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ABSTRACT
Serverless computing promises scalability and cost-efficiency 
by decomposing monolithic tasks into small, stateless, self-
contained functions. As functions only reserve hardware 
resources during their lifetime, and serverless providers such 
as Amazon Lambda define strict data size limits [50], data 
required for the whole lifetime of a monolithic task needs to 
be kept in an external ephemeral data store. This approach 
increases costs and introduces performance variability, caus-
ing serverless applications to violate service level objectives 
(SLOs). Traditional cloud storage solutions, such as AWS S3 
and Redis, fail to provide low-cost and the enforcement of 
SLOs, while prior works on disaggregated data stores do 
not scale sufficiently due to: (1) increased scheduling costs 
when supporting many SLOs; (2) performance degradation 
in the presence of burst allowances and worsened interfer-
ence with lenient ones; and (3) failed service differentiation 
with increased number of SLO. These challenges make SLO 
enforcement in serverless environments difficult, leading to 
unpredictable performance and costs that undermine the 
benefits of serverless computing.

We introduce En4S, a high-performance, flash-based stor-
age system designed for data-intensive serverless applica-
tions. En4S employs a profile-based scheduling framework 
with adaptive strategies to efficiently scale to many tenants 
with different SLOs. Key features include dynamic tenant 
handling, adaptive burst control, token reclaim control, and 
various optimizations to minimize scheduling costs while 
maintaining superior performance. By re-enabling SLO en-
forcement for disaggregated flash storage in cloud-native 
environments, En4S is crucial for modern serverless applica-
tions. Our implementation on Amazon EC2 and Lambda 
demonstrates substantial performance and cost improve-

ments while reliably ensuring SLO compliance, enhancing 
the viability of serverless storage systems.
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1 INTRODUCTION
The advent of cloud-native applications has brought server-

less computing into the limelight for its scalability, fine-

grained billing, and ease of development [32]. As organi-

zations increasingly adopt serverless architectures, the de-

mand for efficient and reliable ephemeral storage systems

has surged. Ephemeral storage plays a pivotal role in server-

less environments, providing temporary data storage that

persists across function invocations without the overhead of

managing dedicated servers.

However, the fundamentally stateless nature of serverless

architectures introduces challenges for conventional applica-

tions that rely on data available across function invocations.

Traditional solutions such as AWS S3 [46] and ElastiCache

[45] aim to strike a balance between performance and cost

by offering high throughput and reduced latency; however,

they do not meet the requirements of serverless applica-

tions [24, 25], including high performance for various object

sizes, elasticity to scale to the bursty demands, and cost-

efficiency to maintain the serverless benefits.

Recent innovations in ephemeral storage such as Pocket

[25], Jiffy [21], Locus [41], SMASH [31], and SONIC [35]

address challenges such as providing storage systems for

serverless-level elasticity and performance demands with

low cost [23], but fail to provide performance predictabil-

ity. Nevertheless, they often struggle with performance pre-

dictability—a critical factor for applications where latency

and throughput consistency are paramount. Unpredictable
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performance can lead to degraded user experiences and in-

creased operational costs, as applications may over-provision

resources to compensate for storage inefficiencies.

Enabling high, predictable performance for ephemeral

storage systems is important, as studies [24, 29, 61] indicate

that storage accesses can take up to 70% of the overall time,

most of which is on the application’s critical path and can-

not be hidden. This underscores the urgency of developing

ephemeral storage systems that not only deliver high perfor-

mance but also ensure predictability and scalability without

incurring prohibitive costs.

The main issue of existing ephemeral storage solutions is

that their scheduling mechanisms for storage instances are

incapable of supporting high performance, high predictabil-

ity, and high scalability at low cost. While a First-Come,

First-Served (FCFS) strategy may maximize goodput, it lacks

service differentiation. ReFlex [22], on the other hand, en-

forces SLOs for a limited number of tenants but fails to scale

to thousands of tenants as needed in serverless environments.

These limitations result in high CPU contention when man-

aging numerous tenants, inefficient handling of bursty traffic,

and suboptimal resource utilization in mixed workload sce-

narios involving latency-critical (LC) and best-effort (BE)

tenants.

To address these challenges, we propose En4S, a novel

scheduling framework capable of scaling effectively. Our ap-

proach introduces a flexible tenant management framework

that enables rapid request handling and minimizes schedul-

ing delays. Through activation-based tenant traversal, En4S

efficiently dequeues requests, and with adaptive burst sched-

uling, it dynamically adjusts request processing in response

toworkload fluctuations. By optimizing the entire end-to-end

(E2E) stack—from serverless runtimes to ephemeral storage

endpoints—En4S ensures that SLOs are seamlessly managed,

maximizing storage node utilization without compromising

performance guarantees.

We implement En4S on Amazon AWS and compare it

against state-of-the-art serverless storage designs, including

ReFlex and Jiffy. Our evaluation demonstrates that En4S

outperforms these frameworks by a factor of 1.87x to 3x in

goodput and by up to 2 orders of magnitude in tail latency

for certain workloads. These advancements translate into

substantial cost savings and enhanced efficiency for cloud-

native and serverless applications.

In summary, En4S makes the following contributions:

(1) We study and analyze the challenges in guaranteeing

SLOs in ephemeral storage systems, especially with

high tenant and SLO counts.

(2) We design and implement a profile-based ephemeral

storage system that serves as a research platform for

developingQuality of Service (QoS) schedulers tailored

to serverless and cloud-native applications.

(3) We design and deploy a novel scheduler addressing

the issues we observed in enforcing SLOs at scale.

(4) We conduct extensive evaluations showing that En4S

outperforms existing frameworks, delivering over 3x

the goodput and 2x the cost efficiency, while consis-

tently enforcing SLOs under challenging workloads

where other solutions fail.

The remainder of this paper is organized as follows: In

Section 2, we provide background information and discuss

related work in ephemeral storage for serverless computing.

Section 3 presents a detailed analysis of the challenges faced

by current systems. In Section 4, we describe the design

of En4S, highlighting its key components and innovations.

Section 5 details our implementation, and Section 6 evaluates

the system’s performance through rigorous experimentation.

Finally, Section 7 offers concluding remarks and outlines

directions for future research.

2 BACKGROUND
2.1 Serverless Storage Systems
Ephemeral storage has emerged as a vital service for enabling

data-intensive analytics applications in serverless computing

[24, 25]. Serverless applications like analytics [1, 2, 13, 64]

require efficient intermediate data exchange between server-

less functions to enable independent and parallel cooperative

processing of a task. Ephemeral storage provides a platform

for these stateless runtimes to temporarily store short-lived

data generated by serverless analytic applications [24, 25].

By facilitating rapid data sharing and state management,

ephemeral storage systems are critical for maintaining the

performance and scalability of serverless applications, which

often involve a large number of small, stateless function in-

vocations.

The state-of-the-art ephemeral storage system, Pocket

[25], facilitates data sharing with flexible storage capacity

across multiple storage tiers such as DRAM, Flash, and disk

to meet various performance and cost demands from a large

spectrum of serverless applications. Jiffy [21] enhances Pocket

by addressing inefficient capacity utilization inDRAM servers

through active management of object life cycles and reclaim-

ing unused capacity allocation. These systems have signif-

icantly advanced the field by providing elasticity and cost-

efficiency, allowing serverless applications to scale dynami-

cally without excessive costs.

While these works reduce the cost of ephemeral storage

systems, they provide only limited performance, scalability,

and predictability. Pocket offers extensive storage choices

for different types of applications but struggles to provide

consistent performance predictability due to its focus on cost
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(a) SSD Performance Profile (b) Calibrated Cost Model
Figure 1: EC2 Instance Storage (of i3.xlarge) Perfor-
mance Analysis: (a) SSD tail latency across different
IOPS and read/write ratios; (b) Request cost model for
various read/write ratios.

optimization over performance guarantees. Its multi-tiered

storage approach introduces additional latency and complex-

ity when catering to applications with stringent performance

requirements. Jiffy focuses on a single storage medium and

effectively utilizes the limited DRAM capacity with its lease-

based allocation. However, its reliance on DRAM makes it

cost-prohibitive at scale and limits its ability to handle large

volumes of data efficiently. Jiffy does not adequately address

the need for performance predictability under high tenant

concurrency and bursty workloads, which are common in

serverless environments. However, it remains constrained

by the high cost of DRAM and does not scale effectively, as

demonstrated in our evaluation in Fig. 9. Moreover, neither

Pocket nor Jiffy provides robust mechanisms for enforcing

performance SLOs across a diverse set of tenants, leading to

unpredictable performance and potential SLO violations.

To address these limitations, there is a need for ephemeral

storage systems that offer elasticity, cost-efficiency, and pre-

dictable high performance and scalability. Such systems should

handle the unique challenges of serverless environments,

including high tenant concurrency, bursty workloads, and

strict performance SLOs.

2.2 Predictable Performance Metrics
Predictable performance in both throughput and latency is

crucial for most cloud applications [12, 18, 22, 66] to achieve

high capacity and enhance user experience. This is especially

important for serverless computing and ephemeral storage,

as serverless functions are often billed on fine time-scales,

such as milliseconds. Users require predictable performance

to efficiently to execute serverless functions efficiently with

data and state dependencies. Failure to meet latency and

throughput requirements in serverless computing can lead

to function timeouts and increased financial costs. In ad-

dition, unpredictable performance can degrade application

responsiveness and user satisfaction, especially for latency-

sensitive applications such as real-time data processing and

interactive services.

Achieving predictable performance for ephemeral storage

is particularly challenging in multi-tenant storage systems,

where multiple applications share resources and compete

for them under high load conditions. Resource contention

among tenants can lead to performance variability, making

it difficult to meet the SLOs of all tenants simultaneously.

This is exacerbated in serverless environments, where the

number of tenants can scale rapidly, and workloads can be

highly dynamic and bursty.

Enforcing service-level objectives (SLOs) is a common

approach to achieving predictable performance [12, 18, 22,

66]. This work studies the following SLO requirements for

ephemeral storage:

Tail Latency SLO: The latency of a request to the storage
is defined as the completion time from issuing a request to

the target server fulfilling it. Tail latency is a statistical metric

that reports the operation access time at high percentiles,

such as the 95th percentile. A tail latency SLO is enforced if

the given percentile (95th in this paper) of latency remains

below a pre-specified value.

Optimizing tail latency is a common objective [8, 10, 27,

62] in many cloud computing systems for interactive ser-

vices, serverless compilers [13], and micro-services [32]. Tail

latency directly impacts user experience, as slow responses

from a small fraction of requests can significantly degrade

the perceived performance of an application. Therefore, en-

suring that tail latency remains within acceptable bounds is

critical for maintaining application responsiveness.

IOPS SLO: I/O operations per second (IOPS) is a metric re-

flecting the processing throughput of a storage stack, crucial

for providing predictable task completion times and satis-

fying data-intensive applications such as image and video

processing [1, 2], high-performance computing [54], and

numerical analysis [51]. In our study, the IOPS SLO is a pre-

defined value, enforced if the measured IOPS exceeds this

threshold. Otherwise, the IOPS SLO is violated. By default,

the sampling sensitivity is at the second level, and the en-

forcement is valid when 95% of sampled windows meet the

threshold condition. Ensuring IOPS SLOs allows applications

to process data at the required rates, preventing bottlenecks

and delays in data pipelines.

Goodput: In our system, goodput refers to the number

of requests completed within a specific given latency. It is a

critical metric for evaluating the performance of storage oper-

ations under various workloads and SLO conditions. Unlike

throughput, which measures the total number of operations

regardless of their completion time, goodput focuses on the

efficiency of meeting latency requirements. By optimizing

for goodput, we ensure that the system not only meets the

required SLOs but also maximizes the number of requests

successfully completed within the specified latency, leading
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to better overall performance and user satisfaction. Good-

put is particularly important in multi-tenant environments,

where the goal is to maximize the effective work done while

adhering to each tenant’s performance requirements.

These performance metrics serve as essential benchmarks

for evaluating and designing ephemeral storage systems

capable of delivering predictable performance.

2.3 Enforcing SLOs in Disaggregated
Multi-tenant Flash Storage Systems

Enforcing E2E SLOs is essential for cloud services, and sev-

eral studies address this challenge. Detail [62] leverages cross-

stack optimization to reduce packet drops. Silo and SNC-

Meister [18, 65] apply network calculus to ensure bandwidth,

packet delay, and burst allowance for shared servers, particu-

larly for latency-sensitive tenants. WorkloadCompactor [66]

controls tenant rates and places resized jobs onto appropri-

ate servers based on workload traces, while Breakwater [7]

manages load levels with admission control and active queue

management for microsecond RPCs. However, enforcing

SLOs in disaggregated storage systems presents additional

challenges due to the extra storage layer involved and inter-

nal queuing mechanisms. The interaction between network

and storage resources adds complexity to SLO enforcement,

as bottlenecks can occur at multiple points in the system.

In disaggregated storage systems, high-performanceNVMe

SSDs are accessed over low-latency, high-throughput net-

works, making them ideal for latency-sensitive applications.

ReFlex [22] bridges this gap by using a dataplane kernel that

tightly integrates networking and storage processing. ReFlex

achieves up to 850K IOPS per core over TCP/IP with minimal

latency overhead, only 21µs higher than direct local Flash

access. It includes a QoS scheduler that enforces tail latency

and throughput SLOs for thousands of remote clients, using

offline-profiled SSD performance to guide scheduling for

tenants with varying IOPS and latency SLOs.

In Fig. 1, we profiled the instance storage (composed of a

950GB NVMe SSD) performance with the IOPS versus tail

latency curve on different read/write ratios. This profiling

shows how SSD performance varies by read/write ratio, crit-

ical for enforcing tail latency SLOs. Figure 1a reveals that

as IOPS rise, tail latency also increases, especially for work-

loads with higher write ratios due to write amplification

and garbage collection. We calibrated the profiling data with

the cost model described in Section 5.3, as shown in Fig. 1b.

This calibrated cost model allows us to estimate the resource

consumption of different IO operations accurately, providing

the foundation for our scheduler to make informed decisions

about request scheduling and rate limiting to enforce SLOs

effectively.

Gimbal [38] introduces a software storage switch that

orchestrates IO traffic between Ethernet ports and NVMe

drives for co-located tenants. It employs techniques such

as delay-based SSD congestion control and dynamic esti-

mation of SSD write costs, achieving better utilization and

reduced tail latency compared to previous solutions. Gimbal

demonstrates the effectiveness of combining network and

storage scheduling to improve performance predictability

in multi-tenant environments. Gupta et al. [14] propose a

comprehensive approach to E2E QoS for modern storage

systems, introducing QoS-aware transport protocols that

provide stable differentiation for both throughput-sensitive

and latency-sensitive storage traffic.

Despite these advancements, current QoS scheduling al-

gorithms for flash storage struggle to guarantee IOPS and

tail latency SLOs at scale. As the number of tenants grows,

resource management becomes more complex, increasing

scheduling overhead and risking performance degradation.

The cost of scheduling rises with the number of SLOs, and

bursty or skewed loads make enforcement more difficult.

Additionally, existing schedulers struggle with sudden work-

load changes, leading to latency spikes and SLO violations.

These challenges make enforcing SLOs difficult in serverless

environments, resulting in unpredictable performance and

offsetting the benefits of serverless computing.

To tackle these issues, we need scalable scheduling frame-

works that can efficiently enforce SLOs formany tenants. Our

solution introduces such a framework using activation-based

tenant traversal and adaptive burst scheduling to provide

predictable performance at scale, fully realizing the benefits

of serverless computing.

3 ANALYSIS
In this section, we analyze the state of the art disaggregated

storage framework [22], and show why existing techniques

fail to guarantee SLOs in serverless environments. We run

a modified version on i3.xlarge EC2 instance as the storage

server and load-generating clients on AWS Lambda in the

same virtual private network (VPC) [47]. Details about our

setup can be found in Section 6.1.

3.1 Limited Scheduler Scalability
To optimize cost in ephemeral storage systems, storage servers

need to support thousands of short-lived tenants concur-

rently, each one with potentially different performance re-

quirements. To analyze whether the existing state-of-the-art

implementation ReFlex can support this use-case efficiently,

we investigate the E2E goodput performance as we increase

the number of tenants, each with unique SLO requirements.

We also evaluate a first-come-first-served (FCFS) mechanism
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(a) Goodput (b) CPU cycles
Figure 2: Scalability Evaluation: (a) Goodput perfor-
mance with 10, 100, and 1000 unique SLOs (with same
number of clients) under FCFS and ReFlex schedulers.
(b) CPU cycle breakdown for both schedulers running
on an i3.xlarge server with a single core.

that minimizes scheduling overheads and, hence, should pro-

vide the highest performance; however, it cannot enforce

SLOs. The results are depicted in Fig.2a, showing that the

ReFlex scheduler exhibits near-ideal performance when man-

aging a small number of 10 SLOs. However, as the number

of SLOs increases to 100 or 1,000, we observe a substantial

decline in goodput. Conversely, the FCFS scheduler, despite

utilizing an identical queuing system as ReFlex, demonstrates

a negligible decrease in goodput. This comes at a cost, as

the FCFS scheduler disregards SLO specifications entirely.

Note that the gap seen with 10 SLOs/clients is due to the

per-Lambda limits push SLO violations from the server to

the clients. To overcome this, we increased the number of

clients to 20 in Fig.9.

Further analysis, as shown in Fig.2b, reveals that the sig-

nificant drop in performance is attributable to the increased

scheduling overhead that accompanies a higher number of

SLOs to be considered. Unlike the relatively stable IO com-

putation percentage observed with FCFS schedulers, the in-

creasing scheduling compute pressure becomes the predomi-

nant factor as the number of SLOs exceeds around 100. This

factor drastically prevents IO operations from getting their

minimum required cycles, particularly within IX’s run-to-

completion model[4], on which ReFlex is based.

This investigation underscores the critical need for a scal-

able QoS scheduling solution capable of efficiently managing

an extensive array of SLO demands without compromising

system performance. The limitations of current schedulers,

as evidenced by our findings, necessitate the development

of novel scheduling strategies to address such issues.

3.2 Challenges in Managing Bursty Tenants
Cloud applications often exhibit bursty demand patterns,

and one of the primary motivations for using serverless com-

puting is cost savings during periods of low utilization. This

necessitates that ephemeral storage designed for serverless

computing should be capable of handling bursts effectively.

(a) Goodput Performance (b) Goodput Timeline
Figure 3: Burst Control Analysis: (a) The aggregated
4KiB goodput performance (75%rd) with increasing
burst allowance ratio for LC tenants, running with 100,
500, and 1000 tenants. (b) Goodput performance with
25-ms windows over time, running with one malicious
LC tenant LC G0 (50%rd), one benign LC tenant LC G1
(90%rd), and one BE tenant (100%rd).

Most QoS schedulers adopt work-conserving techniques

to maintain high utilization levels. For example, ReFlex sets a

fixed burst allowance limit for every tenant, which is defined

as the number of tokens a tenant can temporarily exceed

above its rate limit, in proportion to their IOPS requirements.

For 100, 500, and 1000 unique SLOs, we vary the burst al-

lowance settings from 5% to 50% in the improved version of

ReFlex.

Fig. 3a shows that a higher burst allowance is key to main-

taining goodput performance, especially with high concur-

rency and many SLOs. This is because a larger number of

connections with fewer IOPS tends to act more bursty than

a smaller number with larger IOPS.

However, a high burst allowance can cause interference,

as greedy tenants may exceed their assigned SLOs. The high

burst allowance enables them to avoid performance penal-

ties, potentially degrading the performance of other tenants,

as illustrated in Fig. 3b. In this experiment, there are two LC

tenant groups, LC Group 0 (G0) and LC Group 1 (G1), regis-

tering SLOs of 40K and 20K IOPS, respectively. Furthermore,

the BE group consists of 100 clients that send as much IOPS

as possible. When the burst allowance ratio is set to 50%, the

malicious LC G0 periodically demands more IOPS than it

has registered, while LC G1 adheres to its requested demand.

Due to the high burst allowance, LC G0 can exceed its re-

quested SLO without suffering performance penalties, as the

"allowance" enables it to periodically exceed its requested

SLO.

However, this behavior reduces the performance of LC G1,

which receives fewer IOPS than requested, violating its SLO.

The throughput of the BE clients is also negatively affected.

To conclude, the existing burst allowance policy of ReFlex

fails to enforce SLOs or is not work-conserving in the pres-

ence of bursty traffic. An improved mechanism is required

to achieve such goals.
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(a) Latency Performance (b) Submission Timeline
Figure 4: LC Ratio Impact: (a) GET tail latency (75%rd)
performance under increasing the LC ratio among 400
tenants with the same load breakdown for LC tenants
(50K) and BE tenants (150K). (b) The number of re-
quests scheduled for LC or BE tenants (count for BE
shown as negative value) in the sliding 512-schedule
windows over time at 75% LC ratio.

3.3 Service Differentiation Failures at Scale
We now analyze whether ReFlex can enforce service differ-

entiation at high tenant (and SLO) scalability.

In this experiment, we generate 50K LC traffic and 150K

BE traffic using a 75% read/write ratio to pressure the server

running both FCFS and an improved version of ReFlex (En4S

Basic) without token reclaim. We distribute the LC traffic

among many tenants, each with unique SLOs, to simulate

high tenant scalability. We analyze different ratios of LC

and BE tenants to verify if the service differentiation can

stand with the same load distribution. The LC ratio is the

percentage of LC tenants out of the total number of tenants

in the system. For an LC ratio of 25%, we use 100 clients with

unique IOPS SLOs, and the remaining 300 clients register

as BE tenants, submitting 150K IOPS aggregated. We then

convert additional BE tenants to LC tenants with every 25%

increase in the LC ratio.

According to our previous SSD profiling, the server should

be able to enforce a 2000 𝜇s tail latency SLO when we keep

the 75% read IOPS below 72K and still have the opportunity

to complete BE traffic. However, as shown in Fig. 4a, we

find that although ReFlex performs well at lower LC ratios,

its tail latency increases significantly at higher LC ratios of

50% and 75%, violating the SLO guarantee by two orders of

magnitude. In contrast, FCFS shows a decrease in tail latency

as the LC ratio increases, but this is misleading because FCFS

does not enforce SLOs, and its goodput remains worse than

ReFlex’s.

This indicates that ReFlex’s ability to enforce service dif-

ferentiation diminishes at scale, highlighting the need for

more scalable scheduling strategies.

4 DESIGN
In the previous section, we analyzed the state-of-the-art sys-

tem ReFlex and showed the scalability, performance isolation

and enforcement issues. We now introduce En4S, a system

that introduces novel QoS scheduling and burst control tech-

niques to address such issues.

4.1 Overview
En4S introduces novel techniques to enable scalable, disag-

gregated, and cost-effective ephemeral storage systems with

high, predictive performance. Our design addresses key chal-

lenges identified in the analysis section through three main

components:

(1) An improved QoS Scheduling Framework that effec-

tively manages both LC and BE tenants.

(2) A Dynamic Tenant Handling system that increases

scalability and reduces CPU overhead.

(3) An Adaptive Burst Control mechanism that balances

isolation and performance across various scenarios.

These components, along with a token reclaim control

mechanism, work in concert to create a storage system capa-

ble of handling numerous tenants with diverse performance

requirements. The following subsections will detail each

component and their contributions to the overall system

design. Note En4S does not manage failures directly. Fault

tolerance through coding or replication across nodes needs

to be implemented in the layer above En4S.

4.2 QoS Scheduling Framework
To address the challenges identified in our analysis (see Sec-

tion 3.1), we introduce a novel token-based scheduling mech-

anism that advances the state-of-the-art in cloud storage QoS.

Our approach draws inspiration from the Aliquem schedul-

ing algorithm [26], which demonstrated superior latency and

fairness at O(1) complexity compared to traditional Deficit

Round Robin (DRR) [52] implementations. Building upon

these insights, we have developed a sophisticated schedul-

ing framework specifically tailored to meet the diverse and

demanding requirements of modern cloud storage environ-

ments.

Figure 5 presents the design of the En4S scheduler: In the

dynamic tenant handling process, the scheduler efficiently

manages both active and inactive tenants. New requests

from tenants are either moved from the “inactive” state to

“active” or handled within the “active” queue, ensuring that

the requests are promptly added to the request pool. This

pool organizes tenant requests, and the scheduler uses an

efficient tenant traversal mechanism to dequeue and pro-

cess them according to their priority/arrival order. To handle

sudden bursts of requests, the adaptive burst control dy-

namically adjusts the number of requests sent to the SSD

submission queue (SQ) during each scheduling round. This

ensures smooth system performance, even under varying

loads. On the other hand, token reclaim control manages
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Figure 5: En4S Scheduler Design
resource allocation by reclaiming unused tokens at appropri-

ate intervals. This process helps distinguish between LC and

BE tenants, allowing LC tenants to receive prioritized access

to the system resources while maintaining overall efficiency.

4.2.1 Storage Flow and Tenant Management. In the context

of the En4S scheduler, a storage flow is defined as a con-

nected I/O session with the same assigned storage nodes.

Each storage flow can register an individual SLO, which con-

sists of metrics such as IOPS, tail latency, and an optional

maximum write ratio hint. The storage server monitors the

registered SLO to ensure that the flow meets the job require-

ments. Flows that share the same IOPS and tail latency SLOs

are grouped together and identified as the same tenants.

The token increment for each time delta is derived from its

registered rate, number of flows, and expected cost for each

tenant. The rate of token accumulation, denoted as Weighted

Tokens per Second (𝑤𝑇𝑃𝑆), is calculated using the following

formula, 𝐶∗
is the cost function based on request types and

the global read/write ratio 𝑟 , IOPS is the registered SLO.

𝑤𝑇𝑃𝑆 = 𝐼𝑂𝑃𝑆 × (𝑟 ×𝐶∗ (RD, 𝑟 ) + (1 − 𝑟 ) ×𝐶∗ (WR, 𝑟 ))

4.2.2 Scheduling Algorithm. The En4S scheduling algorithm
is sketched in Algorithm 1. The scheduling routine is invoked

for every IX [4] poll, the system call polling loop for stor-

age, networking, and scheduling events (e.g., TCP/IP poll

routine, NVMe request submission/completion routine). The

scheduling frequency is determined by the overall perfor-

mance of each poll. We divide the schedule routine into two

sub-routines for scheduling LC and BE tenants respectively,

naturally creating a priority for LC requests over BE requests.

Both subroutines utilize burst scheduling to submit as many

requests as possible when processing a specific tenant, de-

termined by the traversal order.

4.3 Dynamic Tenant Handling
4.3.1 Active TenantManagement. Unlike in ReFlex and other
QoS schedulers [22], En4S supports SLO registration for ev-

ery storage flow, and all tenants’ metadata are saved in a

shared memory pool similar to the request pool. We main-

tain a per-core tenant manager to manage active tenants
assigned to that core. The tenant manager keeps track of ac-

tive LC and BE tenants’ pointers in two separate cyclic arrays.

Initially, none of the tenants are activated; the tail pointer

moves a slot forward when a new tenant is activated, and

the head pointer moves when the first tenant is deactivated.

4.3.2 Tenant Traversal and Request Ordering. As analyzed in
Section 3.1, inefficient traversal in ReFlex contributes to high

CPU utilization and negatively impacts the necessary mini-

mum required CPU cycles for IO operations. The overhead

of comparing available tokens and request demand is signifi-

cantly reduced with active tenants. Because the number of

active tenants is much smaller than the total registered ten-

ants, especially for tenants with short flows, we traverse the

active tenant queue and apply exhaustive dequeuing for the

visited tenant. If the tenant does not accumulate sufficient

tokens nor have a deficit limit to admit the first request in

its queue, we move these tenants to the end of the activated

tenant queue for the next round. This way, requests are de-

queued in activation order across tenants and FCFS within

each tenant queue. The activation order is determined by the

time when the first request in that tenant queue arrives or

the time when it is blocked by insufficient tokens or a full

SSD queue. We simulate how this ordering helps improve

scheduling performance in Section 6.2.

4.3.3 Registration Burst Limit. Register and deregister sys-

tem calls can be costly if there are hundreds or thousands

of such requests arriving in a short period. In the poll loop,

we batch these requests and allow tenants to join as BE ten-

ants first (fast join or leave) before calculating the demanded

IOPS SLO along with its latency and read/write ratio SLO to

estimate how it would impact the performance of the whole

partition. When the IO (storage or network) subroutines

finish and we find the poll frequency back to the desired

threshold (also can be profiled offline), we perform the slow

join or leave procedure for those tenants if they are latency
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Algorithm 1 Scheduling Algorithm

1: function Schedule

2: for 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 in 𝑎𝑐𝑡𝑖𝑣𝑒_𝑙𝑐_𝑡𝑒𝑛𝑎𝑛𝑡𝑠 do
3: while 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 .𝑛𝑜𝑡_𝑒𝑚𝑝𝑡𝑦 () do
4: if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑠𝑑 ≥ 𝑙𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑚𝑎𝑥 then
5: return
6: 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 .𝑐𝑟𝑒𝑑𝑖𝑡 +=
7: 𝑔𝑒𝑡_𝑐𝑟𝑒𝑑𝑖𝑡 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 .𝑆𝐿𝑂, 𝑡𝑖𝑚𝑒Δ)
8: 𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑏𝑢𝑟𝑠𝑡 = 𝑎𝑐𝑞𝑢𝑖𝑟𝑒_𝑏𝑢𝑟𝑠𝑡 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 )
9: if 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 .𝑐𝑟𝑒𝑑𝑖𝑡 < −𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑏𝑢𝑟𝑠𝑡 then
10: 𝑎𝑐𝑡𝑖𝑣𝑒_𝑙𝑐_𝑡𝑒𝑛𝑎𝑛𝑡𝑠.𝑟𝑒𝑞𝑢𝑒𝑢𝑒 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 )
11: break
12: 𝑠𝑢𝑏𝑚𝑖𝑡 (𝑟𝑒𝑞_𝑝𝑜𝑜𝑙 .𝑝𝑜𝑝_𝑓 𝑟𝑜𝑛𝑡 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 ))
13: 𝑡𝑒𝑛𝑎𝑛𝑡𝑖 .𝑐𝑟𝑒𝑑𝑖𝑡 −= 𝑐𝑜𝑠𝑡 (𝑛𝑒𝑥𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
14: 𝑎𝑐𝑡𝑖𝑣𝑒_𝑙𝑐_𝑡𝑒𝑛𝑎𝑛𝑡𝑠.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 )
15: if 𝑐𝑢𝑟𝑟_𝑡𝑖𝑚𝑒 > 𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑡𝑖𝑚𝑒 then
16: 𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑡𝑜𝑘𝑒𝑛𝑠 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 , 𝐿𝐶𝑑)
17: for 𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 in 𝑎𝑐𝑡𝑖𝑣𝑒_𝑏𝑒_𝑡𝑒𝑛𝑎𝑛𝑡𝑠 do
18: 𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 .𝑐𝑟𝑒𝑑𝑖𝑡 +=
19: 𝑔𝑒𝑡_𝑐𝑟𝑒𝑑𝑖𝑡 (𝑛𝑢𝑚_𝑏𝑒_𝑡𝑒𝑛𝑎𝑛𝑡𝑠, 𝑡𝑖𝑚𝑒Δ)
20: 𝑏𝑒_𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 .𝑐𝑟𝑒𝑑𝑖𝑡

21: 𝑏𝑒_𝑡𝑜𝑘𝑒𝑛𝑠 += 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑜𝑘𝑒𝑛𝑠_𝑑𝑒𝑐 (𝑑𝑒𝑚𝑎𝑛𝑑 𝑗 )
22: while 𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 .𝑛𝑜𝑡_𝑒𝑚𝑝𝑡𝑦 () do
23: if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑠𝑑 ≥ 𝑏𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑚𝑎𝑥 then
24: return
25: if 𝑏𝑒_𝑡𝑜𝑘𝑒𝑛𝑠 > 𝑐𝑜𝑠𝑡 (𝑛𝑒𝑥𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡) then
26: 𝑠𝑢𝑏𝑚𝑖𝑡 (𝑟𝑒𝑞_𝑝𝑜𝑜𝑙 .𝑝𝑜𝑝_𝑓 𝑟𝑜𝑛𝑡 (𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 ))
27: 𝑏𝑒_𝑡𝑜𝑘𝑒𝑛𝑠 −= 𝑐𝑜𝑠𝑡 (𝑛𝑒𝑥𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
28: else
29: 𝑎𝑐𝑡𝑖𝑣𝑒_𝑏𝑒_𝑡𝑒𝑛𝑎𝑛𝑡𝑠.𝑟𝑒𝑞𝑢𝑒𝑢𝑒 (𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 )
30: break
31: 𝑎𝑐𝑡𝑖𝑣𝑒_𝑏𝑒_𝑡𝑒𝑛𝑎𝑛𝑡𝑠.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 )
32: 𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 .𝑐𝑟𝑒𝑑𝑖𝑡 =

33: 𝑠𝑎𝑣𝑒_𝑐𝑟𝑒𝑑𝑖𝑡 (𝑑𝑒𝑚𝑎𝑛𝑑 𝑗 , 𝑏𝑒_𝑡𝑜𝑘𝑒𝑛𝑠)
34: 𝑏𝑒_𝑡𝑜𝑘𝑒𝑛𝑠 −= 𝑡𝑒𝑛𝑎𝑛𝑡 𝑗 .𝑐𝑟𝑒𝑑𝑖𝑡
35: 𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑡𝑜𝑘𝑒𝑛𝑠 (𝑡𝑒𝑛𝑎𝑛𝑡𝑖 , 𝐵𝐸)

critical. This helps release processing pressure when the CPU

is busy while not blocking newly joined tenants for too long.

4.4 Adaptive Burst Control
While ReFlex introduced a fixed percentage burst budget

over registered rates, our system enhances this concept with

a more sophisticated adaptive burst control mechanism. This

improvement is necessary to address the limitations of the

original approach and to better meet the diverse demands of

modern cloud environments.

ReFlex’s fixed burst allowance presents a dilemma: a low

burst allowance may fail to enforce SLOs effectively, while a

high allowance can lead to performance isolation problems,

as demonstrated in Section 3.2. Our adaptive burst control

aims to strike a balance between SLO enforcement at scale

and maintaining high isolation among tenants. To achieve

this, we introduce three key innovations:

(1) Dynamic smooth schedule: When scheduling fre-

quency is low due to high processing time in storage

and network parts, we process only a portion of each

queue even if it may have sufficient tokens or deficit

limit, but traverse tenants with multiple passes.

(2) Individual burst schedule: Each tenant’s burst sched-
ule, the maximum number of requests to be dequeued

if there are still available tokens, is determined by its

registered IOPS SLO and the number of concurrent

flows on that server.

(3) Consecutive burst limit: we track the deficit tokens

utilization for every tenant. When a tenant over-use

its credit for more than a given percentage of past con-

secutive scheduling rounds, our control routine will

multiplicative decrease (MD) its burst allowance until

it returns the tokens and back to below the threshold.

Then the control routine will additive increase (AI) the

allowance up to the original percentage.

This three-way burst control helps the scheduler balance

isolation and performance across different scenarios. With

the first method, we ensure fair request ordering under load

by preventing late-arriving requests from gaining advan-

tages over earlier head-of-line (HoL) requests. In the second

method, when the number of SLOs is relatively small and

the IOPS for each storage flow is relatively high, we use a

small burst allowance to correct tenant behavior. Lastly, in

the third method, if the IOPS SLOs are relatively small (based

on pre-profiled thresholds) and the number of connections

is high, we limit the burst allowance among LC tenants. Ma-

licious LC tenants will quickly lose their allowance and get

blocked if they exceed their registered IOPS SLOs, as the

AIMD mechanism takes effect.

4.5 Token Reclaim Control
In our analysis of SLO enforcement challenges (Section 3.3),

we identified a critical issue with the work-conserving mech-

anism across scheduling rounds. To address this problem, we

need to reevaluate how unused tokens are managed and dis-

tributed. Initially, the system was designed to share unused

portions of registered IOPS from LC tenants with BE tenants.

While this approach aimed to tolerate bursty workloads, it in-

advertently led to token leakage, causing performance issues

for LC tenants upon their reactivation.

The original idea was to share unused portions of regis-

tered IOPS for LC tenants with BE tenants. This technique

to tolerate bursty workloads inevitably leaks extra tokens to

BE tenants when some LC tenants are not active. When they

167



En4S: Enabling SLOs in Serverless Storage Systems SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Client APIs Descriptions

__init__(controller, context) Initiates or loads a context with EMD, returning a handler.

allocate / free(handler, job_ctx) Explicitly allocates or frees a job with capacity, with job-level SLO hints.

allocates storage resources, must called for each new job.

__enter__(handler, flow_hints) Handler optionally registers or updates a flow with latency/IOPS/(rw_ratio) SLO.

The controller will verify job limits and then return the connection to storage nodes.

__exit__(handler) Handler closes connections to nodes and deregisters the flow for the connection in

that job. Flushes all the EMD for all shared mutable objects to the store in the controller.

put / get / update(handler, id, data) Puts, gets, or updates an object to assigned nodes, returning an object future.

invoke(handler, func_to_contexts) Invokes stateful functions with encoded contexts and EMD in the payload.

Table 1: Available APIs in En4S Client Library

become active again, the tokens have been consumed by BE

tenants or cleared, causing requests to queue and wait for

new tokens to accumulate, further stalling future requests.

The key issue is that BE tenants "borrow" these unused LC

tokens but never "return" them, unlike LC tenants "borrow-

ing" their burst allowance. This creates a bigger problem

when those tenants run out of their tokens and available

burst allowance, the queue occupancy keeps growing if their

demand rates do not decrease.

Therefore, we separate the work-conserving subroutine

from the schedule routine and operate it at a different fre-

quency than scheduling. Instead of immediately consum-

ing or withdrawing LC unused tokens for every scheduling

round (when the frequency is high), we keep those tokens

for a longer time at a lower but fixed frequency. With lower

frequency, short bursts for LC tenants can be handled and

averaged. The reclaimed tokens, with the visibility of more

rounds of request demands, will be safely consumed by BE

tenants without interfering with LC tenants’ performance.

5 IMPLEMENTATION
En4S, as an object-based ephemeral storage system designed

for cloud applications, consists of a data plane, which in-

cludes a client-side driver and multi-tenant flash storage

server software focused on delivering high and predictable

performance, and a control plane that supports functional-

ities such as job management, scheduling, storage scaling,

and metadata storage.

En4S consists of around 16K LoC (15K in C
1
, 1K in Python)

for the data plane, and 2K LoC for the control plane, including

infrastructure codes written in HCL. The system is open-

sourced at Github
2
.

5.1 Control Plane and Metadata Store
We implemented a centralized control plane capable of elas-

tically scaling storage nodes based on the scheduling and

1
12K LoC from ReFlex and IX, comments and blanks are excluded

2
https://github.com/mhxie/En4S

placement decisions for incoming jobs. To facilitate access by

other serverless functions, we integrated a low-latency meta-

data store. We utilized Ray [39] to distribute control plane

components (see Fig. 6), allowing flexible parallel execution

across different cores in the same server or distributed among

interconnected compute clusters. A job registry module man-

ages job registrations and de-registrations, updating each

job’s recent I/O demands to the job scheduler and storage

auto-scaler.

5.1.1 Major Workflow. Fig. 6, illustrates the overall system
and the interactions between its components. All serverless

functions have the En4S driver installed to register jobs with

their respective SLOs. The controller allocates and manages

storage resources to ensure that current jobs’ SLOs are not

violated. Once the requested storage space meets the SLO re-

quirements, the job, which may consist of one or more clients

(e.g., serverless functions), can begin accessing the assigned

storage instances. When a function enters the context man-

ager’s region, the client driver automatically registers a flow

with the server and can explicitly register task-level SLOs for

different application stages. The handle will automatically

deregister the flow when the code exits the context-managed

region. All functions with the same job handle and corre-

sponding authentication can directly initiate IO requests to

the storage servers and save their metadata when off-path

data accesses are initiated using our stateful invocation API,

invoke_stateful. With our storage system, a function can ex-

pect predictable tail latency performance for small objects

and predictable throughput performance for large flows. The

full client-side API reference is provided in Table 1.

5.1.2 Metadata Pool. To minimize memory fragmentation

and reduce the number of data copies, request payloads

are stored in an IX [4] memory pool using contiguous allo-

cated memory facilitated by Linux huge pages. The sched-

uler handles the queuing and manipulation of request meta-

data, including logical block addresses, physical buffer ad-

dresses, NVMe commands, and other critical fields for effi-

cient data localization and operations. Initially, this metadata
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Figure 6: En4S Architecture

was stored in linked lists on a per-tenant basis, which was

convenient for FCFS operations within a group. However,

this approach becomes inefficient when modifying or remov-

ing requests deeper in the queue due to corrupted or dropped

requests. To address this, we propose building a hash table

to store the metadata, using thread ID (pid), activation order

(aid), and request order (rid) as composite keys. This struc-

ture allows for 𝑂 (1) complexity for lookup, insertion, and

removal operations, provided there are no collisions, thereby

enhanc ng performance across various scheduling strategies.

5.2 High-performance Data Plane
We developed a high-performance data plane based on Re-

Flex4ARM [59], an optimized version of ReFlex designed

for ARM platforms such as the ARM-based AWS Graviton

processor. Extensive modifications were made to enhance

performance and portability.

Server System: Our disaggregated solution is built on the

IX data plane [4], leveraging its run-to-completion model,

batched system calls, and kernel-bypassing network stack.

We utilize the Data Plane Development Kit (DPDK) [40] and

the lightweight user-level TCP/IP stack lwIP [11]. We made

extensive optimization over lwIP to make it fast and scalable.

Similar to ReFlex [22], we employ the Storage Performance

Development Kit (SPDK) [16] for accessing NVMe SSDs,

minimizing costly data copies between network and storage

layers. Additionally, we updated the lwIP subsystem to the

latest version and replaced its inefficient move-to-front [11]

TCP demultiplexing algorithm with a hashing-based lookup,

in order to match the performance with tens of thousand

connections.

Client Library: For rapid prototyping of serverless ap-

plications, we use Python as the primary client interface for

communicating with En4S cluster. To enhance performance,

the I/O critical path is implemented in Cython. We lever-

age coroutines and asynchronous APIs (including optional

uvloop-based acceleration) for data plane IO tasks.

5.3 Scheduler Implementation
5.3.1 Scheduling Pipeline. Before the system enters the sched-

uling phase, all newly arrived requests are queued into a

large single memory pool. During the scheduling phase, re-

quests are dequeued based on two key factors: tenant order

and token availability. If a request meets these criteria, a

scheduling decision is made, and the metadata is dequeued

and submitted to the NVMe submission queue. After the

scheduling phase, the system continues batch processing

other system calls until the next scheduling phase begins.

The scheduling frequency is determined by system load and

batch sizes, with a batch size of 64 to ensure the minimum

scheduling frequency is not too low.

5.3.2 Request Lifecycle. For each remote I/O request (GET

or SET), the lifecycle consists of the following steps:

(1) The request is received in the NIC Receive (RX) ring.

(2) The request waits to be polled by the TCP/IP stack.

(3) Its header is passed to the application to be parsed for

preparing the NVMe operation.

(4) Before submission to the NVMe devices, the request is

queued depending on different schedulers.

(5) Once the scheduler decides to submit the request, it is

sent to the SSD’s hardware submission queue (SQ).

(6) Upon completion, a signal is received in the SSD’s

completion queue (CQ).

(7) The response is sent over the network.

(8) Finally, the response exits the NIC Transmit (TX) ring.

All the above operations are fulfilled as asynchronous batched

system calls managed by IX. En4S’s key designs are imple-

mented at steps (4) and (5).

5.3.3 Request Cost Modeling. Based on recent studies on

flash storage performance [22, 38] and our benchmarks on

AWS i3-family instances (see Fig. 1), we model the request

cost using the following formula. The IO cost, which repre-

sents the number of token credits in our scheduling frame-

work, scales linearly with the request size. The constant 𝐶

is specific to the flash SSD, derived from curve fitting, and

varies with the I/O type (RD for GET, WR for SET) and the

read ratio (𝑟 ) at the device. We profile the cost fitting with

network latency considered and use 𝐶∗
to represent it.

IO Cost =

⌈
IO Size

4KiB

⌉
×𝐶∗ (IO Type, 𝑟 )

As shown in Fig. 1, we calibrate the model for the NVMe

SSD on AWS i3.xlarge storage nodes to calculate the token
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Server EC2 Cap 4K Thpt Cost ($) / IO

Function Instance (TB) (KIOPS) at Full speed

En4S

Storage

Candidates

i3.l 0.475 100 4.33 × 10
−10

i3.x 0.95 200 4.33 × 10
−10

i3.2xl 1.90 236 7.34 × 10
−10

Controller
3

m5.2x 0 200*16 1.67 × 10
−11

Jiffy m5.16xl .256 600 1.42 × 10
−9

Table 2: Different AWS EC2 instances used for Jiffy and
En4S clusters in US-West region

weight for SET and GET operations. With 𝑟 lower than 90%,

the value for 𝐶 is 7 tokens for the SSDs. This means each

SET operation is approximately 7 times as expensive as a

GET operation. With 𝑟 lower than 75%, the weight increases

to 8 tokens, and it further increases to 10 tokens if 𝑟 is below

50%. The 𝑟 can be calculated with the tenant-provided ratio

hint. We can also maintain a sliding window to use the past

read ratio to approximately estimate the cost of the future

requests.

5.4 Deployment and Scaling
Reproducible Infrastructure: We deployed a complete

En4S cluster using EC2 instances on AWS, automating the

process with Terraform [15] for consistency across cloud

settings. The initial setup provisions our control plane and a

VPC for the data plane. The infrastructure code integrates an

auto-scaler in the controller to dynamically manage storage

instances. Users can deploy applications by specifying the

VPC ID, and the setup can be adapted to other clouds by

adjusting provider settings.

Auto-Scaler: To minimize startup delays caused by AWS

VM initialization times [44], our auto-scaler maintains at

least one active storage node and reserves free nodes in ad-

vance. It scales up or down based on utilization thresholds

and employs strategies to avoid unnecessary node alloca-

tion during temporary traffic changes [21, 25], optimizing

performance for latency-sensitive applications.

6 EVALUATION
6.1 Methodology
We selected AWS as our cloud provider due to its industry-

leading performance, as evidenced by recent studies [57]. We

utilized AWS EC2 i3 instances for our scalable storage cluster

and AWS Lambda with the latest Python 3.10 runtime for our

serverless computing environment. The detailed selections

are shown in Table 2.

Since the storage stack can achieve millions of IOPS with

a single core [59], we chose the i3.xlarge instance to avoid

3
Assuming each controller can manage 16 storage nodes, the cost is amor-

tized for each node

Figure 7: Single-Core Tail LatencyAnalysis on i3.xlarge
with 100% GET : (a) 4KiB requests (left), (b) 1KiB re-
quests (right).

Figure 8: Scheduler Efficiency Analysis: total request
wait time by increasing number of unique SLOs vary-
ing LC ratio at 25%, 50%, and 75% and varying batch
size at 4, 16, and 64.

network bandwidth limitations present in larger nodes like

the i3.2xlarge, while minimizing cost per IO at full speed (see

Table 2). This choice ensures flexibility in resource allocation

with the lowest proportional cost. We provisioned a VPC

in the same region to minimize network latency between

servers and clients.

6.1.1 Baseline Selections. We selected two state-of-the-art

ephemeral storage solutions as baselines: (1) ReFlex [22], an

NVMe-SSD-based ephemeral storage used in Pocket’s stor-

age tiers [25]; and (2) Jiffy [21], a DRAM-based ephemeral

storage service that surpasses Pocket’s DRAM layer in per-

formance. For a fair comparison in terms of compute and

cost, we deployed Jiffy on r5.16xlarge EC2 instances (256 GiB

memory) and used m5.xlarge instances to run controllers for

Jiffy and En4S clusters. This setup enabled a comprehensive

comparison of ephemeral storage technologies. We unified

storage clients under a single interface and used various

synthetic workloads for benchmarking. Additionally, we in-

cluded S3 [46], a widely adopted cloud object storage service,

as a baseline in our application benchmarks (Sec. 6.4). While

S3’s latency is higher than our target range and its IOPS per

shard/prefix [49] is limited to a few IOs per second per client

under high concurrent access, it provides a useful reference

for evaluating the performance differences across various

ephemeral storage solutions.

6.1.2 Serverless Applications. We developed three popular

data-intensive serverless applications for evaluation:
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Figure 9: Goodput Performance Analysis Across Tenant Scales: This Figure illustrates the goodput performance
for configurations of 20, 100, and 1000 tenants, focusing on the achievable goodput under latency thresholds of
0.5ms, 1ms, and 2ms, alongside scenarios without SLO requirements. Comparative performance evaluation of
ReFlex and En4S schedulers on i3.xlarge instances and En4S is presented, with additional benchmark results for
Jiffy, utilizing its native stack and APIs.

ETL Pipeline: This classic serverless application involves

Extract, Transform, and Load (ETL) operations, where di-

verse computational tasks occur between IO accesses. To

standardize our evaluation, we omit computation between

IO operations due to the variability of such tasks (latency-

wise). In our experiments, each invocation is configured with

8 pipelines, each containing four stages, and we run 16 par-

allel invocations.

Serverless Sort[9]: Sorting large datasets (hundreds of
gigabytes or more) remains challenging on a single node.

The map-reduce paradigm is still one of the most effective

solutions for distributed sorting. We implemented a variant

of map-reduced sort in a serverless environment, enabling it

to sort smaller but continuously incoming data batches (16

MB per batch) with a specified mapper-to-reducer configu-

ration (16 mappers and 16 reducers in our evaluation).

ML Analytics:Machine Learning pipelines are typically

run on GPUs for training and inference, but evaluating their

performance in serverless settings can provide insights into

data patterns and orchestration opportunities for future

serverless GPU research.We chose the ROAD-WaymoDataset,

an open-source dataset published in 2023 [20], which consists

of 200 real-world 1080p video clips. We used OpenCV and

YOLOv3 [43] for object detection and the ImageIO/FFmpeg

library for splitting, transcoding, and merging videos. The

functions are designed with minimal dependencies to re-

duce lambda load times and stay within execution limits.

To optimize performance, we separate cv library along with

the lightweight YOLO model, and the transcoding libraries

across different functions. While the analytics results are not

fully optimized, they are still impressive and sufficient for

our IO-oriented evaluation.

6.1.3 E2E Networking Performance. We began by disabling

the storage back-end, including the QoS scheduler, to mea-

sure network-only tail latency performance by sweeping

IOPS. The server supports up to 10Gbps maximum through-

put, equivalent to 305K IOPS with a request size of 4KiB.

However, as shown in Fig. 7, which plots tail latency (10th,

50th, and 95th percentiles) as a function of throughput (IOPS)

for 1KB GET-only requests, the tail latency reaches a crit-

ical point at around 236K IOPS for 4KiB workloads. This

occurs because the AWS Lambda instance disables jumbo

frames, adding extra processing pressure on the server’s net-

working stack due to segmentation, re-assembly, and data

copies. When using 1KiB request sizes, our server can sup-

port around 960K IOPS, comparable to or even better than the

performance of its predecessors [22, 59]. This also justifies

our choice of the smaller i3.xlarge instance, whose storage

performance for 4KiB GET tops at 205K IOPS, achieving the

highest cost efficiency.

6.2 Scheduler Framework Benefits
6.2.1 Scheduler Efficiency. To evaluate our scheduler’s per-

formance compared to the ReFlex scheduler, we conducted a

series of simulation tests with varying numbers of SLOs, LC

ratios, and batch sizes. The experimental results, shown in

Fig. 8, highlight the efficacy of our scheduling mechanism

across multiple dimensions. The total wait time is averaged

over tests involving 64 million requests, arriving at equal

rates and uniform intervals.

We varied the request batch size (4, 16, and 64) to reflect

the schedulers’ visibility of request costs caused by different

scheduling frequencies in realistic environments. Addition-

ally, we varied the LC tenant ratio at 25%, 50%, and 75%. The

request wait time is calculated based on the time difference

between the LC tenant’s ideal process time (based on FCFS)
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Figure 10: SLO Enforcement Benchmark for 1000 Ten-
ants: categorized into four groups based on their SLO
criticality and average read ratio, LC Tenant Group 1
(LC G0) at 100%, LC Tenant Group 1 (LC G1) at 80%,
BE Tenant Group 0 (BE G0) at 95%, and BE Tenant (BE
G1) at 25%. The analysis juxtaposes the performance of
En4S, ReFlex, and FCFS schedulers in terms of achieved
throughput and goodput as a percentage of maximum
capacity. The left subplot illustrates individual sched-
uler performance, while the right subplot aggregates
throughput and goodput metrics across all schedulers.

and the actual process time (based on the schedulers’ deci-

sions). This penalty, the extra queuing delay, represents the

cost of enforcing per-tenant SLOs and differentiating service

to tenants.

As shown in Fig. 8, our system consistently outperformed

the ReFlex scheduler by up to 3.2 orders of magnitude (1638x)

in terms of average wait time when scheduling 1000 tenants

at an LC ratio of 25% with a batch size of 64. Several key

observations can be made from these results:

Impact of Batch Size. Smaller batch sizes yield better

results as they make request adjustments less likely, ap-

proaching FCFS behavior when the batch size is 1. This is

because smaller batches reduce the granularity of scheduling

decisions, thereby minimizing the potential for scheduling-

induced delays.

Number of SLOs. Our scheduler performs better with

an increasing number of SLOs. This improvement is due to

our scheduler’s ability to efficiently manage and prioritize

multiple SLOs simultaneously, creating a larger performance

gap compared to the ReFlex scheduler.

LCRatio Impact. An increased number of latency-critical

tenants degrades all schedulers’ performance. Higher LC ra-

tios increase wait times due to request displacement and

longer queues. For instance, in a worst-case scenario with

an LC ratio of 25%, an LC request arriving at time 0 can be

delayed by up to 3 slots. Increasing the LC ratio to 50% can

result in wait times of up to 4 slots, as LC requests arrive

more frequently and compete for scheduling slots.

(a) Aggressive Control (3‰) (b) Conservative Control (3%)
Figure 11: En4S with burst control Enabled, goodput
performance with 25-ms windows over time, running
with one malicious LC tenant LC G0 (75%rd), one be-
nign LC tenant LC G1 (90%rd), and one BE tenant group
(100%rd). (a) and (b) showcases IOPS and goodput per-
formance with different burst control sensitivity

These observations indicate that our scheduler not only

handles a higher volume of requests more efficiently but also

adapts better to varying conditions such as different batch

sizes and LC ratios. The results demonstrate the robustness

and flexibility of our scheduling mechanism in diverse oper-

ational scenarios.

6.2.2 Framework Advantages. Figure 9 compares the good-

put performance of ReFlex, En4S, their underlying raw server,

and Jiffy. We tested these systems using a 200K 4KiB GET

workload, varying the number of tenants from 20 to 1000.

This approach was necessary due to AWS Lambda’s rate lim-

iting, which significantly impacts performance when IOPS

are evenly distributed among tenants. We observed that the

performance limit without significant degradation was 10K

IOPS per tenant with our implementation.

Despite this limitation, Jiffy outperforms our flash-based

raw server (i3.xlarge) in goodput, achieving 5.7 Gbps with

the strictest SLO (<0.5ms). However, as the number of clients

(and consequently, SLOs) increases, our server demonstrates

superior scalability. It reaches saturated SSD performance

with a 1ms SLO, while Jiffy’s performance declines, nearly

halving its throughput due to its lack of optimization for

numerous connections.

ReFlex also experiences performance degradation due to

the scheduling overheads discussed in Section 3. In contrast,

En4S maintains goodput levels comparable to the raw server

while supporting differentiated SLO enforcement across a

thousand tenants. This demonstrates En4S’s ability to effi-

ciently manage resources and maintain performance at scale.

6.3 SLO Enforcement at Scale
6.3.1 SLO Enforcement with a Thousand Tenants. To eval-

uate our scheduler’s performance in real production cloud

environments, we created 1000 tenants with unique SLOs,

divided into four groups: LC G0, LC G1, BE G0, and BE G1.

The LC groups have IOPS SLO demands of 60K and 30K,
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Figure 12: IOPS and Tail Latency Enforcement Results with different LC Ratios, LC tenants and BE tenants are
requesting 50K and 150K 75% Random 4KiB IOPS combined respectively. Each group is consist of 50 unique tenants

while the BE groups generate 30K and 15K IOPS respectively.

Read ratios vary across groups: 100% for LC G0, 80% for LC

G1, 95% for BE G0, and 25% for BE G1.

An i3.xlarge EC2 instance can support approximately 200K

4KiB GET IOPS when enforcing a 2000 𝜇s tail latency SLO,

equivalent to 200K tokens/second in our cost model. LC

G0 requires 60K tokens/s, and LC G1 needs 72K tokens/s

(calculated as 0.8 × 30𝐾 + 0.2 × 30𝐾 × 8 tokens per I/O),

leaving 68K tokens/second for the 500 BE tenants. Given the

read ratios of BE G0 and BE G1, the fairly distributed 34K

tokens translate to around 25K and 5.5K IOPS respectively.

Figure 10 shows that BE G1 achieves lower IOPS due to the

higher token requirement per tenant with lower read ratios.

For the LC groups, our system achieves 2ms overall good-

put very close to the actual throughput, at 88.0% and 84.2%

of their IOPS SLO respectively. While their 95th percentile

overall (including WR) tail latency SLO exceeds 2ms, both

read tail latency SLO and IOPS SLO were simultaneously

satisfied.

The right subplot of Figure 11 illustrates the aggregated

throughput and goodput performance with En4S. FCFS fails

to enforce group SLOs or achieve high aggregated goodput,

as it allows too many best-effort requests to complete with-

out considering request cost, leading to system overload.

ReFlex demonstrates better rate control than FCFS but fails

to enforce latency SLOs due to the scaling issues discussed

in the analysis section.

6.3.2 SLO Enforcement with Bursty and Malicious Tenants.
To evaluate the effectiveness of adaptive burst scheduling,

we conducted a test similar to that in Section 3. We simulated

malicious or greedy clients registered in LC tenant group 0,

which periodically burst beyond their registered latency SLO

before falling back below it to avoid performance penalties.

We varied the detection settings between 3‰ and 3%, de-

pending on the administrator’s tolerance for such behavior.

These percentages vary with different servers, and offline

profiling is necessary to determine the optimal threshold.

Figure 11 illustrates that with aggressive burst control,

LC G0 almost never achieves throughput higher than its

registered SLO. Overloaded requests are queued in the sched-

uler, resulting in near-zero goodput after 10s. With conser-

vative burst control, the scheduler monitors and gradually

decreases the burst allowance for the misbehaved tenant,

eventually preventing it from exceeding its registered IOPS

SLO. In both scenarios, LC G1’s performance remains pro-

tected and does not degrade due to other tenants’ queuing.

Notably, even concurrently running BE tenants receive a

fair share of the server’s bandwidth after accounting for all

registered IOPS SLOs.

6.3.3 SLO Enforcement with Increasing LC Ratios. We bench-

marked the performance of FCFS, ReFlex, and En4S with

increasing percentages of LC tenants. As shown in Figure 12,

FCFS achieved good overall throughput but failed to enforce

any tenant’s SLOs. ReFlex maintained IOPS and tail latency

SLO enforcement when LC ratios were between 20% and 40%.

However, its latency SLO began to violate at higher ratios,

with both SLOs being violated at LC ratios of 60% and 80%.

In contrast, En4S ensured consistent performance pre-

dictability across all four scenarios, with approximately sat-

urated performance at our profiled maximum IOPS of 72K

for 75% read operations. This is attributed to En4S’s reclaim

control, which successfully protects temporarily unused LC

tokens from leaking to BE requests. At an LC ratio of 80%, LC

tenants G2 and G3, which have smaller flow sizes, are sacri-

ficed due to token leaks as they are less frequently activated

because of their lower IOPS.
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(a) Performance (b) Predictability (c) Worst-case Cost
Figure 13: IO Performance, Predictability, and Cost Analysis for Serverless Applications Across S3, Jiffy, and En4S.

6.4 Application Analysis
We evaluated the performance, predictability, and cost of

three real-world applications, as described in Sec. 6.1, run-

ning on S3, Jiffy, and our proposed system, En4S. This com-

parison provides a comprehensive understanding of how

En4S performs relative to existing storage solutions across

various application scenarios.

Figure 13a presents the latency measured across different

stages of these applications. En4S consistently demonstrated

lower cumulative latency than Jiffy and S3, highlighting its

improved efficiency. However, when examining the end-to-

end (E2E) latency, En4S still lags behind Jiffy, with delays

ranging from 1.02x to 1.8x. This gap can be largely attributed

to inefficiencies in metadata management and the overhead

caused by frequent synchronization during IO region transi-

tions, which are significant factors impacting performance.

In terms of predictability, Figure 13b illustrates the Max-

to-Min ratio of E2E completion times, calculated based on

the minimum observed completion time. The removal of data

processing from the ETL pipelines—where execution times

vary depending on operations and input data—exacerbates

the latency impact, especially under workloads with high

write ratios (over 50%) and frequent IO operations. As a result,

the advantages of lower read latency are less pronounced.

Nevertheless, in stream serverless sorting, En4S achieves

better predictability compared to Jiffy and approaches S3’s

performance due to more stable IO patterns. Although the

E2E latency for stream batches remains higher than Jiffy

due to metadata constraints, further optimization in meta-

data handling and more efficient data flow orchestration

between mappers and reducers could improve performance.

For compute-intensive ML analytics workloads, performance

remains mostly unaffected by IO differences.

Beyond performance, we also assessed the cost efficiency

of these systems. We measured the average cost of the appli-

cations, focusing on three major components: Lambda costs
for IO wait times (in GB*second [48]), Storage costs includ-
ing storage and controller servers that support the systems,

and Network cost which is unique to AWS S3. All the cost

from different applications are normalized to the cost run-

ning on our En4S. The cost per request and per GB stored are

critical to understanding the economic impact of each solu-

tion. In our worst-case scenario analysis—where throughput

or capacity limits are reached—we calculated proportional

infrastructure costs, including those for storage and con-

troller nodes (amortized). While Jiffy [21] is assumed to be

five times more efficient than En4S in capacity management,

as shown in Fig. 13c, En4S remains the most cost-effective

(at least 2X) across all scenarios, even with this assumption.

Notably, for ETL pipelines and serverless sorting, lambda

charges for lingering objects dominate the costs, whereas

infrastructure costs are higher for ML analytics due to longer

object retention. S3 incurs minimal object retention costs but

is penalized by high per-request charges and longer lambda

runtimes, especially for the workloads with many small IOs

(e.g. ETF pipelines, Serverless Compilers). These costs are

largely amortized in the other baselines due to AWS billing

strategies to the VPC.

In summary, while En4S offers clear improvements in IO

predictability, significant challenges remain in reducing E2E

latency due to the distributed nature of these applications

and variability of the serverless infrastructures. Nonethe-

less, En4S shows considerable potential for enhancing pre-

dictability, particularly in IO-intensive and real-time work-

loads. Moreover, En4S consistently delivers the best cost

efficiency among the three evaluated solutions, making it a

compelling choice for a wide range of application scenarios.

7 RELATEDWORK
Stateful serverless computing: Several systems have been

proposed to address the challenges of state management

in serverless computing. Pocket [25] and Locus [41] offer

specialized storage systems that optimize between different

storage media. Infinistore [63] integrates serverless function

memory with persistent cloud storage, while Cloudburst [55]

extends Anna KVS [58] to support low-latency, autoscaling
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stateful functions. DRAM-based solutions like Jiffy [21] use

elastic far-memory to handle variable intermediate data sizes,

and Crucial [3] advances the state-of-the-art by providing a

distributed shared memory layer with fine-grained mutable

state and synchronization primitives.

Other works aim to eliminate remote intermediate storage

by either sharing local storage between serverless functions

or enabling direct data transfers. SONIC [35] dynamically

selects the best data-passing method, while Shredder [64]

embeds computation into storage. Pheromone [60] explores

data-centric application orchestration for better performance,

and XDT [56] focuses on efficient data transfers between

inter-trusted function memory. Additionally, specialized so-

lutions like Locus [41] and MinFlow [29] modify serverless

clusters using Directed Acyclic Graphs (DAGs) hints for op-

timized MapReduce workflows.

En4S distinguishes itself by ensuring predictable perfor-

mance through a novel scheduling framework and an op-

timized storage stack, offering high performance without

added costs.

Fair scheduling: Many works focus on ensuring fairness

among tenants in multi-tenant environments. Ether [37]

enhances fairness by prioritizing critical flows during con-

gestion, while Retro [33] separates resource management

policies from mechanisms, enabling performance guaran-

tees. 2DFQ [34] improves latency by spreading requests

across threads, reducing the impact of unpredictable work-

loads. Pisces [53] achieves fairness and performance isolation

through weighted fair queuing and partition placement.

While fairness is important, it often comes at the cost of

performance, particularly with bursty serverless workloads.

For short-lived IO flows, the approximate fairness provided

by our scheduler is sufficient to balance fairness and perfor-

mance.

Predictability in serverless computing: Predictable
performance is critical for serverless applications, especially

those structured as DAGs, where stragglers can cause delays.

Golgi [28] minimizes resource costs while meeting latency

requirements through performance-aware scheduling, and

ORION [36] optimizes E2E latency in serverless DAGs via

bundling, right-sizing, and pre-warming. Several works [5,

6, 17, 19, 30, 42] have focused on improving performance

predictability for flash devices. These works can be combined

with En4S and are orthogonal to our work.

8 CONCLUSION
Serverless applications introduce a plethora of new work-

loads and challenges to existing infrastructure, particularly

in enforcing E2E SLOs for remote storage I/O. The inherent

statelessness and ephemeral nature of serverless functions

complicate the management of storage resources, making it

difficult to maintain consistent performance and meet strin-

gent SLOs. Traditional solutions often fall short in addressing

these unique demands, as they are not designed to handle the

dynamic and bursty nature of serverless workloads. In this

paper, we delve into the specific issues that arise with large

number of SLOs, highlighting the gaps in current solutions.

Our proposed system, En4S, addresses these challenges by

providing a predictable, scalable ephemeral storage solution

tailored for SLO-sensitive applications. By leveraging cost-

effective storage disaggregation, advanced QoS scheduling

and adaptive burst and token control, En4S ensures SLO-

enforced IOPS and tail latency, effectively bridging the gap

left by existing approaches.
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