EXCITE-VM: Extending the Virtual Memory System to
Support Snapshot Isolation Transactions

Heiner Litz
Stanford University
353 Serra Mall
_ Stanford, CA, 94305
heiner.litz@stanford.edu

ABSTRACT

Multi-core programming remains a major software devel-
opment and maintenance challenge because of data races,
deadlock, non-deterministic failures and complex perfor-
mance issues. In this paper, we describe EXCITE-VM,
a system that provides snapshot isolation transactions on
shared memory to facilitate programming and to improve
the performance of parallel applications. With snapshots, an
application thread is not exposed to the committed changes
of other threads until it receives the updates by explicitly
creating a new snapshot. Snapshot isolation enables low
overhead lockless read operations and improves fault toler-
ance by isolating each thread from the transient, uncom-
mitted writes of other threads. This paper describes how
EXCITE-VM implements snapshot isolation transactions ef-
ficiently by manipulating virtual memory mappings and us-
ing a novel copy-on-read mechanism with a customized page
cache. Compared to conventional software transactional
memory systems, EXCITE-VM provides up to 2.2x perfor-
mance improvement for the STAMP benchmark suite and
up to 1000x speedup for a modified benchmark having long
running read-only transactions. Furthermore, EXCITE-VM
achieves a 2x performance improvement on a Memcached
benchmark and the Yahoo Cloud Server Benchmarks. Fi-
nally, EXCITE-VM improves fault tolerance and offers fea-
tures such as low-overhead concurrent audit and analysis.

1 Introduction

Developing and maintaining a multi-threaded application is
a challenge. Developers need to ensure that all shared mu-
table data items are protected by suitable synchronization,
including library routines invoked by the application. This
synchronization is hard to get right and when not, leads to
difficult-to-diagnose problems such as data races, memory
corruption and deadlock. Even when executing correctly,
a multi-threaded application can have inscrutable perfor-
mance, given the complex dynamic interaction between locks
that can be occurring. For example, consider a graph ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PACT ’16, September 11 - 15, 2016, Haifa, Israel

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4121-9/16/09. .. $15.00

DOL: http://dx.doi.org/10.1145,/2967938.2967955

Benjamin Braun
Stanford University
353 Serra Mall
Stanford, CA, 94305
bbraun@stanford.edu

David Cheriton
Stanford University
353 Serra Mall
Stanford, CA, 94305
cheriton@cs.stanford.edu

plication in which threads concurrently modify nodes while
some threads analyze shared data to generate a summary.
The analysis may have uncertain execution time and an un-
certain effect on the rest of the application because of the
conflicts between the read locks it needs to acquire and the
write locks being requested and held by other threads.

In this paper, we present Elastic Snapshot-Isolation
Transaction Extensions in Virtual Memory (EXCITE-VM),
a system that enables snapshot isolation semantics to ad-
dress the issues of multi-core programming. With our
system, threads can operate on consistent snapshots of
shared memory, enabling safe and protected access, avoid-
ing data races and memory corruption. With snapshot iso-
lation (SI) [6], shared memory does not appear to change
for a given thread until it explicitly creates a new snap-
shot of shared memory. This enables consistent reads to
shared memory in the presence of concurrent writes by other
threads, reducing synchronization overheads. To continue
with the graph example above, with SI, threads can checkout
a consistent snapshot of the graph for analysis, while update
threads can modify the graph concurrently without compet-
ing for locks or executing synchronization code. Snapshots
provide further utility such as lock-less global stats genera-
tion, and concurrent garbage collection.

Besides improving parallel application development,
EXCITE-VM improves fault tolerance by enabling applica-
tion threads to terminate, for example due to a division by
zero exception and subsequently restart without restarting
the whole application because none of its writes are visi-
ble to other threads until committed. Finally, snapshots
address the challenge of creating checkpoints of parallel ap-
plication state while enabling concurrent writes to shared
memory enabling fault tolerance and durability. A thread
can simply checkout a snapshot and persist it to non-volatile
storage without interfering with other application threads.
EXCITE-VM, hence, allows applications to achieve persis-
tence and durability similarly to what is provided by a tra-
ditional database without incurring the overheads and code
modifications required by the latter.

Having motivated the utility of snapshots, the challenge
is to achieve acceptable performance, given the overhead
of creating a memory snapshot. To address this concern,
EXCITE-VM introduces a novel technique for manipulating
virtual memory mappings depending on the snapshot. We
propose a new copy-on-read approach supported by an effi-
cient page caching scheme to minimize the cost of generating
snapshots. Combining these techniques, EXCITE-VM out-
performs conventional STMs on the STAMP [32] benchmark

suite by up to 2.2x, and up to 1000x on modified benchmarks
having long read-only transactions. Furthermore, EXCITE-
VM provides up to 2x the performance of Libitm in Mem-
cached and the Yahoo Cloud Server Benchmark.

2 Snapshot Generation

This section discusses existing software approaches to gen-
erate snapshots, their shortcomings and how EXCITE-VM
improves over them.

2.1 Snapshots in Transactional Memory

SI-STM [43] is a Java based transactional memory system
that maintains multiple versions of all shared data objects
to reduce transaction abort rates. Whenever referencing an
object, a separate data structure is queried which maintains
the references to the individual versions. The implementa-
tion of SI-STM offers three disadvantages. First, each object
dereference necessitates an additional level of indirection,
second, conflict validation is performed on the granularity of
objects which performs poorly for large objects and third,
it requires the application developer to modify every object
or class description that needs to be snapshottable.

We observe that to implement the required indirection
layer, we can leverage the virtual to physical address trans-
lation mechanism. Utilizing hardware resources such as the
translation lookaside buffer (TLB) and the page walk en-
gine, threads obtain direct access to snapshots without in-
curring the overhead of an additional indirection layer. Ac-
cessing static objects incurs zero overhead while incorporat-
ing changes for multiple objects can be batched on a per 4KB
page basis. EXCITE-VM also does not require programmers
to modify their objects as snapshots are maintained trans-
parently on a page based granularity.

2.2 VM Based Thread Synchronization

DThreads [29] and Conversion [30] are two systems that
leverage virtual memory and per-thread page tables for syn-
chronization purposes. The two approaches follow a com-
putation model in which all threads start off with the same
consistent state, then diverge into per-thread states by in-
tercepting writes, i.e. Copy-on-Write (CoW), and finally
form the next globally consistent state by merging all writes.
DThreads and Conversion require additional synchroniza-
tion logic such as locking, as both only support a last com-
mitter wins policy in which multiple writes to the same data
item do not conflict but merely overwrite each other. Like
Conversion, EXCITE-VM uses a threading model where
each thread has its own virtual-to-physical address map-
ping representing a snapshot. However, EXCITE-VM differs
from both DThreads and Conversion in multiple ways. First,
EXCITE-VM logs committed changes, allowing threads to
efficiently update their snapshots without synchronization
overhead. Second, EXCITE-VM supports transactional se-
mantics including an efficient conflict detection scheme and
retry capability. Third, EXCITE-VM introduces a novel
Copy-on-Read (CoR) mechanism that uses page caching to
address the shortcomings of CoW and pure CoR.

Copy-on-Write (CoW) techniques as proposed in prior
work [29, 30] have leveraged CoW for isolating threads by
applying writes only to thread local memory, effectively hid-
ing them from other threads. To implement this technique,
pages are mapped read-only such that every write leads to a

trap into the page fault handler which can then map a thread
local page, copying the original state of the read only page.
Under CoW, reads are served directly from the snapshot
with no added overhead.

To enable snapshots via CoW, each thread must update
its entire per-thread page table to the committed state at the
start of each transaction. Unfortunately, this incurs the cost
of invalidating TLB entries to keep the page table consistent.
Furthermore, the thread must modify its page table for each
modified page, even if it does not access that page in the
subsequent transaction. These factors, on top of the page
fault cost for writes, make CoW perform poorly, especially
for short transactions.

Copy-on-Read (CoR) avoids the high upfront costs of
CoW for creating snapshots. In CoR, instead of synchroniz-
ing page tables during the start of a transaction, snapshots
are generated on the fly whenever a page is read or written.
In either case, a page fault occurs and the handler maps in a
thread local page which can be read or written to. Though
CoR avoids unnecessarily updating pages that are not ac-
cessed, it has its costs. First, the first read or write to a
page in each transaction will incur an expensive page fault.
Second, during commit, all pages that have been accessed
within the prior transaction need to be removed from the
page table and the corresponding TLB entries invalidated.

While it seems promising to leverage address transla-
tion as the indirection layer for implementing snapshots,
both CoW and CoR techniques introduce high overheads.
EXCITE-VM implements CoR, but avoids its overheads us-
ing a page cache that holds onto mapped-in pages over the
duration of multiple transactions.

3 EXCITE-VM Architecture

EXCITE-VM leverages the virtual-to-physical address
translation mechanism of contemporary processors to enable
efficient snapshotting of shared memory state in parallel ap-
plications. In order to allow multiple threads to access snap-
shots at different points in time, each thread in EXCITE-VM
has its own page table, and hence, its own virtual-to-physical
address mapping. Whenever a thread starts a transaction it
acquires a snapshot of the current state of shared memory,
generated on the fly via CoR. As a result, in EXCITE-VM,
the existence of a set of pages representing the most recent
consistent state of shared memory is not required. Instead,
every thread maintains only a subset of the shared memory
state (the pages it has faulted in) corresponding to a par-
ticular version or snapshot. To re-generate a snapshot for a
particular page when processing a CoR fault, EXCITE-VM
maintains a global write log. The global write log represents
the central data structure of EXCITE-VM as it contains the
history of all writes ever performed on shared memory, sim-
ilarly as in a log-structured file system [44]. By scanning
the log and applying the appropriate writes, any version of
any page that existed in shared memory in the past can be
re-generated. Once a page is re-generated, it is stored in
thread local memory and mapped into the thread’s address
space so that the subsequent reads and writes to that page
incur no overhead. Unfortunately, the cost of re-generating
a page for a particular snapshot scales with the length of
the log and an unbounded log will eventually consume too
much main memory capacity. EXCITE-VM addresses this
issue with checkpoints.

3.1 Checkpoints

A checkpoint represents the state of shared memory at a
particular point in time EXCITE-VM uses designated check-
pointing threads to create checkpoints lazily by periodically
applying the write log to the prior checkpoint. After a log
entry has been incorporated into the new checkpoint, and
after all active threads’ snapshots are more recent, the log
entry can be either deleted or moved to high capacity, non-
volatile storage enabling queries of historical main memory
state. Checkpoints bound the cost of re-generating a snap-
shot to the number of log entries that exist between the
last checkpoint and the snapshot to be re-generated. Even
with checkpointing, frequent page faulting represents a pro-
hibitive overhead. EXCITE-VM addresses this issue with
the page cache.

3.2 Page Cache

The page cache is a software cache that buffers memory
pages over the duration of multiple transactions. Instead of
clearing the faulted-in pages after each transaction, pages
remain in the cache so they are available for the next trans-
action without incurring another page fault. To incorporate
the writes of remote threads, the page cache needs to be up-
dated whenever a thread takes a new snapshot by traversing
the global log entries that have been committed between the
last snapshot of the thread and the current state of memory.
While this represents a cost, it is significantly lower as the
overhead incurred by the CoW approach which needs to up-
date the entire shared memory state. Furthermore, keeping
pages in the cache avoids resetting the access and protection
bits of the page table entry reducing TLB flushes. The use
of the page cache reduces the number of page faults signifi-
cantly compared to pure CoR, particularly for applications
with high spatial locality in terms of the shared memory
pages they frequently access. Sizing the page cache cor-
rectly and applying a good replacement policy is important
for achieving high performance. A too large page cache that
mostly contains unused pages increases update costs and
consumes memory, while a too small page cache triggers too
many page fault. We study the effect of different cache sizes
in Section 6.2.2.

3.3 Transactional Memory Extensions

While providing an efficient snapshotting capability is useful
on its own as outlined in Section 1, EXCITE-VM supports
snapshot isolation transactional memory (SI-TM) seman-
tics to make snapshots readily accessible by programmers.
Snapshots enable to buffer writes without making them vis-
ible to other threads providing efficient isolation between
threads. As a consequence, the only mechanisms required
to support SI-TM are a conflict detection scheme and the
ability to rollback transactional state. In SI-TM, reads are
always consistent even in the presence of writes and, as a
result, SI transactions are only required to abort on write-
write conflicts. To guarantee forward progress and to enable
batching of the validation overhead into a single operation,
EXCITE-VM implements lazy conflict detection. Transac-
tional writes are buffered in a tentative log entry that is
only committed to the global log after successful validation.
While most other STMs introduce significant overheads to
track transactional reads and writes including atomic oper-
ations and memory barriers, EXCITE-VM imposes no cost

for reads and introduces minimal instrumentation overheads
for writes. Validation itself is performed by comparing a
transaction’s writeset against the log entries that have been
committed concurrently by other threads. In case of a con-
flict, the transaction is aborted by undoing all local writes,
dropping the write log entry and by re-executing the trans-
action.

3.4 Example Transaction Sequence

Figure 1 shows the steps in an EXCITE-VM transaction.
The shared global log is shown on the left, whereas per-
thread structures, including the timestamp of the current
snapshot, the write log of the current transaction, the page
cache and its referenced physical pages, and the per-thread
page table, are shown on the right. The log contains an entry
for each write which indicates the address of the write as well
as the delta between the previous and the written value.
A page table entry contains the physical address a virtual
address is mapped to and whether said page is present or
write enabled.

3.4.1 Transaction Begin:

Figure 1a shows how the active thread creates a snapshot at
ts=7 by reading the global timestamp counter. As the page
cache is outdated (at ts=5) it is updated by applying the
writes of log 6 and log 7. The write to address v8 committed
at ts=7 hits the page cache and is hence applied to the
corresponding cached page.

3.4.2 Transactional Writes:

Figure 1b shows the active thread performing a transac-
tional write to shared memory at address v2. As the page
containing v2 is unmapped, a page fault is triggered which
allocates a new physical page, then walks the page table to
install the new mapping and subsequently inserts the entry
into the page cache. The newly created page is now initial-
ized with the content of the checkpoint page (CoR) which
is currently at version 3. This page copy is performed using
a lockless procedure described further in Section 4.3. The
thread then traverses the global log to determine writes (v2
is contained in log 4, 5 and 6) and applies them to the new
page. Furthermore, the write is inserted into the write log
of the current transaction. Following this, the thread per-
forms a write operation to address v8 that hits the page
cache. Handling this write does not require any action be-
sides inserting it into the write log. Note that write logging
is performed via the transactional instrumentation logic and
not via the page fault mechanism.

3.4.3 Commit:

Figure 1lc presents the commit processing of a transaction
including validation of the write set against other committed
writes. In the example, a remote thread has committed the
write log entry (ts=8). As a result, the local thread needs
to validate its writes against log 8. As the writesets do not
overlap, validation is successful. The transaction obtains a
commit timestamp (ts=9) and appends its write log entry to
the shared global log. Lastly, infrequently used page cache
entries are evicted by clearing the entry from the page cache,
unmapping the page in the page table, flushing the hardware
TLB and freeing the physical memory page.

Snapshot

Timestamp Writelog

(OLLemey]
phys
|| page
| phys
page

4. Apply delta

1. Obtain Snapshot Timestamp

Page Cache @ @

onnnn
onn

Snapshot
Timestamp

OlC)

4. Insert write
no page fault

Writelog ;

Snapshot

Timestamp Writelog

PA

2| O

VA

<
>

Page Cache

vO
v8
v2 PA2

5
<

//_\s

PA2

<
%

commits log

*?
T 1.0ther thread
o

<
IN]

Page Cache @ @

onnEn

{addr, val}

{addr, val}

[~]
A phy: -
CR3
4. Evict from CR3 @
page cache
1.0n page fault vO v2 non-accessed,
fill page cache e e.“.u free page e e

allocate page

phys addr
present -1
write_en

{addr, val}

[eas | [-]
[][]
L] [o]

(a) Transaction Begin

(b) Transactional Writes

(c) Transaction Commit

Figure 1: Example Transaction Sequence

4 Implementation

This section describes the implementation of EXCITE-
VM, particularly Copy-on-Read, global log management and
page caching.

4.1 Copy-on-Read

In order to implement Copy-on-Read, EXCITE-VM must
map in the desired version of a page for a thread running
transactions whenever a page fault occurs. Instead of mod-
ifying the page fault handler in the Linux kernel, we lever-
age Dune [5], a system that offers safe user-level access to
privileged CPU features like page table management. Dune
utilizes the virtualization hardware of modern microproces-
sors to provide virtual machine-like capabilities to basic pro-
cesses. Dune processes gain access to virtualized hardware,
such as a second page table layer for manipulating virtual
address mappings, but are still isolated from the host oper-
ating system and hence are not more privileged than a usual
process. We opted for Dune over a kernel based implementa-
tion due to performance advantages as well as development
and stability reasons. Managing page tables in a user level
library avoids a large part of the kernel specific complexity
and reduces context switching overheads, so in particular,
Dune reduces the cost of a trap from 2821 cycles to 587 [5].
Dune also facilitated the development process as a crash
occurring in a Dune page fault handler does not lead to a
kernel panic but instead only exits the Dune process.

An EXCITE-VM thread prepares itself to perform trans-
actions by entering Dune mode and by copying the page
table of its caller, similarly to what occurs during a call to
fork (). During transaction processing, the per thread page
table is modified to provide the desired snapshot view of the
shared segment to the thread. Process switching is poten-
tially expensive compared to thread switching. To address
this issue, we utilize process context IDs (PCIDs) avoiding
flushing the TLB when switching between page tables.

The entire CoR logic is implemented within a custom page
fault handler which is registered via Dune. When a trans-
action is started on a thread for the very first time, the
presence and write enable bit for all pages is cleared. As
a result, the first access to shared memory traps into the

EXCITE-VM page fault handler which in return creates a
local copy of the page matching the contents of that page in
the transaction’s snapshot and maps this page with writable
permissions into the thread’s page hierarchy. Outside of a
transaction, we map an empty page table into the thread’s
page hierarchy for the shared segment. Hence, accesses to
the shared segment outside of a transaction will fail, reveal-
ing a bug in the application.

4.2 Page Cache

The page cache is implemented as a software cache of con-
figurable size and holds frequently accessed pages which op-
timistically get updated to a snapshot version during trans-
action begin. The page cache supports the following simple
replacement policy. Every Scan transactions, where Scan
is a configurable parameter, all pages within the page cache
whose access bit is cleared are evicted from the cache. Then,
the access bit of all remaining pages is cleared and the cor-
responding TLB entries are flushed. Whenever the page is
accessed again by application software, the hardware auto-
matically sets the accessed bit. By configuring Scan, an
EXCITE-VM user determines the frequency of cache evic-
tions and the resulting memory consumption.

4.3 Global Log

The global log maintains all writes that have been applied
to shared memory in chronological order. There exists one
global log per application instance running on EXCITE-VM.
It is a shared data structure accessed by application threads
to re-generate snapshots as well as to perform conflict de-
tection. To avoid being a concurrency bottleneck, the global
log is implemented as a doubly linked list supporting lock-
less reads. New log entries are only appended to the end
using an atomic operation. Log entries are removed only
by the checkpointing thread and only if they are guaran-
teed to be older than the oldest snapshot that is currently
in use by any thread. The only race condition that exists in
this mechanism is between the checkpointing thread and a
page faulting thread. If the checkpointing thread updates a
particular page while an application thread tries to fault in
said page, a race condition might occur. To avoid this issue,

readers implement the sequence lock mechanism [8] enabling
concurrent checkpointing and page faulting without obtain-
ing locks. In particular, the checkpointing thread modifies
a shared page by setting its version number to dirty, then
applies the updates and then increments the version number
of the page. The readers on the other hand, check the page
version number before and after copying the page and if the
two versions are not identical, retries the sequence. The en-
tries of the shared log are identified by a version number
which is the unique timestamp assigned to this entry during
commit. The writeset tracks writes on a quad-word granu-
larity, whereas each entry is defined by its address and a 64
bit delta value which can be added to roll a version forward
(redo) or subtracted to roll a version backwards (undo).

The size of the writeset influences both the snapshot gen-
eration and the transaction validation cost. Hence, to reduce
the size of the writeset, EXCITE-VM supports a stream op-
timization which stores writes to consecutive addresses using
a base address plus length notation. As a result, frequent op-
erations such as memcpy and memset generate only a single
entry within the writeset at the only expense of an additional
branch instruction during write logging.

4.4 Libitm Integration

EXCITE-VM exposes transactions to programmers through
GCC’s libitm [17, 2]. Libitm defines a new keyword, trans-
action_atomic{}, which is used by the programmer to de-
clare transactions. Libitm automatically instruments reads
and writes and exposes those to library developers via a
modular, internal API. We added SI-TM as a new algorithm
to libitm by providing support for three main APIs. To im-
plement transaction_begin() a thread reads out the global
64 bit timestamp counter setting the snapshot for this trans-
action. Before entering the transaction, the thread needs
to update its page cache, which is performed by traversing
the global log, starting from the snapshot the page cache
is currently at (the snapshot of the last transaction). For
each write, it queries the page cache and if existent up-
dates the corresponding page. The transaction_write()
API is called whenever a shared memory location is written
and it is handled by buffering the address and value of the
write, forming a new log entry. The most costly operation
is transaction_commit () as it requires to validate the write
set against all other committed transactions that overlap in
time.

4.5 Commit processing

We support a set of techniques to reduce the validation cost.
First, to provide scalability, commit processing is performed
by all threads in parallel. By allowing lockless reads, the
global log can be accessed by all committers concurrently.
Nevertheless, to avoid races between concurrent commit-
ters, validation and appending a new log entry needs to be
performed atomically. Therefore, committers determine the
newest log entry before validation and then recheck for the
newest log after validation. If another thread committed
a new log in between, then the committer needs to validate
against this log as well. This guarantees that a committer al-
ways sees all other commit logs even those that are appended
during validation. Second, the bloomfilter signature which
is contained in each commit log entry is utilized to perform
hierarchical validation to cut short the validation sequence
in case of no conflict. For example, if the intersection of

the bloomfilter of two transactions is empty, there exists no
write-write conflict between the two transactions and fine
grain word based validation can be skipped. By maintain-
ing the bloomfilters on a page based granularity all writes
to a page set the identical filter bits which keeps the filter
sparse and avoids false positives. In case no conflict exists
between two transactions, this allows to validate all writes
within a page using a single operation. Third, supporting
streams (a sequence of writes to consecutive addresses) re-
duces the cost of validating a sequence of writes to a single
base-bound check. Fourth, by applying techniques such as
loop unrolling, prefetching and vectorization using AVX-256
instructions, EXCITE-VM is capable of checking up to four
addresses in parallel.

4.6 Lines of code

EXCITE-VM has been programmed in C/C++ and contains
6330 lines of code, not including blank lines and comments.
The GCC patch to enable EXCITE-VM as a new TM al-
gorithm for libitm is 233 lines of code. The dune library
adds another 5,898 lines although we utilize only a subset
of its components. As a comparison, Linux’s virtual mem-
ory system (mm) contains 62,877 lines of code as of version
3.13.0.

5 EXCITE-VM Guarantees

We now discuss the guarantees EXCITE-VM provides in
terms of fault tolerance, security and consistency.

5.1 Fault Tolerance

EXCITE-VM improves fault tolerance and robustness over
conventional multi-threaded systems by tolerating certain
programming errors. As threads maintain local copies of
the pages that are written during a transaction, uncom-
mitted writes are never visible to other threads. Hence, in
case a thread terminates due to a runtime error, the shared
state remains unaffected. We assume that the EXCITE-VM
system itself does not suffer from runtime errors as it can
only protect against runtime errors of the application. The
EXCITE-VM commit logic, however, does perform address
checking of the write log. So in case a thread tries to commit
a writelog that modifies locations outside of shared memory,
the log is rejected to avoid segmentation violations induced
by EXCITE-VM code. EXCITE-VM provides the means
of removing a failed thread from the system, the option of
spawning a new thread as well as enabling the other threads
to continue operation. Nevertheless, to support fault toler-
ance in a meaningful way application awareness is required.
In particular, the application must be able to tolerate the
information loss of the failing thread. For applications that
partition the work among threads during startup this might
be difficult, whereas for real time server applications that
continuously process client requests using multiple threads,
it is feasible. For example, Memcached (See Section 5.5) can
be extended such that on a thread failure only the in-flight
request is lost but that the application can continue to run
and accept request subsequently. In summary, EXCITE-VM
provides the necessary facilities to considerably improve the
robustness of a shared memory system.

5.2 Security

As mentioned in Section 4.1, each thread in EXCITE-VM
uses Dune to access virtualized hardware, but these threads
still have only the usual privileges and protections. Since
each thread in EXCITE-VM has its own virtual-to-physical
mapping, threads cannot access each others page caches
and hence observe uncommitted writes. To prevent ma-
licious threads gaining access to the transaction process-
ing code and to virtual memory management instructions
(which would jeopardize the guarantees above,) application
code should be executed in as user, i.e. Dune ring 3, while
EXCITE-VM needs to run in non-root, Dune ring 0. As a
result, transaction begin and transaction commit operation
need to be performed via system calls requiring a ring change
which adds an overhead of 587 cycles in case of Dune [5].
Note that write instrumentation can be solely performed in
user space as long as EXCITE-VM checks the validity of the
write log (e.g. for buffer overflows) during commit.

5.3 Consistency

EXCITE-VM implements the SI isolation level [6], which
guarantees consistent reads but permits the write-skew
anomaly. A write-skew anomaly may occur when two con-
current transactions update separate variables (so no write-
write conflict) but together causing a constraint to be vi-
olated. For example, consider the constraint: a < b+ c.
One transaction may modify b while a concurrent trans-
actions modifies ¢. Though the constraint is satisfied in
both thread’s snapshots, the constraint may be violated after
merging both writes into a new shared state. A write skew
can only arise if there is a dependency cycle between reads
and writes across two or more concurrent transactions. Such
a cycle can be broken by promoting a read to be treated as
part of the write set, thereby causing a write-write conflict
and aborting the second transaction. Prior research [16, 14,
28] presented techniques to detect and remove write skew
automatically which we adopt for our system. In particu-
lar, EXCITE-VM supports read promotion to avoid write
skew anomalies. In our experience, this approach leads to
significantly fewer aborts than forcing complete serializabil-
ity of transactions while reliably preventing anomalies. The
performance overhead introduced by read promotion is neg-
ligible [28].

In applications where strict serializability is required, pro-
grammers can apply locks for synchronization and utilize
snapshots for fault tolerance and consistent reads. For ex-
ample, LevelDB, a fast key-value storage library written by
Google follows such a hybrid model by supporting atomic
PUT and GET operations while also offering read-only snap-
shots. Finally, in future work we will support SSI-TM [39]
which avoids write-skew by detecting dependency cycles at
runtime.

6 Evaluation

We evaluate EXCITE-VM by comparing it to three baselines
including SI-STM, Libitm and single global lock. SI-STM
is a C/C++ re-implementation of Riegel’s Java based sys-
tem [43]. Libitm represents the default TM algorithm of
GCC/Libitm which utilizes ownership records to guarantee
consistency in the case of concurrent shared memory ac-
cesses and which is similar in function to TL2 [15]. We also
compare to the single Global Lock implementation included

in Libitm, which is not expected to scale well but which
should provide lowest instrumentation overheads. We do
not compare against hardware TM implementations such as
Intel TSX due to the following reasons. Firstly, at the time
of writing this paper no Intel Haswell with more than four
cores was available to us and secondly a STAMP comparison
between HTM and a TL2 STM has been performed before
in [53] which the interested reader can consult for compari-
son.

We perform our measurements using different software ap-
plications, including Microbenchmarks, the STAMP appli-
cation suite [46], Memcached and the Yahoo Cloud Server
Benchmark. To support EXCITE-VM we had to modify the
applications moderately by replacing malloc calls for shared
data to a version that calls into the EXCITE-VM system.
We also had to move all globally defined shared variables
onto the heap'. From the STAMP suite, we have success-
fully ported Genome, Kmeans, Labyrinth, Vacation, SSCA2
and Intruder as well as all datastructures. Yada does not
work correctly with TMs that deploy lazy conflict detec-
tion [46], Bayes we omitted due to the non-deterministic be-
havior of the application leading to inconsistent results [46].
Porting the applications required a certain understanding of
the code at least to the degree of determining shared mem-
ory data structures. Porting the applications took us one
day per application in average with only few lines of code
modified.

We disable two features of EXCITE-VM for these per-
formance comparisons, the first being the mapping of a
dummy page table outside of a transaction to catch out-
of-transaction accesses (see Section 4.1) and the second be-
ing that commit processing is performed in user mode Dune
ring 3 (see Section 5.2). These features provide bug-checking
and security, but none of the systems we compare against
provide either feature. All applications were compiled with
GCC 5.0. We run our experiments on an 8-core Intel Xeon
CPU E5-2670 running at 2.6 GHz with 20 MBytes of cache
running Ubuntu Linux 14.4.

6.1 Microbenchmarks

To compare EXCITE-VM against SI-STM we use two mi-
cro benchmarks both taken from the original SI-STM paper.
By leveraging the virtual memory system, EXCITE-VM re-
duces the instrumentation overheads of reads and as a re-
sult, outperforms SI-STM by up to 5.9x as shown in Figure
2. The list benchmark evaluates concurrent lookup, insert
and delete operations to a linked list initialized with 250
elements. We run 1, 2, 4 and 8 thread configurations and
varying the ratio of read-only (lookup) and read-write (in-
sert and delete) operations. This is a read-heavy benchmark
as even when using a workload of 100% write transactions
each insert and delete operation must partially traverse the
list. EXCITE-VM scales well on this benchmark and out-
performs the other systems at any write percentage, and by
5.9x under a read-only workload. The bank benchmark is
a write-heavy benchmark involving a sequential array of ac-
count objects where write transactions transfer money from
one account to another and read-all transactions sum up the
value of all accounts. We show results from the benchmark

'EXCITE-VM currently does not support shared data to
reside in the global data/bss segment, however, we plan to
add this in a future revision

List, 100% Write List, 20% Write

List, 100% Write

Bank, 0% Read Bank, 10% Read Bank, 100% Read
107 107

[==] {)
= P

10 2
Global Lock BB Libitm BESI-STM 0BEXCITE-VM

15 T T T T 6 T T T T 6 T T T T

[\o]
o
T

—
]
T

Throughput (-10° Txns/sec)

10k 1 4} 1 4+t
51

50t 2 |t 1 21
0 0

0 0 0
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Threads Threads Threads Threads Threads Threads
Figure 2: Microbenchmarks
. Genome Kmeans Labyrinth Vacation Intruder
g BB Global Lock DBLibitm DEEXCITE-VM ‘
= 30
= 40
S 20
§ 20 10
S 0 0 0
1 2 4 8 8 1 2 4 8 1 2 4 8
Threads Threads Threads Threads Threads Threads

Figure 3: STAMP Execution Time

using 1 million accounts, each a 64-bit integer. When exe-
cuting 8 threads on a workload of entirely write transactions,
EXCITE-VM is 5.5x slower than the highest performing sys-
tem, Libitm. This is due to the comparably higher cost of
writes in EXCITE-VM. However, when read-all transactions
are included, EXCITE-VM reaches the bandwidth of the
shared last level cache with as few as 2 threads and achieves
6.8x higher throughput than SI-STM or Libitm.

6.2 Applications
6.2.1 STAMP

We evaluate EXCITE-VM using the STAMP benchmark
suite and observe up to 2.2x performance improvements over
all of the other tested approaches. To evaluate STAMP, we
utilized the default configuration parameters with the high
contention option. Figure 3 shows the execution time of the
STAMP applications on EXCITE-VM. The Genome bench-
mark is very read intensive, which causes Libitm to spend
more than 50% of its execution time on read instrumenta-
tion costs as reported by perf. In contrast, EXCITE-VM
has almost no read overheads and matches the performance
of the global lock implementation on a single thread while
also scaling well to eight threads. Libitm also scales well
EXCITE-VM, however, it is 3x slower for any thread con-
figuration. Kmeans is a write heavy application and, as
a result, EXCITE-VM shows a slightly higher single thread
overhead than either the global lock or Libitm on this bench-
mark. Both EXCITE-VM and Libitm scale comparably
well. Labyrinth only spends a small amount of time in trans-
actions, furthermore, most of the work can be executed com-
pletely parallel without any kind of synchronization. As a
result all three systems show good scalability and low over-
heads. Vacation offers a mixed load of both update-heavy

and read-heavy transactions. Hence, EXCITE-VM offers
comparable performance to Libitm due to outperforming Li-
bitm on read-heavy transactions but having higher overhead
on update-heavy transactions. Both Libitm and EXCITE-
VM exhibit good scalability and outperform the global lock.
Intruder performs significant number of byte reads which
are instrumented on the per access level and which lead
to high instrumentation overheads for Libitm. Hence, on
this benchmark EXCITE-VM shaves 30% off the runtime
of the other tested systems at 8 threads. Read instru-
mentation for this benchmark under EXCITE-VM shows
up as a 10% overhead in perf, although this instrumen-
tation is unnecessary for EXCITE-VM and is implemented
as an empty virtual function call solely to match the Li-
bitm API. GCC currently does not support link time opti-
mization in combination with transactional memory which
would be required to completely remove this overhead. Fi-
nally, in SSCA2, EXCITE-VM shows good scalability and,
at 8 threads, shows a 2.2x performance improvement over all
other tested systems. We do not compare against SI-STM
as it cannot run STAMP due to being an object based TM
implementation. Neither the original authors nor us have
been able to evaluate SI-STM in complex benchmarks due
to this limitation.

6.2.2 Memory Overhead

EXCITE-VM introduces potential memory overheads due
to the per thread page cache, the per thread page table and
the global log. The page tables approximately have a size of
1/512 the of the physical memory in use and in experiments
their size has been below 1% of the total memory consump-
tion. The global log size is determined by the oldest live
transaction. For the applications we evaluated, the global
log has introduced less than 1% memory overheads. The

T
Y | [SUR 1o & = 80 I |
= 0y E 6 g &
© 0.8 150 - & 08 150 & g 60f h
5 o6f 140 £ 5 06 40 E £ A
S 140 = 3 | g 0l |
o 04l 30 . 2 04 R
2 -) =
S 20 ¢ 8 120 £ & 20t N
S 02} A& 02 %
O I 10 A 0 = 8 oln 0 |
0 — &>
S 2 x o i« S P & &£ 5°
- g = S § - = = S § (%@ Q‘)\O %66 Q‘b&‘b
[TX/Scan] [TX/Scan]

Figure 4: Pagecache 1 Thread

log size can be further bound by generating intermediate
checkpoints. To evaluate the memory overhead of the page
cache, we studied the effect of different eviction scan periods
when running the STAMP application suite to understand
the page cache trade-off between memory and performance.
A shorter scan period tends to reduce the size of the page
cache. Figure 4 and Figure 5 shows Genome at 1 and re-
spectively 8 threads with the ratio of transactions per scan
varying between 100 and 100,000, showing the effect on both
cache size and execution time. To put the cache size into
perspective, note that Genome itself has a memory footprint
of 300 MB. For 1 thread and a TX/Scan ratio of 100 the page
cache is 8 MB and hence represents an overhead of less than
3%. However, for 8 threads and a 100,000 TX/Scan ratio
the cache grows to over 900 MB representing an overhead of
300%. Our current system employs a default TX/Scan ratio
of 10,000 which provides close to optimal performance with
a memory overhead of 1.9x for 8 threads. This ratio has
been proven adequate for the other evaluated applications
as well.

Interestingly, the cache size does not necessarily grow lin-
early in the number of threads, e.g. in Figures 4 and 5
the cache size for 8 threads in the 100,000 case is much
less than 8x that for 1 thread. This is because the appli-
cation partitions some of its state into per-thread working
sets, causing some pages to associate with a single thread’s
page cache. We observed that increasing the scan ratio
past 100,000 TX/Scan reduced performance for this exper-
iment, due to the inflicted cost of updating cached pages
that are not subsequently accessed. An analysis of the page
cache contents revealed that many of the pages in the caches
are duplicates, suggesting that further optimizations, such
as page sharing and deduplication could improve perfor-
mance [23, 31]. Genome was representative of results ob-
tained for the other STAMP benchmarks, hence we omit
the other applications for brevity.

6.2.3 Impact of Optimization Techniques

The implementation Section discusses thread optimization
techniques that improve the performance of EXCITE-VM.
We provide the average performance improvement for the
STAMP applications running at 8 threads. In particular,
we discuss four optimizations: vectorization, bloomfilters,
streams and parallel commit.

First, vectorization (SIMD) capabilities of Intel processors
both improve validation, by comparing multiple elements of

Figure 5: Pagecache 8 Threads

Figure 6: Optimization Techniques

a write set in parallel, as well as log traversal and appli-
cation, again by applying multiple writes with a single in-
struction. SIMD is implemented by extracting inner loops
into function bodies adhering to the form required by GCC
and then enabling auto vectorization. In cases where GCC
was unable to auto-vectorize we apply inline assembly. Fig-
ure 6 shows a 4% improvement on end-to-end performance
for SIMD for Genome (the other STAMP applications be-
have similar) for eight threads.

Second, we evaluate the 64 bit bloomfilter that is main-
tained for each write log entry, which allows checking for
non-intersection of two write sets with a single operation.
By avoiding costly entry-by-entry comparison of writesets
in the usual case, bloomfilters reduce validation overhead
leading to a 7% improvement as shown in Figure 6.

Third, we evaluate the effect of streams. Streams enable
to store a set of writes to consecutive addresses, as emitted
by memcpy and memset, as a single pair of start address
and length. This optimization reduces the average writeset
size and as a result reduces validation cost leading to a mean
speedup of 90% or almost 2x.

Finally, we evaluate the effect of performing commits in
parallel when executing 8 threads. In the baseline, EXCITE-
VM threads obtain a commit lock to perform validation
and to append their log entry. In the optimized approach,
threads iterate over the log in parallel for validation. Val-
idation and appending a log is still performed atomically,
however, if another thread commits a new log concurrently
it is sufficient to validate against this new log entry instead
of restarting the entire validation process. Parallel commit
delivers an improvement of 15%.

6.2.4 Online Analytical Processing

STAMP’s Vacation simulates an online transaction pro-
cessing (OLTP) workload on a large database. Due to
the database size, conflicts are rare and both libitm and
EXCITE-VM scale equally well. Besides performing OLTP,
database operators are generally interested in analyzing
their data. For this purpose, we added an online analytical
processing (OLAP) workload to Vacation. Concurrent with
7 OLTP threads we execute a single OLAP thread, which
chooses one table at random and performs on it range scans
of different size to compute an aggregation. The OLAP
workload is read-only and requires a consistent view of the
database, respectively no concurrent conflicting writes to the
same data items can be tolerated. We measure the effect of
the OLAP thread on the execution time of the OLTP threads
as well as the analysis performance that can be achieved con-

DEEXCITE-VM D8 Libitm \

] IREXCITE-VM BB Libitm

EXCITE-VM l- Libitm

'U‘ | ILLILLLLLY OLLALALLALL LR ELAALL) '? 8 [
8 102 E 2, 10
(] F)
g E

= [& 106 [
g w0 g
ER ER
g | g 10
" [l "

£a) =

o
—

=

=]
—

100
10K
100K
100

Elements per Scan

Figure 7: Vacation OLTP

currently. Figure 7 shows the effect of the OLAP thread on
OLTP performance. As it can be seen, the performance of
EXCITE-VM remains relatively stable while Libitm execu-
tion time increases by 1000x for long range scans of 100k el-
ements. Even when running a single OLTP thread, the slow
down for Libitm is at the same order of magnitude, effec-
tively rendering the OLAP workload impossible to support
on Libitm due to conflicting memory accesses. EXCITE-
VM only introduces a 1.9x slowdown for the 100k range
scan mainly due to cache effects. Profiling revealed that for
the 100k scans abort rates of OLTP transactions are unaf-
fected by the OLAP thread, however, the last level cache
miss rate increases, presumably long range scans trash the
L3 cache. Figure 8 shows the average execution time of an
OLAP transaction. Libitm shows a 3x increase in execution
time for OLAP over EXCITE-VM for all scan sizes (note the
log scale). As it can be seen, Libitm’s slowdown of OLTP
performance (1000x) is significantly higher than the slow-
down for OLAP (3x). The reason, therefore, is that Libitm
switches to serial mode after a phase of high contention and
as long running OLAP transactions have the same priority
to obtain the serial lock, the effect on the OLTP transactions
is more significant.

EXCITE-VM gives predictable performance, which is im-
portant for applications such as user-facing databases that
need to meet service level objectives (SLOs). Figure 9 shows
the standard deviation (SD) and maximum 99" percentile
(99%) duration of OLAP transactions. For both Libitm and
EXCITE-VM SD and 99% increases to a maximum for the
1000 element scans. For even larger scans variability de-
creases due to the sheer duration of the transactions. Nev-
ertheless, EXCITE-VM significantly outperforms Libitm by
up to a factor of 1.4x for SD and 4.3x for the 99 percentile.

6.2.5 Elastic Memcached

We now evaluate Memcached, a popular key-value cache,
that was transactionalized to run on Libitm by Ruan et
al. [47]. We ported this code to EXCITE-VM, by allo-
cating shared data structures and several global variables
on the EXCITE-VM heap. To evaluate the performance
we execute the Memcached server with 1 to 8 threads
and apply memslap as a load generator using the follow-
ing parameters: —concurrency=8 -execute-number=416667
-s localhost:11211 -binary. Figure 10 shows execution
time for Memcached for both Libitm and EXCITE-VM. The

Elements per Scan

Figure 8: Vacation OLAP

= L
S o6 a
=
g
8 4| i
&
S 2
S]
= =)
% \\\\\E‘
o o
X S 5 %Kk
- S - S
— —

Elements per Scan

Figure 9: Predictability

two systems show similar performance, while EXCITE-VM
shows better scalability for 8 threads.

Furthermore, to demonstrate the fault tolerance capabil-
ities of EXCITE-VM, we built a modified version of Mem-
cached by introducing programmer bugs that trigger a seg-
mentation fault at different locations at an arbitrary ran-
domized point in time. We then ran Memcached 1000 times
in this configuration with only the affected thread died in
each execution without affecting other server threads and
without corrupting the shared state. Memslap detects a
timeout in this case for the outstanding request and then
continues its operation. This shows the improved fault tol-
erance provided by EXCITE-VM. We plan to extend Mem-
cached with a functionality that detects failing threads and,
in this case, elastically spawns a new thread. As a result fail-
ing threads should have a minimal impact on performance.

6.2.6 Yahoo Cloud Server Benchmark

Yahoo Cloud Server Benchmark (YCSB) [12] represents a
benchmark suite to test webscale key-value store implemen-
tations. It can be used to test scale-up as well as scale-out
systems, whereas we focus on scale-up. YCSB defines six
workloads which model realistic applications by setting put,
get and scan parameters accordingly. For brevity we se-
lect only two workloads: Workload A which is an update
heavy workload stressing the write performance as well as
workload E which executes short range scan operations. We
ported YCSB to C++ and perform measurements against
the Libitm baseline. Figure 11 and Figure 12 shows the re-
sults for the two workloads. In workload A, EXCITE-VM
achieves 700,000 operations per second while providing full
transactional semantics, e.g. we support multiple atomic
put/get operations as a single transaction. Both systems
scale well, however, EXCITE-VM shows a slightly higher
overhead leading to a slowdown of 5% over Libitm. This
workload represent a worst case scenario for EXCITE-VM
due to many updates and yet EXCITE-VM shows only mod-
est degradation in performance. Workload E on the other
hand performs scans for which EXCITE-VM shows reduced
instrumentation overhead and linearly scaling up to eight
threads. In particular it shows 2.2x performance increase
over Libitm for eight threads.

JEEXCITE-VM B8 Libitm \

] DEEXCITE-VM B8 Libitm \

] IREXCITE-VM BB Libitm

T T T T 400 7 T

)))
% % &
R I :
£ s . g 200 2
= o o
2 8] S
5 5 100 - E
g 82 8 3
1 2 4 8 1 2 4 8 1 2 4 8
Threads Threads Threads

Figure 10: Memcached

7 Related Work

Snapshots are supported by HyPer [24] utilizing Linux’s fork
mechanism to instantiate in-memory database snapshots for
read-only transactions. Forking the page table on on each
transaction begin is significantly more expensive than cre-
ating an updated snapshot with EXCITE-VM. Moreover,
there is no mechanism to merge modified snapshots atomi-
cally into committed state, as provided in EXCITE-VM. All
major databases, PostgreSQL [33], MySQL [36], HANA [50]
and OracleDB [22] support snapshot isolation transactions.
However, incorporating a database into an application in-
troduces overheads and requires significant changes to the
data model. Particularly, instead of relying on standard
data structures, as provided for example by the STL, all
data needs to be stored in tables. EXCITE-VM, on the
other hand, adds these capabilities with low overhead, while
avoiding changes to the data model.

SpiceC [18] is a parallel programming technique that en-
forces isolation between threads by generating thread local
copies of shared data on each access. Instrumenting every
read operation introduces significant overheads (as in SI-
STM), which EXCITE-VM avoids by means of the virtual
memory system. Doppler [37] utilizes thread local copies
to reduce contention on frequently accessed data structures.
In contrast to EXCITE-VM, it is restricted to commutative
operations. Burckhardt proposes to program with revisions
and isolation types [9] leveraging a fork-join task model to
exploit concurrency. Changing a conventional lock-based
programming model into a task model requires significant
changes whereas EXCITE-VM requires minor modifications.
Furthermore, the technique does not support speculation
and, as a result, requires the programmer to define a merge
function for each data type to handle write-write conflicts,
whereas, EXCITE-VM leverages transactions.

There exists a large body of research on Transactional
Memory [21, 49, 40, 19, 15, 35, 25, 13, 48, 7, 52, 20]. More
relevant to our work is unbounded page-based transactional
memory (PTM) [10] which leverages the virtual memory
system to support transactions overflowing the cache and
to avoid aborts due to context switches and exceptions. In
contrast to EXCITE-VM, PTM requires hardware modifica-
tions and does not provide snapshots. Similarly, SI-TM, [27]
which provides the same guarantees as our system, requires
hardware modifications of the memory system. Riegel pro-
poses lazy snapshots [42] to provide consistent reads address-
ing the linearly growing validation overhead, however, the
system does not support snapshot isolation semantics.

Figure 11: YCSB-A

Figure 12: YCSB-E

Memory protection hardware has been proposed to ad-
dress the privatization problem and to achieve strict atom-
icity between transactional and non-transactional data ac-
cesses [1]. In contrast to our system, which also provides
strict atomicity, the work neither addresses fault tolerance
nor provides SI. Memory protection techniques are also uti-
lized to enable the concurrent execution of an STM and
a bounded hardware to form an efficient Hybrid TM sys-
tem [4]. Furthermore, virtualization techniques have been
previously utilized by TM systems to achieve unbounded
transactions [41] and fully virtualized transactions [11]. Sim-
ilar techniques have been implemented on the operating sys-
tem level to achieve virtualization [51] and to manage trans-
actional memory as in TxLinux [45]. In distributed sys-
tems, Microsoft’s CORFU project [3] shares similarities with
EXCITE-VM.

8 Conclusions

EXCITE-VM provides a new concurrent programming
model supporting snapshot isolation transactions on shared
memory. It delivers high performance by enabling threads
to directly access shared memory while providing the
synchronization-free application programming model pro-
vided by inter-process messaging. EXCITE-VM also pro-
vides the ability to have individual threads fail and restart
without restarting the entire application. Our evaluation
shows that this approach achieves performance which is
equal, and in most cases superior to, the alternative ap-
proaches, especially when applications have a significant
number of read-only transactions. In particular, we have
shown that for applications leveraging long read-only trans-
actions, EXCITE-VM can be 1000x faster than a conven-
tional TM solution. EXCITE-VM also delivers performance
predictability, as read-only transactions never abort or block
in the presence of update transactions.

Several implementation techniques are critical to achiev-
ing this performance, including the page cache, periodic
checkpointing, parallel lazy commit, vectorization, bloom-
filters and CoR snapshotting. We also showed that periodi-
cally creating a checkpoint for use by read-only transactions
reduces the cost of these transactions while allowing the log
to be pruned periodically. A natural extension for EXCITE-
VM is to provide durability by persisting the log and mod-
ified pages to stable storage as part of checkpointing. An-
other is to allow distributed transactions by distributing the
log and the commit operation over the network.

9 References

1]

[10]

[11]

[12]

[13]

[14]

M. Abadi, T. Harris, and M. Mehrara. Transactional
memory with strong atomicity using off-the-shelf
memory protection hardware. In ACM Sigplan
Notices, pages 185-196. ACM, 2009.

A.-R. Adl-Tabatabai, T. Shpeisman, and

J. Gottschlich. Draft specification of transactional
language constructs for c++, 2009.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,

V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: Distributed data structures over
a shared log. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
pages 325-340. ACM, 2013.

L. Baugh, N. Neelakantam, and C. Zilles. Using
hardware memory protection to build a
high-performance, strongly-atomic hybrid
transactional memory. ACM SIGARCH Computer
Architecture News, 36(3):115-126, 2008.

A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,

D. Mazieres, and C. Kozyrakis. Dune: Safe user-level
access to privileged cpu features. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 335-348,
Berkeley, CA, USA, 2012. USENIX Association.

H. Berenson, P. Bernstein, J. Gray, J. Melton,

E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. ACM SIGMOD Record, 1995.

J. Bobba, K. Moore, H. Volos, L. Yen, M. Hill,

M. Swift, and D. Wood. Performance pathologies in
hardware transactional memory. In ACM SIGARCH
Computer Architecture News, pages 81-91. ACM,
2007.

H.-J. Boehm. Can seqlocks get along with
programming language memory models? In
Proceedings of the 2012 ACM SIGPLAN Workshop on
Memory Systems Performance and Correctness, pages
12-20. ACM, 2012.

S. Burckhardt, A. Baldassin, and D. Leijen.
Concurrent programming with revisions and isolation
types. In ACM Sigplan Notices, volume 45, pages
691-707. ACM, 2010.

W. Chuang, S. Narayanasamy, G. Venkatesh,

J. Sampson, M. Van Biesbrouck, G. Pokam, B. Calder,
and O. Colavin. Unbounded page-based transactional
memory. In ACM Sigplan Notices. ACM, 2006.

J. Chung, C. C. Minh, A. McDonald, T. Skare,

H. Chafi, B. D. Carlstrom, C. Kozyrakis, and

K. Olukotun. Tradeoffs in transactional memory
virtualization. In ACM SIGARCH Computer
Architecture News, pages 371-381. ACM, 2006.

B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143-154.
ACM, 2010.

P. Damron, A. Fedorova, Y. Lev, V. Luchangco,

M. Moir, and D. Nussbaum. Hybrid transactional
memory. In ACM Sigplan Notices. ACM, 2006.

R. Dias, J. Lourengo, and N. Preguica. Efficient and
correct transactional memory programs combining

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

25]

[26]

27]

(28]

snapshot isolation and static analysis. In Proceedings
of the 8rd USENIX conference on Hot topics in
parallelism (HotPar’11), HotPar, volume 11, 2011.

D. Dice, O. Shalev, and N. Shavit. Transactional
locking ii. In Proceedings of the 20th international
conference on Distributed Computing, DISC’06, pages
194-208, Berlin, Heidelberg, 2006. Springer-Verlag.

A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and

D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492-528, 2005.

P. Felber, C. Fetzer, U. Miiller, T. Riegel,

M. Siilkraut, and H. Sturzrehm. Transactifying
applications using an open compiler framework.
TRANSACT, August, pages 4-6, 2007.

M. Feng, R. Gupta, and Y. Hu. Spicec: scalable
parallelism via implicit copying and explicit commit.
In ACM SIGPLAN Notices, pages 69-80. ACM, 2011.
L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proceedings of
the 31st annual international symposium on Computer
architecture, ISCA ’04, pages 102—, Washington, DC,
USA, 2004. IEEE Computer Society.

T. Harris, J. Larus, and R. Rajwar. Transactional
memory. Synthesis Lectures on Computer Architecture,
5(1):1-263, 2010.

M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proceedings of the 20th annual international
symposium on computer architecture, ISCA ’93, pages
289-300, New York, NY, USA, 1993. ACM.

K. Jacobs, R. Bamford, G. Doherty, K. Haas, M. Holt,
F. Putzolu, and B. Quigley. Concurrency control,
transaction isolation and serializability in sql92 and
oracle7. Oracle White Paper, Part, (A33745), 1995.
K. Jin and E. L. Miller. The effectiveness of
deduplication on virtual machine disk images. In
Proceedings of SYSTOR 2009: The Israeli
Ezxperimental Systems Conference, page 7. ACM, 2009.
A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In Data Engineering
(ICDE), 2011 IEEFE 27th International Conference on,
pages 195-206. IEEE, 2011.

S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and

A. Nguyen. Hybrid transactional memory. In
Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pages 209-220. ACM, 2006.

T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. Computers,
IEEE Transactions on, 100(4):471-482, 1987.

H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and
J. P. Stevenson. Si-tm: reducing transactional memory
abort rates through snapshot isolation. In Proceedings
of the 19th international conference on Architectural
support for programming languages and operating
systems (ASPLOS-19), pages 383-398. ACM, 2014.
H. Litz, R. J. Dias, and D. R. Cheriton. Efficient
correction of anomalies in snapshot isolation
transactions. ACM Transactions on Architecture and

[38]

[41]

[42]

[43]

Code Optimization (TACO), 11(4):65, 2015.

T. Liu, C. Curtsinger, and E. D. Berger. Dthreads:
efficient deterministic multithreading. In Proceedings
of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 327-336. ACM, 2011.

T. Merrifield and J. Eriksson. Conversion:
multi-version concurrency control for main memory
segments. In Proceedings of the 8th ACM FEuropean
Conference on Computer Systems, pages 127-139.
ACM, 2013.

D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. ACM Transactions on Storage (TOS),
7(4):14, 2012.

C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
Stamp: Stanford transactional applications for
multi-processing. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on.
IEEE, 2008.

B. Momjian. PostgreSQL: introduction and concepts,
volume 192. Addison-Wesley New York, 2001.

P. Montesinos, L. Ceze, and J. Torrellas. Delorean:
Recording and deterministically replaying
shared-memory multiprocessor execution efficiently. In
Computer Architecture, 2008. ISCA’08. 35th
International Symposium on, pages 289-300. IEEE,
2008.

K. Moore, J. Bobba, M. Moravan, M. Hill, and

D. Wood. Logtm: Log-based transactional memory. In
Proceedings of the 12th International Symposium on
High-Performance Computer Architecture (HPCA-12).
Austin: IEEE Computer Society, 2006.

A. MySQL. MySQL Administrator_s Guide and
Language Reference. Sams Publishing, 2006.

N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions.
In Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation, pages
511-524. USENIX Association, 2014.

H. Patil, C. Pereira, M. Stallcup, G. Lueck, and

J. Cownie. Pinplay: a framework for deterministic
replay and reproducible analysis of parallel programs.
In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and
optimization, pages 2—11. ACM, 2010.

D. Ports and K. Grittner. Serializable snapshot
isolation in postgresql. Proceedings of the VLDB
Endowment, 2012.

R. Rajwar and J. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution.
In Proceedings of the 34th annual ACM/IEEE
international symposium on Microarchitecture, pages
294-305. IEEE Computer Society, 2001.

R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. In Computer Architecture,
2005. ISCA’05. Proceedings. 32nd International
Symposium on. IEEE, 2005.

T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot
algorithm with eager validation. In Distributed
Computing, pages 284-298. Springer, 2006.

T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation
for software transactional memory. In TRANSACTOG,
volume 298, 2006.

(44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

53]

M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS),
10(1):26-52, 1992.

C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E.
Ramadan, B. Aditya, and E. Witchel. Txlinux: Using
and managing hardware transactional memory in an
operating system. In ACM SIGOPS Operating
Systems Review, pages 87—-102. ACM, 2007.

W. Ruan, Y. Liu, and M. Spear. Stamp need not be
considered harmful. In Ninth ACM SIGPLAN
Workshop on Transactional Computing, 2014.

W. Ruan, T. Vyas, Y. Liu, and M. Spear.
Transactionalizing legacy code: An experience report
using gcc and memcached. SIGPLAN Not.,
49(4):399-412, Feb. 2014.

B. Saha, A. Adl-Tabatabai, and Q. Jacobson.
Architectural support for software transactional
memory. In Microarchitecture, 2006. MICRO-39. 39th
Annual IEEE/ACM International Symposium on.
IEEE, 2006.

N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, pages 99-116, 1997.
V. Sikka, F. Farber, W. Lehner, S. K. Cha, T. Peh,
and C. Bornhovd. Efficient transaction processing in
sap hana database: the end of a column store myth.
In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data,
pages 731-742. ACM, 2012.

M. M. Swift, H. Volos, N. Goyal, L. Yen, M. D. Hill,
and D. A. Wood. Os support for virtualizing hardware
transactional memory. In Procs. of the 3rd ACM
SIGPLAN Workshop on Transactional Computing,
2008.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos,
M. D. Hill, M. M. Swift, and D. A. Wood. Logtm-se:
Decoupling hardware transactional memory from
caches. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International
Symposium on, pages 261-272. IEEE, 2007.

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar.
Performance evaluation of intel® transactional
synchronization extensions for high-performance
computing. In Proceedings of SC13: International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages
19:1-19:11, New York, NY, USA, 2013. ACM.

