features. These features encompass both

the new workload’s gray-box features and the existing work-

loads’ aggregated gray-box features, serving as input features

for the model (Figure. 11). The ML model is trained using

the Random Forest (RF) regression algorithm, which has

shown to provide high accuracy for IO Interference predic-

tion [15]. We utilize the Scikit-learn [58] ML library with

the default parameters and 100 estimators: RandomForestRe-

gressor(n_estimators=100, random_state=42). To handle a

variety of SSD landscapes today, we train separate models for

each SSD type, incorporating their different IO interference

characteristics corresponding to their internals as shown in

section 3.

If the new workload is unknown and cannot be found

in the database of previously seen workloads, it is assigned

to a staging SSD, where workload traces, and performance

data are collected. The trace is analyzed to extract Gray-box

features, and a new entry is added to the database for future

observations of the same workload. At this point, the work-

load can bemigrated, or the SSD can be logicallymoved to the

storage cluster. To ensure that the accuracy of the ML model

does not degenerate over time, it can be periodically retrained

to accommodate new types of workloads. Trace collection is

performed for 10 seconds after the workload reaches a steady

state and before features are extracted in the staging area.

At this point, the staging SSD can be added to the main SSD

cluster. In a real-world environment, workload characteris-

tics can change over their lifetime. To handle such workload

drifts, online performance tracking (SLO violations) with

cost-benefit analysis can be leveraged to trigger re-profiling

and readjusting resource allocation [5, 18, 20, 59, 61]. How-

ever, such mechanisms might incur profiling overhead and

downtime during data migration. We plan to explore such

overheads in the future.

6 EVALUATION
We will first describe our evaluation methodology and then

evaluate the utilization and TCO improvements provided

by our proposed Gray-box technique. To provide additional

insights, we then provide a thorough accuracy and feature

sensitivity analysis of the ML model used by the Gray-box

Allocator.

6.1 Experimental Setup and Methodology
Baselines. Due to the neglect of the feature aggregation

problem in prior literature, no existing studies have put for-

ward a feature aggregation technique specifically designed

for SSDs. Therefore we compare our Gray-box technique

against the Weighted-mean baseline proposed for HDDs

by Park et al. [55]. Weighted-mean aggregates interference

workloads by computing the simple weighted mean of the

IO sizes, IO depths, sequential to random ratios, average IO

rates, and average IO bandwidths. The Weighted-mean tech-

nique does not consider temporal behavior (burstiness) nor

SSD internals (IO offset and size misalignment). Weighted-

mean utilizes the same Random Forests (RF) based regression

algorithm as Gray-box (with different features). For the TCO

and SLO analysis, we also compare against a quota-based

mechanism that is commonly used in existing systems. The

quota-based mechanism assigns each workload its worst-

case quota (overprovisioning rate) required to meet a certain

SLO.

ML Methodology. To evaluate our Gray-box ML model,

we evaluate five performance metrics: Average bandwidth

(MB/Sec), Average Latency (microseconds), and Tail latency

(90th, 95th, and 99th percentile in microseconds) for two

evaluation metrics: R2 score andMean Absolute Error (MAE).

R2 score [68] is the coefficient of determination representing

the proportion of feature data that correlates with labels. We

use MAE along with R2 score as it does not represent the

accuracy of predictions. We train separate models for each

performancemetric corresponding to its IO type(Read/Write)

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

and randomly choose 75% of the data for training and 25%

for validation.

Input Data Sets. We evaluate the accuracy of our ap-

proach on real-world block-level IO traces from Alibaba

Cloud [42] and Tencent [43] live production servers, obtained

via the SNIA [64] and Github [2] open source trace reposito-

ries. In particular, these traces are used for the evaluation in

sections 6.2, 6.3, and 6.5. To generate the actual workloads,

we randomly select 500 ten-second workload samples from

these traces. Each sub-trace is viewed as a separate workload,

exhibiting its own IO access pattern.

For the experiment in section 6.4, we utilize synthetic

traces to precisely control specific workload characteristics

such as unaligned accesses. To prepare synthetic traces, we

prepare 500 constrained-random synthetic FIO workloads

with varying workload properties, run them on the SSD in

isolation for 10 sec, and collect their traces.

Evaluation and Test Set. To prepare training and eval-

uation data, we randomly select 2-16 workload traces, run

them on the SSD simultaneously and collect the performance

observed by each trace-replay (workload), which we use as

our labels. We limit ourselves to 16 traces considering the

maximum bandwidth supported by the device. Then we cal-

culate Gray-box features for each trace. For each run, we

alternatively consider one workload as WUT and the remain-

ing as IWs. Features contain Gray-box features for WUT and

aggregated Gray-box features for IWs. Performance numbers

of WUT are used as labels. In such a way, we have prepared

more than 4000 data points (2000: synthetic 2000: real-world).

We randomly choose 75% of the data for training and 25%

for validation.

6.2 Optimized Gray-box Allocation
Our proposed Gray-box Allocator considers comprehensive

workload characteristics and SSD internals to improve inter-

ference prediction and, as a result, increases resource utiliza-

tion while reducing SLO violations. Here we evaluate the

number of required SSDs to house 1000 workloads consider-

ing different SLO levels.

Figure 13 compares our Gray-box approach against the

Weighted-mean and quota-based baselines for different SLOs.

If tenants are unwilling to accept a single percentage per-

formance decrease when co-locating other workloads, none

of the techniques can improve utilization. As the SLO is

relaxed, e.g., if 5% performance degradation is acceptable,

Gray-box can pack the 1000 workloads with 327 SSDs, while

Weighted-mean requires over 600 SSDs. Providing more ac-

curate interference predictions allows Gray-box to aggres-

sively combine workloads on a shared SSD without violating

SLOs. We will further examine this aspect in section 6.3. The

quota-based mechanism requires much more relaxed SLO

configurations to improve utilization. The key disadvantage

of the quota-based mechanisms is that it considers the worst-

case interference across all workloads. In contrast, Gray-box

and Weighted-mean consider pairwise interference between

2 sets of workloads. For an SLO of 10%, Gray-box provides

31% higher resource utilization overWeighted-mean and 60%

over quota-based allocation. Similarly, for the same utiliza-

tion rate(<700 SSDs), whileWeighted-mean and Quota-based

allocations only enforce an SLO of 5%, Gray-box can enforce a

stricter SLO of 2%. In summary, Gray-box improves resource

utilization by up to 60% when considering an SLO of 5%, or it

can enforce an up to 2.5× stricter SLO over Weighted-mean

when utilizing up to 68% of the available SSDs.

Figure 13: Resource Allocation Comparison

6.3 Resource Utilization and SLO
Compliance

In the previous section, we showed how Gray-box can im-

prove resource utilization. To provide additional insight into

how Gray-box outperforms Weighted-mean, we pick 30 ran-

dom samples from our prediction results and measure the

prediction error corresponding to the actual bandwidth. A

high positive error means that the ML model underpredicted

the interference, leading to an SLO violation, whereas a

high negative error means the ML model overpredicted the

interference, causing low-resource utilization. This exper-

iment shows the quality of the ML models, in particular,

how well they can approximate the actual Interference. Fig-

ure 14 represents the prediction error (in %) of Gray-box

and Weighted-mean, corresponding to the actual bandwidth

observed by the WUT in the presence of interference. As can

be seen, for a chosen SLO of 10%, Weighted-mean shows 14

(out of 30) violations (e.g., workload mixes 26, 27), whereas

Gray-box suffers from none. Furthermore, in nine cases, the

Weighted-mean technique falls below the 10% resource uti-

lization threshold reducing efficiency and causing high TCO.

For instance, for workload mixes 12 and 13, the Weighted-

mean technique predicts the bandwidth ≈ 15 and 25% lower

than the actual bandwidth preventing co-locating them with

their respective workload mixes.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

Figure 14: Effectiveness of Gray-box for preventing SLO violations and increasing Resource utilization

Figure 15: Gray-box ML Feature Sensitivity: Synthetic Data (R2 score)

Figure 16: Gray-box ML Feature Sensitivity: Synthetic Data (MAE)

In summary, Gray-box always shows higher resource uti-

lization than Weighted-mean while maintaining SLO compli-

ance, as its prediction closely follows the actual performance.

6.4 ML Features Sensitivity Study
Our proposed Gray-box technique considers SSD internals

and additional workload characteristics such as burstiness

to improve prediction accuracy over the Weighted-mean

baseline. In the following, we evaluate the impact of these

individual features on prediction performance. In particular,

we evaluate the effect of considering IO offsets, IO sizes, and

burstiness by adding the features one by one (Gray-box has

all features enabled). Figure 15 shows the R2 score for pre-

dicting the WUT’s performance when running against an

IW. The x-axis shows different performance metrics, such as

latency and bandwidth and the y-axis shows the R2 score. We

train (10 x 4) MLmodels, for each performance metric to eval-

uate how each of the newly proposed features contributes

to accuracy.

To evaluate the impact of the features on the actual pre-

diction, we calculate the Normalized Mean Absolute Er-

ror (NMAE), considering predictions with Gray-box features

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Figure 17: Weighted-Mean Vs. Gray-box Prediction Accuracy: Real-World Data (R2 score)

Figure 18: Weighted-Mean Vs. Gray-box Prediction Accuracy: Real-World Data (MAE)

as a baseline (shown in Figure 16). We can see how adding

our proposed Gray-box features considering burstiness and

SSD Internals (offset, size alignment) improves the MAE.

In particular, NMAE for the Weighted-mean prediction is

6 to 14 times higher than the Gray-box prediction for all

the performance metrics. While Weighted-mean + offset fea-
tures improve the prediction accuracy, their NMAE is still

4 to 8× higher, which reduces to 2 to 6× after adding size

alignment features. This shows how adding our proposed fea-

tures decreases the MAE and improves the IO Interference’s

prediction accuracy.

6.5 Prediction Accuracy: Real World data
Figure 17 shows the R2 score to predict the performance of

real-world WUT when run against IW. The interpretation

of the graph is analogous to Figure 15. Similar to synthetic

data, we could see that the R2 score for the Weighted-mean

is significantly lower than the Gray-box features. For all

the performance metrics, while R2 score for Weighted-mean

remains lower than 0.87, for the Gray-box, it is more than

0.98. Fundamentally, this happens as the Weighted-mean

features disregard the non-uniform IO interference impact of

workload properties such as burstiness and SSD internals (IO

size and offset alignment), making IO interference impact

difficult to learn. Similarly, Figure 18 showsNormalizedMean

Absolute Error analogous to Figure 16. For each performance

metric, MAE for the Weighted-mean is 4 to 12× higher than

the Gray-box prediction.

In summary, we show that our proposed Gray-box tech-

nique enables accurate IO interference prediction essentially

due to first accurately representing the IO interference im-

pact of SSD internals and non-uniform workload charac-

teristics (Section 4.1) and second aggregating features from

multiple IWs (Section 4.2) without losing their IO interfer-

ence characteristics.

7 RELATEDWORK
Prior research [12, 13, 15, 21, 40, 52] has proposed several

approaches to address the problem of IO interference in

HDD based storage technologies. As the internal architec-

ture of HDDs differs substantially from SSDs, these tech-

niques are not applicable for our work. In particular, these

suffer reduced accuracy as their considered feature set does

not consider non-uniform workload characteristics and SSD

internals. For instance, Noorshams et al. [52] use average

IO throughput, IO size, threads, file set size, access pattern

(random, sequential), and read ratio; while Chiang et. al [13]

only use CPU utilization and read/write requests per second.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

We have shown that these features alone do not represent

accurate IO interference, as they do not express non-uniform

nature workloads as discussed in section 3.1 and 3.7. Further-

more, these prior works do not use any workload aggrega-

tion technique limiting their predictions to a fixed number

of workloads. For instance, Dartois et al. [15] use ML tech-

niques to model SSD IO performance in the presence of up

to five interfering workloads. Their approach also fails to

predict tail latency interference.

Bhimani [6] proposes batching containerized workloads

to improve overall resource utilization and fairness based

on a few proposed guidelines. Although the guidelines help

improve overall resource utilization, they are insufficient to

efficiently eliminate IO interference. Chiang [12] proposes

a contention-aware placement strategy based on ML-based

clustering algorithms for container placement. Their work fo-

cuses on improving overall resource utilization, while ignor-

ing performance interference. In addition, their placement

strategy is based on CPU utilization, memory utilization,

and IO utilization, ignoring SSD specific properties. Gulati

proposes Basil [19] and Pesto [20] to enable load balancing

of IO workloads. Those systems use the LQ-slope perfor-

mance model representing the latency-to-queue depth ratio

showing a linear relationship between latency and queue

depth. While this model can predicts overall performance

degradation it cannot determine the interference impact on

individual workloads. Kim [34] designed classification-based

ML models to predict SSDs performance saturation using

kernel IO statistics and workload features. However, those

features do not represent the interference impact of the non-

uniform IW and SSD internals on the workloads. Queuing

models [40] have also been used to predict IO interference

impact on the performance of workloads. However, first of

all, they base their work on HDDs. Second, the feature set

they use does not represent the IO interference impact of

spatial IO access patterns such as unaligned offset IOs, which

leads to significant IO interference in the case of SSDs as

discussed in section 3.6.

Apart from performance modeling, researchers proposed

performance isolation techniques that require changes to the

internal SSD resources [11, 27, 29, 30, 32, 41, 47, 62, 65, 67].

For instance, they propose static or dynamic partitioning

techniques for allocating SSD resources to workloads. While

these techniques can reduce interference, they require time-

consuming manual application configuration, often wasting

resources due to static partitioning as they can only support

a small number of workloads or tenants. A dynamic resource

allocation scheme can help this situation. However, resource

allocation can be skewed as they lack workload context,

reducing overall resource utilization. Kim [35] introduced

VA-LVM, a logical volume manager, creating logical volume

mapping to SSD’s internal volumes. While VA-LVM provides

better performance isolation, it is limited by the availability

of SSD’s internal volume. In contrast, our work focus on

sharing overall SSD that can improve resource utilization

while preventing SLO violations.

Another category of works proposed techniques to throt-

tle IO requests based on various feedback-based heuristics,

leveraging system statistics [17, 21, 45, 51, 54, 57, 73]. These

approaches lack an understanding of the underlying hard-

ware and usually only react to an observed performance

degradation while our approach can prevent such perfor-

mance degradation in the first place. Prior works [39] utilize

execution time degradation for IO scheduling, however, it

requires extensive profiling to generate a model.

Several other works which are mostly orthogonal to ours

have proposed machine learning models for improving SSD

performance to improve performance [9, 60] , increase life-

time [8, 28], and to reduce garbage collection overheads [10].

8 CONCLUSION
In this work, we propose and evaluate a novel Gray-box fea-

ture representation and aggregation technique to accurately

represent IO interference in SSDs.We perform a detailed anal-

ysis of IO interference in SSDs, showing how SSD internals

affect the IO interference (Section 2). Further, we explore the

relationship between different non-uniform workloads and

internal SSD architecture characteristics with exhaustive ex-

perimentation (Section 3). Then, based on our observations,

we define a set of Gray-box features that accurately repre-

sent the IO interference impact of SSD Internals. We propose

new features not considered by prior work, such as IO size

alignment, IO offset alignment, and workload burstiness. To

support predictions of an arbitrary number of workloads,

we propose a new Gray-box feature aggregation technique

to aggregate their features without losing IO interference

accuracy. Our evaluation shows that our Gray-box approach

outperforms prior works by increasing inference prediction

accuracy for latency and bandwidth while reducing the mean

absolute error by up to 12×. Furthermore, in contrast to prior

work, we show that predicting the IO interference impact

on tail latency is indeed feasible. We demonstrate how the

Gray-box technique increases resource utilization by up to

60% or enforces up to 2.5× stricter SLOs when provisioning

SSD among multiple tenants over prior works.

9 ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Brian

Kroth, for their helpful feedback. This work was generously

supported by Samsung and NSF grants CCF-1942754 and

CNS-1841545.

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

REFERENCES
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for {SSD} performance.

In 2008 USENIX Annual Technical Conference (USENIX ATC 08), 2008.
[2] Alibaba Group. block-traces. https://github.com/alibaba/block-traces,

Accessed 2023.

[3] Jens Axboe. Fio-flexible i/o tester synthetic benchmark. URL
https://github. com/axboe/fio, 2005.

[4] Jayanta Basak, Kushal Wadhwani, and Kaladhar Voruganti. Storage

workload identification. ACMTransactions on Storage (TOS), 12(3):1–30,
2016.

[5] Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo

Guo, Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion

Stoica. Cilantro:{Performance-Aware} resource allocation for general

objectives via online feedback. In 17th USENIX Symposium onOperating
Systems Design and Implementation (OSDI 23), pages 623–643, 2023.

[6] Janki Bhimani, Zhengyu Yang, Ningfang Mi, Jingpei Yang, Qiumin

Xu, Manu Awasthi, Rajinikanth Pandurangan, and Vijay Balakrishnan.

Docker container scheduler for i/o intensive applications running

on nvme ssds. IEEE Transactions on Multi-Scale Computing Systems,
4(3):313–326, 2018.

[7] Giuliano Casale, Stephan Kraft, and Diwakar Krishnamurthy. A model

of storage i/o performance interference in virtualized systems. In

2011 31st International Conference on Distributed Computing Systems
Workshops, pages 34–39. IEEE, 2011.

[8] Chandranil Chakraborttii and Heiner Litz. Improving the accuracy,

adaptability, and interpretability of ssd failure prediction models. In

Proceedings of the 11th ACM Symposium on Cloud Computing, pages
120–133, 2020.

[9] Chandranil Chakraborttii and Heiner Litz. Learning i/o access patterns

to improve prefetching in ssds. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 427–443.
Springer, 2020.

[10] Chandranil Chakraborttii and Heiner Litz. Reducing write amplifica-

tion in flash by death-time prediction of logical block addresses. In

Proceedings of the 14th ACM International Conference on Systems and
Storage, pages 1–12, 2021.

[11] Da-Wei Chang, Hsin-Hung Chen, and Wei-Jian Su. Vssd: performance

isolation in a solid-state drive. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 20(4):1–33, 2015.

[12] Ron C Chiang. Contention-aware container placement strategy for

docker swarm with machine learning based clustering algorithms.

Cluster Computing, pages 1–11, 2020.
[13] Ron C Chiang and H Howie Huang. Tracon: Interference-aware sched-

uling for data-intensive applications in virtualized environments. In

Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–12, 2011.

[14] Transaction Processing Performance Council. Tpc benchmark h (deci-

sion support) standard specification revision 3.0.1. 22.

[15] Jean-Emile Dartois, Jalil Boukhobza, Anas Knefati, and Olivier Barais.

Investigating machine learning algorithms for modeling ssd i/o perfor-

mance for container-based virtualization. IEEE transactions on cloud
computing, 9(3):1103–1116, 2019.

[16] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and

Animesh Trivedi. Understanding modern storage apis: a systematic

study of libaio, spdk, and io_uring. In Proceedings of the 15th ACM
International Conference on Systems and Storage, pages 120–127, 2022.

[17] Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie

Wu, and Edwin H-M Sha. Exploiting parallelism in i/o scheduling

for access conflict minimization in flash-based solid state drives. In

2014 30th Symposium on Mass Storage Systems and Technologies (MSST),

pages 1–11. IEEE, 2014.

[18] Google Cloud. Adopting SLOs. https://cloud.google.com/architecture/

framework/reliability/adopting-slos, 2021.

[19] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. Basil:

Automated io load balancing across storage devices. In Fast, volume 10,

pages 13–13, 2010.

[20] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Wald-

spurger, and Mustafa Uysal. Pesto: online storage performance man-

agement in virtualized datacenters. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, pages 1–14, 2011.

[21] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,

Henry Hoffmann, and Haryadi S Gunawi. {LinnOS}: Predictability
on unpredictable flash storage with a light neural network. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 173–190, 2020.

[22] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and

Roman Pletka. Write amplification analysis in flash-based solid state

drives. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference, pages 1–9, 2009.

[23] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren.

Exploring and exploiting the multilevel parallelism inside ssds for

improved performance and endurance. IEEE Transactions on Computers,
62(6):1141–1155, 2012.

[24] YangHu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang.

Performance impact and interplay of ssd parallelism through advanced

commands, allocation strategy and data granularity. In Proceedings of
the international conference on Supercomputing, pages 96–107, 2011.

[25] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo,

and Mahmut T Kandemir. Hios: A host interface i/o scheduler for solid

state disks. ACM SIGARCH Computer Architecture News, 42(3):289–300,
2014.

[26] Myoungsoo Jung and Mahmut T Kandemir. Sprinkler: Maximizing

resource utilization in many-chip solid state disks. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), pages 524–535. IEEE, 2014.

[27] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho.

The multi-streamed {Solid-State} drive. In 6th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 14), 2014.

[28] Saeed Kargar, Heiner Litz, and Faisal Nawab. Predict and write: Using

k-means clustering to extend the lifetime of nvm storage. In 2021
IEEE 37th International Conference on Data Engineering (ICDE), pages
768–779. IEEE, 2021.

[29] Bryan S Kim. Utilitarian performance isolation in shared {SSDs}.
In 10th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 18), 2018.

[30] Bryan S Kim, Hyun Suk Yang, and Sang Lyul Min. {AutoSSD}: an
autonomic {SSD} architecture. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 677–690, 2018.

[31] Jae-Hong Kim, Dawoon Jung, Jin-Soo Kim, and Jaehyuk Huh. A

methodology for extracting performance parameters in solid state

disks (ssds). In 2009 IEEE International Symposium on Modeling, Analy-
sis & Simulation of Computer and Telecommunication Systems, pages
1–10. IEEE, 2009.

[32] Jaeho Kim, Donghee Lee, and Sam H Noh. Towards {SLO} complying

{SSDs} through {OPS} isolation. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 183–189, 2015.

[33] Jaehong Kim, Sangwon Seo, Dawoon Jung, Jin-Soo Kim, and Jaehyuk

Huh. Parameter-aware i/o management for solid state disks (ssds).

IEEE Transactions on Computers, 61(5):636–649, 2011.
[34] JaehyungKim, Jinuk Park, and Sanghyun Park. Machine learning based

performance modeling of flash ssds. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM ’17,

https://github.com/alibaba/block-traces
https://cloud.google.com/architecture/framework/reliability/adopting-slos
https://cloud.google.com/architecture/framework/reliability/adopting-slos

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

page 2135–2138, New York, NY, USA, 2017. Association for Computing

Machinery.

[35] Joonsung Kim, Kanghyun Choi, Wonsik Lee, and Jangwoo Kim. Per-

formance modeling and practical use cases for black-box ssds. ACM
Transactions on Storage (TOS), 17(2):1–38, 2021.

[36] Kyusik Kim, Eunji Lee, and Taeseok Kim. Hmb-ssd: Framework for

efficient exploiting of the host memory buffer in the nvme ssd. IEEE
Access, 7:150403–150411, 2019.

[37] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote

flash = local flash. ACM SIGARCH Computer Architecture News,
45(1):345–359, 2017.

[38] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Selecta: Heteroge-

neous cloud storage configuration for data analytics. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 759–773, 2018.

[39] Anthony Kougkas, Hariharan Devarajan, Xian-He Sun, and Jay Lof-

stead. Harmonia: An interference-aware dynamic i/o scheduler for

shared non-volatile burst buffers. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER), pages 290–301, 2018.

[40] Stephan Kraft, Giuliano Casale, Diwakar Krishnamurthy, Des Greer,

and Peter Kilpatrick. Performance models of storage contention in

cloud environments. Software & Systems Modeling, 12(4):681–704, 2013.
[41] Miryeong Kwon, Donghyun Gouk, Changrim Lee, Byounggeun Kim,

Jooyoung Hwang, and Myoungsoo Jung. {DC-Store}: Eliminating

noisy neighbor containers using deterministic {I/O} performance and

resource isolation. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 183–191, 2020.

[42] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. An in-depth

analysis of cloud block storage workloads in large-scale production.

In 2020 IEEE International Symposium on Workload Characterization
(IISWC), pages 37–47. IEEE, 2020.

[43] Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. An in-depth

comparative analysis of cloud block storage workloads: Findings and

implications. arXiv preprint arXiv:2203.10766, 2022.
[44] Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami,

and Haryadi S Gunawi. Fantastic ssd internals and how to learn and

use them. In Proceedings of the 15th ACM International Conference on
Systems and Storage, pages 72–84, 2022.

[45] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. Storage sharing optimiza-

tion under constraints of slo compliance and performance variability.

IEEE Transactions on Services Computing, 12(1):58–72, 2016.
[46] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis.

Rail: Predictable, low tail latency for nvme flash. ACM Transactions on
Storage (TOS), 18(1):1–21, 2022.

[47] Renping Liu, Xianzhang Chen, Yujuan Tan, Runyu Zhang, Liang Liang,

and Duo Liu. Ssdkeeper: Self-adapting channel allocation to improve

the performance of ssd devices. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 966–975. IEEE, 2020.

[48] Yi Liu, Shouqian Shi, Minghao Xie, Heiner Litz, and Chen Qian. Smash:

Flexible, fast, and resource-efficient placement and lookup of dis-

tributed storage. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 7(2):1–22, 2023.

[49] Chihiro Matsui, Tomoaki Yamada, Yusuke Sugiyama, Yusuke Yamaga,

and Ken Takeuchi. Optimal memory configuration analysis in tri-

hybrid solid-state drives with storage class memory and multi-level

cell/triple-level cell nand flash memory. Japanese Journal of Applied
Physics, 56(4S):04CE02, 2017.

[50] RinoMicheloni, Luca Crippa, Cristian Zambelli, and Piero Olivo. Archi-

tectural and integration options for 3d nand flashmemories. Computers,
6(3):27, 2017.

[51] Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann

Härtig. K2: Work-constraining scheduling of nvme-attached storage.

In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 56–68. IEEE,

2019.

[52] Qais Noorshams, Axel Busch, Andreas Rentschler, Dominik Bruhn,

Samuel Kounev, Petr Tuma, and Ralf Reussner. Automated modeling of

i/o performance and interference effects in virtualized storage systems.

In 2014 IEEE 34th International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 88–93. IEEE, 2014.

[53] Lu Pang and Krishna Kant. Server-side workload identification for

hpc i/o requests. In Proceedings of the 2nd Workshop on Performance
EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy, pages
15–22, 2022.

[54] Hyunchan Park, Seehwan Yoo, Cheol-Ho Hong, and Chuck Yoo. Stor-

age sla guarantee with novel ssd i/o scheduler in virtualized data cen-

ters. IEEE Transactions on Parallel and Distributed Systems, 27(8):2422–
2434, 2015.

[55] Nohhyun Park, Irfan Ahmad, and David J Lilja. Romano: autonomous

storage management using performance prediction in multi-tenant

datacenters. In Proceedings of the Third ACM Symposium on Cloud
Computing, pages 1–14, 2012.

[56] Seon-yeong Park, Euiseong Seo, Ji-Yong Shin, Seungryoul Maeng, and

Joonwon Lee. Exploiting internal parallelism of flash-based ssds. IEEE
Computer Architecture Letters, 9(1):9–12, 2010.

[57] Stan Park and Kai Shen. Fios: A fair, efficient flash i/o scheduler. In Pro-
ceedings of the 10th USENIX Conference on File and Storage Technologies,
FAST’12, page 13, USA, 2012. USENIX Association.

[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-

tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine

learning in python. Journal of machine learning research, 12(Oct):2825–
2830, 2011.

[59] Pankaj Pipada, Achintya Kundu, Kanchi Gopinath, Chiranjib Bhat-

tacharyya, Sai Susarla, and PC Nagesh. Loadiq: Learning to identify

workload phases from a live storage trace. HotStorage, 12, 2012.
[60] Devashish Purandare, Pete Wilcox, Heiner Litz, and Shel Finkelstein.

Append is near: Log-based data management on zns ssds. In 12th
Annual Conference on Innovative Data Systems Research (CIDR’22).,
2022.

[61] Babak Ravandi, Ioannis Papapanagiotou, and Baijian Yang. A black-

box self-learning scheduler for cloud block storage systems. In 2016
IEEE 9th International Conference on Cloud Computing (CLOUD), pages
820–825. IEEE, 2016.

[62] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty,

Jooyoung Hwang, Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong.

{FStream}: Managing flash streams in the file system. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), pages 257–264,
2018.

[63] I Shin. Improving internal parallelism of solid state drives with selec-

tive multi-plane operation. Electronics Letters, 54(2):64–66, 2018.
[64] SNIA. Block io traces. http://iotta.snia.org/tracetypes/3, Dec 2001.

[65] Xiang Song, Jian Yang, and Haibo Chen. Architecting flash-based solid-

state drive for high-performance i/o virtualization. IEEE Computer
Architecture Letters, 13(2):61–64, 2013.

[66] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu. Mqsim: A framework for enabling realistic

studies of modern multi-queue {SSD} devices. In 16th {USENIX}
Conference on File and Storage Technologies ({FAST} 18), pages 49–66,
2018.

[67] Shivani Tripathy, Debiprasanna Sahoo, Manoranjan Satpathy, and

MadhuMutyam. Fuzzy fairness controller for nvme ssds. In Proceedings
of the 34th ACM International Conference on Supercomputing, pages
1–12, 2020.

[68] Michael R Veall and Klaus F Zimmermann. Pseudo-r2 measures for

some common limited dependent variable models. Journal of Economic

http://iotta.snia.org/tracetypes/3

Enabling Multi-tenancy on SSDs with Accurate IO Interference Modeling SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

surveys, 10(3):241–259, 1996.
[69] SuzhenWu, Weiwei Zhang, Bo Mao, and Hong Jiang. Hotr: Alleviating

read/write interference with hot read data replication for flash storage.

In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1367–1372. IEEE, 2019.

[70] Minghao Xie and Chen Qian. Reflex4arm: Supporting 100gbe flash stor-

age disaggregation on arm soc. In OCP Future Technology Symposium,

2020.

[71] Rui Xu, Xi Jin, Linfeng Tao, Shuaizhi Guo, Zikun Xiang, and Teng

Tian. An efficient resource-optimized learning prefetcher for solid

state drives. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 273–276. IEEE, 2018.

[72] Gala Yadgar, MOSHE Gabel, Shehbaz Jaffer, and Bianca Schroeder. Ssd-

based workload characteristics and their performance implications.

ACM Trans. Storage, 17(1), jan 2021.

[73] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,

Anand Krishnamurthy, Samer Al-Kiswany, Rini T. Kaushik, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Split-level i/o sched-

uling. SOSP ’15, page 474–489, New York, NY, USA, 2015. Association

for Computing Machinery.

[74] Jung H Yoon and Gary A Tressler. Advanced flash technology status,

scaling trends & implications to enterprise ssd technology enablement.

Flash Memory Summit, 3(3.1):4, 2012.
[75] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang

Ji, and Bin Cheng. OSCA: An Online-Model Based Cache Allocation
Scheme in Cloud Block Storage Systems. USENIX Association, USA,

2020.

[76] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on

unsupervised outlier detection in high-dimensional numerical data.

Statistical Analysis and Data Mining: The ASA Data Science Journal,
5(5):363–387, 2012.

	Abstract
	1 Background and Introduction
	2 SSD Internals Analysis
	2.1 Internal Device Parallelism
	2.2 Read and Write Amplification
	2.3 Read Write Assymetry

	3 Workload characteristics Analysis
	3.1 IO Size Misalignment
	3.2 IO Rate
	3.3 IO Depth
	3.4 IO Type
	3.5 Spatial IO Access Patterns
	3.6 IO Offset Alignment
	3.7 Temporal IO Access Patterns

	4 Gray-box Feature Approach
	4.1 Gray-box Features
	4.2 Gray-box Feature Aggregation

	5 Usage Model
	6 Evaluation
	6.1 Experimental Setup and Methodology
	6.2 Optimized Gray-box Allocation
	6.3 Resource Utilization and SLO Compliance
	6.4 ML Features Sensitivity Study
	6.5 Prediction Accuracy: Real World data

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

