
DSL Programmable Engine for High Frequency Trading
Acceleration

Heiner Litz, Christian Leber and Benjamin Geib

University of Heidelberg

B6, 26, 68131 Mannheim, Germany

{heiner.litz, christian.leber, benjamin.geib}@ziti.uni-heidelberg.de

ABSTRACT

In High Frequency Trading systems, a large number of orders

needs to be processed with minimal latency at very high data

rates. We propose an FPGA based accelerator for High Frequency

Trading that is able to decrease latency by an order of magnitude

and increase the data rate by the same rate compared to software

based CPU approaches. In particular, we focus on the acceleration

of FAST, the most commonly used protocol for distributing

pricing information of stock and options over the network. As

FPGAs are hard to program, we present a novel Domain Specific

Language that enables our engine to be programmed via software.

The code is compiled by our own compiler into binary microcode

that is then executed on a microcode engine. In this paper we

provide detailed insights into our hardware structure and the

optimizations we applied to increase the data rate and the overall

processing performance.

Categories and Subject Descriptors

B.1.5 [Control Structures and Microprogramming]:

Microcode Applications – Direct data manipulation, Special-

purpose

General Terms

Performance, Design.

Keywords

FAST, FIX, low latency, high throughput, FPGA, decoder, DSL,

domain specific language, stock, trading.

1. INTRODUCTION
In today’s major stock exchanges well beyond 90% of all trades

are executed electronically by exchanging billions of messages

per second. The automation of trading services through electronic

means is motivated by significant advantages in terms of

increased speed and reduced cost of transactions. Recently, not

only the trading process but also the trading decision making

process has been automated in the form of Algorithmic or High

Frequency Trading (HFT). According to the Aite Group, the

impact of HFT on the financial markets is substantial, accounting

for more than 50% of all trades in 2010 on the US-equity market

with a growth rate of 70% in 2009 [3]. HFT describes a set of

techniques within electronic trading of stocks and derivatives,

where a large number of orders are injected into the market at sub-

millisecond round-trip execution times [2]. HFT is particularly

interesting for so-called market makers whose responsibility is to

provide liquidity to the markets by providing quotes for buying

and selling stock. Thereby, they enable valuation of stock, at all

times, even if there are currently no interested buyers or sellers,

by providing liquidity in times of low volatility. High frequency

traders utilize several strategies to generate revenue, by buying

and selling stock at very high speed. Utilized strategies include

liquidity-providing, statistical arbitrage and liquidity detection

strategies [2].

In liquidity-providing strategies, for example, high frequency

traders try to earn the bid-ask spread which represents the

difference of what buyers are willing to pay and sellers are willing

to accept for trading stock. High volatility and large bid-ask

spreads can be turned into profits for the high frequency trader

while in return he provides liquidity to the market and lowers the

bid-ask spread for other participants, adopting the role of a market

maker. Liquidity and low bid-ask spreads are desirable as they

reduce trading costs and improve the informational efficiency of

asset pricing [4]. All strategies have in common that they require

absolute lowest round-trip latencies as only the fastest HFT firm

will be able to benefit from an existing opportunity.

Electronic trading of stocks is conducted by sending orders in

electronic form to a stock exchange. Bid and ask orders are then

matched by the exchange to execute a trade. Outstanding orders

are made visible to the market participants through so-called

feeds. A feed carries pricing information of stocks and is

multicasted to the market participants using standardized

protocols like the Financial Information Exchange (FIX) protocol

Adapted for Streaming (FAST) which is used by most stock

exchanges to distribute their market data [13]. Therefore, every

high frequency trading solution must focus on optimizing the

decoding process of FAST and the underlying Ethernet, IP and

UDP protocols as much as possible. To achieve this, we propose

to offload the complete protocol decoding process into an FPGA

based hardware accelerator. While accelerators enjoy the

reputation of being hard to program and to maintain, they provide

the opportunity of significantly speeding up the process. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WHPCF’11, November 13, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1108-3/11/11…$10.00.

Trading Server

Member Access Switch

Exchange WAN

Gateway Server

Datacenter Switch

Matching Engine Matching Engine

4

Gateway Server

Trading ServerTrading Server

Feed Engine

Member Access Switch

example, offloading Ethernet, UDP and IP decoding from

software to hardware, bypassing the complete operating system’s

software stack, can improve latency by an order of magnitude,

from 20us to 2us. To address the disadvantage of accelerators in

terms of programmability we propose a novel approach that

utilizes a Domain Specific Language (DSL) programmable

microcode engine to accelerate processing of FAST messages.

This approach offers easy adaptability to stock exchanges and

feed handlers that employ their own version of the FAST

protocol. A detailed description of the microcode engine and the

utilized DSL will be presented in this paper. Furthermore, we

provide an analysis of the FAST data rates we are currently facing

in trading systems and we propose optimization techniques that

are required to cope with these data rates.

2. BACKGROUND
The following paragraphs will provide background information

about the basic concepts of trading and the trading infrastructure.

In addition, the basic properties of the FAST protocol will be

introduced, defining the requirements of the trading accelerator

we present in this paper.

2.1 Trading Infrastructure
A typical trading infrastructure consists of three different entities

which are the stock exchange, the market data feed handlers and

the market participants or traders. The stock exchange receives

buy and sell orders from the market participants through so-called

gateway servers. The stock exchange then tries to match these

orders using its matching engines. The market participant is

informed in the case of a successful trade while pending orders

which are not fulfilled can be canceled by the market participants.

Current bid and ask prices are made transparent to the market

participants through feed handlers. The feed handlers receive their

data from the stock exchange and transmit it with minimum

latency to the interested market participants. In many cases, the

FAST protocol is utilized to transport the market data feeds. The

described trading infrastructure is shown in Figure 1.

Figure 1. Trading Infrastructure

2.2 Utilized Protocol Stack
In current electronic trading deployments a number of protocol

layers need to be traversed to be able to execute trades.

2.2.1 TCP/IP, UDP and Ethernet
The basic communication protocol utilized by stock exchanges

and all other market participants is TCP/IP or UDP over Ethernet.

Non critical information like market data feeds are generally

transferred using UDP to decrease the latency and overhead,

critical data including buy and sell orders are generally

transmitted using the reliable protocol TCP/IP. Optimized

processing of the UDP stack represents a basic requirement for

effective high frequency trading systems. For our trading

accelerator we decided to offload UDP processing completely into

hardware.

2.2.2 FAST
The FAST protocol, which runs on top of UDP, has been

specified to transmit market data, from exchanges or feed handlers

to market participants. FAST messages contain different fields

and operators that are used to transport meta- as well as payload

data. FAST, has been optimized for minimal bandwidth usage

and, therefore, exploits several compression techniques. The first

important technique is to use delta updates, which instead of

continuously transmitting all stocks and their corresponding data,

only updates, for instance the pricing difference between the

current and the previous validation of a stock, are provided. The

second technique implements variable length encoding for each

data word to compress the raw data as much as possible. While

these techniques enable to keep up with the increasing data rates

that are provided by the feed handlers, it increases processing

complexity significantly. To transform the compressed FAST data

stream into processable data, the complete stream needs to be

decoded and interpreted in real time. If at any time the processing

system cannot keep up with the data rate, critical information is

lost. Furthermore, by decompressing the data stream, the

bandwidth that needs to be processed effectively increases. Hence,

to develop a high performance trading accelerator, two different

goals need to be achieved. First, the decoding of the different

protocols need to be performed with the lowest possible latency.

Second, it must be guaranteed that the data rate can be processed

at all times. To analyze the data rates of current trading systems, a

closer look into the FAST protocol is required.

FAST messages are transferred using the UDP protocol. To

reduce UDP overhead, multiple of these FAST messages are

encapsulated in a single UDP frame. FAST messages do not

contain any size information nor do they define a framing.

Instead, each message is defined by a template which needs to be

known in advance to be able to decode the stream. Most feed

handlers define their own FAST protocol by providing

independent template specifications. Care has to be taken as a

single decoding mistake requires dropping the entire UDP frame.

Templates define a set of fields, sequences and groups, where

groups are a set of fields that can only occur once and sequences

are a set of fields that can occur multiple times.

Figure 2. UDP Frame Including Multiple FAST Messages

Each message starts with a presence map (PMAP) and a template

identifier (TID) as it is shown in Figure 2. The PMAP is a mask

and used to specify which of the defined fields, sequences or

groups are actually present in the current stream. Fields can either

be mandatory or optional and can in addition have an operator

assigned to it. It depends on the presence attribute (mandatory or

optional) and the assigned operator if a field uses a bit in the

PMAP. This adds additional complexity, as it has to be

determined in advance whether the PMAP needs to be interpreted

or not.

The TID is used to identify the template needed to decode the

message. Templates are specified using XML; an example

template definition is given below.

PMAP1 TID1 Message1 PMAP2 TID2 Message2 PMAPn TIDn Messagen

Message 1 Message 2 Message n

UDP frame

<template name="This_is_a_template" id="1">

 <uInt32 name="first_field"/>

 <group name="some_group" presence="optional">

 <sint64 name="second_field"/>

 </group>

 <string name="third_field" presence="optional"/>

</template>

In this example the TID equals 1 and the template consists of two

fields and one group. A field can be either a string, an integer,

signed or unsigned, 32 or 64 bit wide, or a decimal, which is a set

of a 32 bit wide signed integer for the exponent and 64 bit wide

signed integer for the mantissa.

Data compression is achieved by removing leading zeros within

each data word. For example only one byte is transmitted for a

sint64 (64bit signed integer) with value ‘1’ even if the actual

value is 64bit wide.

To enable decoding of compressed data, the so-called stop bits are

used. In each byte, only the first seven bits are used to encode

actual data, the eighth bit is used as a stop bit in order to be able to

separate the fields. For decompression, the stop bit needs to be

removed and the remaining seven bits need to be shifted and

concatenated in all cases where a field is larger than a single byte.

Consider the following incoming binary stream:

10000111 00101010 10111111

These three bytes are two fields as it can be seen at the underlined

stop bits. In order to receive the actual value of the first field and

assuming it is an integer, it is sufficient to replace the eighth bit

with a 0. The result is:

Binary value: 00111111

Hex value: 0x3F

The second field spans over two bytes. To get the actual

transmitted value of this field, the first seven bits of each of the

two bytes need to be concatenated and padded with two 0 bits.

The result is:

Binary value: 00000011 10101010

Hex value: 0x03 0xAA

To aggravate decoding, fields also have to be decoded differently

depending on their presence attribute. An optional integer for

example needs to be decremented by one, a mandatory integer,

however, does not. In case of ASCII encoded fields it is sufficient

to replace the stop bits with ‘0’ bits.

2.2.3 Decision Making
Decision making, for example the decision to buy or sell a stock,

can be a very complex and resource consuming task depending on

the applied algorithm. Essentially there are a variety of given

parameters and incoming variables that are compared using

mathematical and statistical approaches. A detailed analysis of the

various algorithms that can be applied is out of the scope of this

paper. Due to its complexity, the decision making process is not

offloaded to the FPGA but kept in software.

3. BASELINE IMPLEMENTATION
In our previous works [14], we have presented an FPGA based

accelerator for high frequency trading. Our proposed approach

offloads Ethernet, IP, UDP and decoding of the FAST protocol

from software into hardware. The amount of parallelism and the

high operating frequencies provided by modern FPGAs enable to

significantly increase FAST decoding throughput compared to

software based solutions. In addition, by integrating the network

interface itself as well as the network stack into the same chip,

latency can be reduced significantly. The proposed architecture, as

shown in Figure 3, which we describe herein only briefly will act

as the baseline for the detailed analysis and the novel

optimizations we are introducing in this paper.

FPGA

C & S

RF

FAST

Processor

UDP

FAST

Processor

FAST

Processor

FAST

Processor

ETH-,

IP-, UDP-,

IGMP- & ARP-

Frame Decoder

IGMP- & ARP-

Frame Encoder

ETH

MAC

HTAX

Crossbar

(on chip

network)

Hyper-

Transport

IP Core

Figure 3. Trading Accelerator Architecture

3.1 IP, UDP and ETH decoding in Hardware
To reduce the latency of market data processing we opted to move

decoding of the complete IP, UDP and Ethernet stack into

hardware. Our utilized FPGA, a Xilinx Virtex-6, provides high

speed serial transceivers which can act as a PHY to directly access

the network switch using 10Gbit Ethernet. The Ethernet MAC as

well as decoding of the different protocol layers is handled by a

number of internal modules. All elements are implemented in

Register Transfer Level (RTL) code and utilize hand-optimized

finite state machines (FSMs) to provide minimum latency and

high throughput. The hardware modules operate at 156 MHz and

provide a 64 bit data bus resulting in an on-chip bandwidth of

1.25GByte/s which matches the incoming data rate of 10Gbit/s.

3.2 FAST decoding in Hardware
To further improve the performance of our proposed trading

accelerator, also FAST decoding has been offloaded into

hardware. However, while UDP decoding is basically identical for

each application, the FAST protocol is much more generic and

flexible. In particular, each feed handler can define own templates

and PMAPs, which makes a comprehensive hardware

implementation using FSM based logic unfeasible. Therefore, we

opted for a different approach to implement the FAST decoder.

On the hardware side we developed a microcode engine that

supports a set of instructions which enables it to decode any

variation of the FAST protocol. To support a new template, only a

specific microcode instruction stream needs to be developed, with

the advantage that no modifications to the hardware are required.

The microcode itself is derived from a specification written in a

domain specific language (DSL) which we specifically developed

for this project. The DSL description is then passed to a compiler

which transforms it into binary microcode that can be executed by

the microcode engine. The rational for using a microcode engine

instead of a general purpose processor is performance. Due to the

limited set of instructions which are specifically tailored to

operate on FAST data, processing can be accelerated by several

orders of magnitude. While our engine utilizes only 2-3

FAST Decoder

Decompressed FIFO

FASTFix Decompressor

FASTFix Microcode Engine

Decoded FIFO

FASTFix DMA Engine

instructions to process a field in the FAST data stream, software

based CPU implementations might require several 100’ds of

instructions per field. Nevertheless, as it will be seen in the next

paragraphs, the FAST processing engine represents the limiting

factor for performance.

Figure 4 provides an overview of the hardware implementation of

the FAST decoder. All stages are fully pipelined and utilize FIFO

buffers to compensate for different and non deterministic latencies

of the different units. All three stages operate at 200 MHz and

utilize a 64 bit data path. In our utilized FPGA technology, the

resource consumption of the FAST processing engine is 5630

Lookup Tables (LUTs).

Figure 4. FAST Decoder

3.2.1 FAST Decompressor
The FAST Decompressor detects stop bits and aligns all incoming

fields to a multiple of 64 bit. Having fixed size fields is required

to alleviate decoding of FAST for the successive units.

3.2.2 FAST Microcode Engine
The microcode engine runs a program that is loaded into the

FPGA on startup with an individual subroutine for each template.

A jump table provides the pointers that enable to jump to the right

subroutine depending on the template ID that is defined at the

start of each FAST message. All fields in the FAST messages are

decoded according to the corresponding subroutine. Depending on

the subroutine, the content of the fields is either discarded, further

processed by the microcode engine or forwarded to the DMA unit.

3.2.3 FAST DMA Engine
To provide the trading software with the decoded FAST stream, a

DMA engine has been developed. Each field in the different

templates is tagged with an eight bit tag to allow efficient and

unique identification by the trading software. The DMA engine

forwards the received data into a ring buffer that can be directly

accessed by the trading software. Relying on user level

communication to bypass the operating system and utilizing

polling instead of interrupts reduces latency to the minimum.

4. DOMAIN SPECIFIC LANGUAGE
The binary code for the Microcode Engine is produced by an

assembler from a simple domain specific language that has been

designed for this purpose. The assembler code for the template

presented in the introduction above would look like the following.

Table 1. DSL Code Snippet

NOP STORE_PRES

SET_TID 0 STORE_TEMP

NOP JUMP_TEMP

CON_U32_MAN 1 INCR_PC_DATA

NOP JUMP_PRES 1

CON_S64_MAN 2 INCR_PC_DATA

CON_ASCII 3 INCR_PC_PM_DATA

As can be seen, the proposed domain specific language defines

four columns. The two left most columns describe the data value

which is processed in that specific time step; while the two right

most columns specify the command that shall be executed by the

microcode engine. In particular, the first column defines the field

with its presence attribute, while the second column maps the

field to a unique identifier such that it can be later interpreted by

software. The third column defines the control command, which

increments the program pointer, jumps over some commands,

shifts out data from the data FIFO or checks the PMAP. The last

column is used to specify the jump target. Not shown here are

NOPs that are required to accommodate the branch penalty. Using

an assembler in collaboration with a microcode engine makes it

easy to adapt the FPGA to template changes of an exchange or

even to support additional exchanges without any knowledge of

developing FPGA designs. This speeds up the adaption of the

FPGA to protocol modifications significantly.

5. FAST PROTOCOL ANALYSIS
In [14], we showed that our baseline implementation provides an

aggregated latency of only 2.6 us to decode the Ethernet, UDP

and FAST data stream and transfer it to user space where it can be

accessed by software. However, with increasing bandwidth of

market data feeds it gets increasingly challenging to cope with the

ascending data rates. To build a system that can operate under all

market conditions, specifically in periods of very high volatility,

the FAST protocol and its data rates need to be analyzed in more

detail. In particular, the maximum data rates that can occur in

realistic trading systems need to be understood. Therefore, we

developed a theoretical model that describes an upper bound for

the data rate, taking into account the different compression

mechanisms and processing overhead of FAST. Second, we

present a more realistic model derived from measurements of real

market feed data. Subsequently, we present a number of

optimization techniques to increase the throughput of our trading

accelerator. Formula 1 shows the sustained FAST data rate that is

provided by the feed engine. Note, that although, peak data rates

can be higher, only the sustained data rate is of interest as peak

data rates can be absorbed with a buffer of sufficient size between

the Ethernet and the FAST processor:

 (1)

wherein compression is the compression factor of the FAST

protocol, and overhead the overhead of the Ethernet and UDP

protocol. Accordingly, we can denote the maximum data rate that

can be supported by our trading accelerator as:

 (2)

wherein cf is the clock frequency, CPI denotes cycles per

instructions and fieldsize represent the number of bits per

field/instruction.

We can give an upper bound for Dfast by choosing the theoretical

maximum for the values Dfeed which is currently 10Gbit/s, and for

the compression rate which is eight as a maximum of 64 bits can

be compressed to the size of a byte. To provide a realistic

estimation of the overhead we performed an analysis of several

GBytes of market data feeds. While the overhead of UDP and

Ethernet depends on the size of the packets and various other

factors we could determine a median overhead of about 10% for

the Ethernet, IP and UDP headers and framing.

Measurements of real market feed data, however, shows that

current data rates are closer to 2Gbit/s and that the median

compression rate is approximitely 4. Note that in our case we are

decompressing every field to 64 bits, even if the original data was

only 32 bits wide. Hence, we can give

In the same way, we can calculate the sustained data rate Dmax

that can be processed by our trading accelerator. In the current

implementation fieldsize equals 64 bits and cf equals 200 MHz.

One might suggest to increase one or both of these values to

increase throughput, however, both appears to be difficult. As

FAST is a truly sequential protocol, processing of a field depends

on the previous field, which renders it impossible to increase the

data width by processing multiple fields in parallel. The operating

frequency already represents the maximum that can be achieved

with the current three pipeline stage design in the deployed FPGA

technology. While a deeper pipeline could allow a further increase

of the clock rate, the sequential nature of FAST ensures that there

are only a very limited amount of instructions that can be

executed independently. Furthermore, as will be seen in the next

paragraph, performance is mainly limited due to branches in the

microcode. A deeper pipeline, therefore, could be even

counterproductive as it would increase the branch penalty. The

last parameter which we can analyze is CPI. In particular, the

analysis of our baseline architecture revealed that in average our

engine requires 2.66 cycles to process a field, which leads to a

maximum data rate of the FAST processor of 4.8Gbit/s:

As Dmax < Dfast it is obvious that in periods of high volatility our

engine might not be able to cope with the data rate. As discussed,

the only parameter that can be improved is CPI. Therefore, we

propose three different optimizations for improving the CPI of our

approach.

6. OPTIMIZATION TECHNIQUES
As outlined in the previous paragraph, the optimization of the CPI

parameter represents the only possibility to increase the data rate

of the design. Therefore, it is necessary to determine the

instructions which consume multiple clock cycles. An analysis of

the generated microcode instruction stream reveals that in all

cases branch instructions are responsible for reducing the amount

of fields that can be processed per cycle whereas the main reasons

are control flow branches and processing of variable sized fields.

In our design the cost of a branch instruction is effectively three

cycles, one cycle for the compare instruction and two cycles to

fetch the instruction pointer from the instruction memory. As it

can be seen in Table 2, each time the program counter (PC) is

changed due to an instruction, the execution logic will see the

effect not until three cycles later. In contrast to sequential code

where the PC is simply incremented, branches require the

introduction of two NOP instructions into the pipeline. The table

shows a typical program flow, where row 1 defines the control

instruction, in this case it implements processing of an ASCII

field. The issue with ASCII fields is that they have an arbitrary

length, therefore it is necessary to take a branch depending on

whether the end of the field has been detected. In this case,

JUMP_EOFIELD_DATA will simple increment the PC otherwise

it will set the PC back to the original program counter that points

to the ASCII handling sequence.

Table 2. Branch Penalty

CON_ASCII_MAN 42 JUMP_EOFIELD_DATA -3

NOP INCR_PC

NOP INCR_PC

CON_U32_MAN 43 INCR_PC_DATA

Due to its size, the instruction code needs to be stored in block

RAMs. Providing an instruction cache was considered, but

dismissed due to the relatively low temporal and spatial locality

provided by the microcode and the hardware complexity which

limits the size of such an Icache to only a few entries. Therefore,

we followed a different direction and developed a set of branch

avoidance techniques which we will present in the following.

6.1 Custom Instruction Segments
Decoding of FAST messages follows certain rules which are

explicitly defined by the TID and PMAP. Therefore, for each

incoming message our microcode engine first performs a lookup

of the TID to determine the instruction code that needs to be

executed for this template. Within that instruction stream, further

branches are necessary depending on the presence of individual

fields defined by the PMAP. An obvious solution that

significantly reduces the number of branches is to offer discrete

microcode segments, not only for each template but also for each

{TID, PMAP} tuple as this tuple uniquely predetermines all

branches of a message. The disadvantage of this approach,

however, is that it increases the development overhead

substantially as for each combination a microcode segment needs

to be provided. Furthermore, the size of the instruction code

would increase significantly. Nevertheless, an analysis of large

traces of FAST data regarding the utilized {TID, PMAP} tuples,

provides an interesting observation. As it can be seen in Figure 5,

only five tuples represent a 92% probability of occurrence.

Therefore, it might be beneficial to provide discrete microcode

segments for these tuples while processing all other tuples with

the generic microcode segments. This approach has been

implemented and indeed reduces the number of branches

significantly. The evaluation shows that CPI could be reduced

from 2.66 to 2.35 which equals an improvement of 13%. The size

of the microcode was increased only marginally and can be stored

in the same block RAM capacity. The development efforts to

implement the additional microcode sequences were modest due

to our efficient DSL based approach.

Figure 5. Occurrences of all supported TID, PMAP Tuples

6.2 Branch Precalculation
As outlined, each branch instruction requires three clock cycles,

and effectively causes two bubbles or NOPs in the processing

pipeline. The main reason for this delay is the latency of the block

RAM that is utilized to store the microcode. In our architecture,

there exist two different types of branch instructions. The first one

uses the TID to lookup the instruction pointer segment, the other

instruction is used to branch within the microcode segment. The

template segment lookup latency can be completely hidden by

performing a speculative lookup of the incoming fields and

forwarding that information to the template memory. As UDP

frames contain a large number of templates, the TID lookup

occurs often providing a good opportunity for optimization.

This approach will not reduce the startup latency for the very first

FAST message of an UDP packet, because the first lookup will

still imply the three cycle penalty. However, as the decompressor

can always process one field per cycle and is hence much faster

than the microcode engine, the FIFO in between the two units will

already contain the new branch address as soon as the microcode

engine is finished with the first FAST message. Forwarding of

branch information in this way can, thereby, reduce the TID

branch penalty completely and provided a CPI reduction from

2.35 to 2.1.

6.3 Variable Length Field Processing
Another source of branch instructions is the processing of variable

length fields. Due to the stop bit compression scheme integers

within the raw FAST stream can have a size of in between 8 – 72

bits (64 bit payload + 8 stop bits). As our datapath is only 64 bits

wide, integers can either span one or two clock cycles which

needs to be checked for each field and can lead to a branch. In

both cases the compare instruction introduces additional NOP

cycles. We addressed this issue by increasing the datapath to 72

bits and by speculatively decompressing the field as an integer. In

the case where the field, in fact, represents a multi cycle integer it

can be processed directly; in all other cases the additional 8 bits

are simply ignored. This approach avoids all branch instructions

for integer processing completely. Implementing the variable

length field processing optimization resulted in an improvement

of CPI from 2.1 to 1.7.

7. EVALUATION
We have evaluated the performance of our design by

comparing the different optimization techniques to our baseline

approach. Figure 6 presents the improvements of our techniques

in terms of the maximum data rate. In total, our baseline approach

that offers a Dmax of 4.8Gbit/s could be improved by over 56% to

a new Dmax, optimized of 7.5Gbit/s.

Figure 6. Optimization Techniques

To put our results in perspective we compare our FPGA based

trading accelerator to conventional software based CPU

approaches. Therefore, we reference performance results [7] that

have been measured on an Intel Xeon 5472 and an IBM Power6

using a software based FAST decoder. According to the paper we

assume that the average size of a message is 21 bytes. Figure 7

shows the maximum data rates that can be achieved on the three

different architectures. The left column shows the single-thread

performance while the right column depicts the multi-thread

performance of the different architectures. It can be seen that the

single-thread performance of our design of 7.5Gbit/s is about one

order of magnitude higher than the performance of the CPU

approaches (320Mbit/s and 640Mbit/s respectively). In addition,

we present multi-threaded performance results, although of

limited use, as individual messages can only be processed by a

single thread concurrently. As a result, multi-thread

implementations can only process multiple independent streams in

Figure 7. FAST Data Rate

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 10 20 30 40

o

f
O

cc
u

rr
e

n
ce

s

{TID, PMAP} Tuple

0

1000

2000

3000

4000

5000

6000

7000

8000

Baseline Instruction
Segments

Branch
Precalc.

Variable
Fields

D
at

a
ra

te
 (

M
b

it
/s

)

0

2000

4000

6000

8000

10000

12000

14000

16000

Xeon 5472 IBM Power6 FPGA

D
at

a
ra

te
 (

M
b

it
/s

)

Singlethread

4/16/2
Threads

parallel. The Intel implementation uses a maximum of 4 threads,

IBM uses 16 threads and our engine uses 2 threads. Although, as

shown in Figure 3 we were able to fit up to four FAST processors

into our design, we have limited our approach to a maximum of

two units as in this case the host interface as well as the ethernet

connection already becomes the performance limiting bottleneck.

Nevertheless, our approach is well prepared for even higher

upcoming data rates.

Another reason for offloading FAST decoding to an FPGA is the

latency reduction that can be achieved. We have compared the

latency of processing an average sized FAST message (21 bytes)

of the different implementations. As can be seen in Figure 8, the

Intel Xeon implementation requires 261 ns, the IBM

implementation 476 ns while our FPGA based microcode engine

only requires about 40 ns to decode a 21 byte FAST message.

Figure 8. FAST Decoding Latency

8. RELATED WORK
A good introduction to HFT is given in [1]. An introduction to

FAST processing and its acceleration is provided in [6], while the

previously mentioned “faster FAST” processing engine using a

multi-threaded approach is presented in [7]. While both

approaches focus on accelerating FAST decoding, to the best of

our knowledge our approach is the first one that deploys FPGA

hardware for this purpose. Morris [8] presents an FPGA assisted

HFT engine that accelerates UDP/IP Stream handling similar to

[9]. Sadoghi [10] proposes an FPGA based mechanism for

efficient event handling for algorithmic trading. Mittal proposes a

FAST software decoder that is executed on a PowerPC 405

embedded in a Xilinx FPGA [12]. Finally, Tandon has presented

“A Programmable Architecture for Real-time Derivative Trading”

[11].

9. CONCLUSION
In this paper we have presented a novel FPGA based accelerator

for High Frequency Trading. Our design integrates the Ethernet

MAC as well as IP, UDP and FAST protocol encoding to provide

lowest possible latencies and highest data rates. While the

application independent Ethernet and UDP decoders are

implemented using optimized finite state machines, we developed

a unique microcode engine for decoding FAST messages to

increase the flexibility. Following this approach, arbitrary FAST

templates and protocols can be adapted to support a wide range of

stock exchanges and feed handlers. The microcode engine can be

programmed via software using a domain specific language we

specifically developed for this purpose. Our DSL programmable

engine combines high programmability with high performance,

providing data rates of up to 941MByte/s and a latency as low as

40ns for decoding FAST messages which is one order of

magnitude faster than traditional software based CPU approaches.

10. REFERENCES
[1] J.A. Brogaard, “High Frequency Trading and its Impact on

Market Quality,” 5th Annual Conference on Empirical Legal

Studies, 2010.

[2] M. Chlistalla, “High-frequency trading Better than its

reputation?,” Deutsche Bank research report, 2011.

[3] A. Group, New World Order: The High Frequency Trading

Community and Its Impact on Market Structure, 2009.

[4] K.H. Chung and Y. Kim, “Volatility, Market Structure, and

the Bid-Ask Spread,” Asia-Pacific Journal of Financial

Studies, vol. 38, Feb. 2009.

[5] J. Chiu, D. Lukman, K. Modarresi, and A. Velayutham,

“High-frequency trading,” Stanford University Research

Report, 2011.

[6] H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto,

“Streaming, low-latency communication in on-line trading

systems,” International Symposium on Parallel & Distributed

Processing, Workshops (IPDPSW), 2010.

[7] V. Agarwal, D. a Bader, L. Dan, L.-K. Liu, D. Pasetto, M.

Perrone, and F. Petrini, “Faster FAST: multicore acceleration

of streaming financial data,” Computer Science - Research

and Development, vol. 23, May. 2009.

[8] G.W. Morris, D.B. Thomas, and W. Luk, “FPGA

Accelerated Low-Latency Market Data Feed Processing,”

2009 17th IEEE Symposium on High Performance

Interconnects, Aug. 2009.

[9] F. Herrmann and G. Perin, “An UDP/IP Network Stack in

FPGA,” Electronics, Circuits, and Systems (ICECS), 2009.

[10] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-arno

Jacobsen, “Efficient Event Processing through

Reconfigurable Hardware for Algorithmic Trading,” Journal

Proceedings of the VLDB Endowment, 2010.

[11] S. Tandon, “A Programmable Architecture for Real-time

Derivative Trading,” Master Thesis, University of

Edinburgh, 2003.

[12] G. Mittal, D.C Zaretsky, P. Banerjee, “Streaming

implementation of a sequential decompression algorithm on

an FPGA,” International Symposium on Field Programmable

Gate Arrays – FPGA09, 2009.

[13] FIX adapted for Streaming, www.fixprotocol.org/fast

[14] C. Leber, B. Geib, H. Litz, “High Frequency Trading

Acceleration using FPGAs,” 21st International Conference

on Field Programmable Logic and Applications (FPL 2011),

September 5-7, 2011, Chania, Greece.

0

100

200

300

400

500

Xeon 5472 IBM Power6 FPGA

La
te

n
cy

 (
n

s)

