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ABSTRACT 

In High Frequency Trading systems, a large number of orders 

needs to be processed with minimal latency at very high data 

rates. We propose an FPGA based accelerator for High Frequency 

Trading that is able to decrease latency by an order of magnitude 

and increase the data rate by the same rate compared to software 

based CPU approaches. In particular, we focus on the acceleration 

of FAST, the most commonly used protocol for distributing 

pricing information of stock and options over the network. As 

FPGAs are hard to program, we present a novel Domain Specific 

Language that enables our engine to be programmed via software. 

The code is compiled by our own compiler into binary microcode 

that is then executed on a microcode engine. In this paper we 

provide detailed insights into our hardware structure and the 

optimizations we applied to increase the data rate and the overall 

processing performance. 

Categories and Subject Descriptors 

B.1.5 [Control Structures and Microprogramming]: 

Microcode Applications – Direct data manipulation, Special-

purpose 

General Terms 

Performance, Design. 

Keywords 

FAST, FIX, low latency, high throughput, FPGA, decoder, DSL, 

domain specific language, stock, trading. 

1. INTRODUCTION 
In today’s major stock exchanges well beyond 90% of all trades 

are executed electronically by exchanging billions of messages 

per second. The automation of trading services through electronic 

means is motivated by significant advantages in terms of 

increased speed and reduced cost of transactions. Recently, not 

only the trading process but also the trading decision making   

process has been automated in the form of Algorithmic or High 

Frequency Trading (HFT). According to the Aite Group, the 

impact of HFT on the financial markets is substantial, accounting 

for more than 50% of all trades in 2010 on the US-equity market 

with a growth rate of 70% in 2009 [3]. HFT describes a set of 

techniques within electronic trading of stocks and derivatives, 

where a large number of orders are injected into the market at sub-

millisecond round-trip execution times [2]. HFT is particularly 

interesting for so-called market makers whose responsibility is to 

provide liquidity to the markets by providing quotes for buying 

and selling stock. Thereby, they enable valuation of stock, at all 

times, even if there are currently no interested buyers or sellers, 

by providing liquidity in times of low volatility. High frequency 

traders utilize several strategies to generate revenue, by buying 

and selling stock at very high speed. Utilized strategies include 

liquidity-providing, statistical arbitrage and liquidity detection 

strategies [2].  

In liquidity-providing strategies, for example, high frequency 

traders try to earn the bid-ask spread which represents the 

difference of what buyers are willing to pay and sellers are willing 

to accept for trading stock. High volatility and large bid-ask 

spreads can be turned into profits for the high frequency trader 

while in return he provides liquidity to the market and lowers the 

bid-ask spread for other participants, adopting the role of a market 

maker. Liquidity and low bid-ask spreads are desirable as they 

reduce trading costs and improve the informational efficiency of 

asset pricing [4]. All strategies have in common that they require 

absolute lowest round-trip latencies as only the fastest HFT firm 

will be able to benefit from an existing opportunity. 

Electronic trading of stocks is conducted by sending orders in 

electronic form to a stock exchange. Bid and ask orders are then 

matched by the exchange to execute a trade. Outstanding orders 

are made visible to the market participants through so-called 

feeds. A feed carries pricing information of stocks and is 

multicasted to the market participants using standardized 

protocols like the Financial Information Exchange (FIX) protocol 

Adapted for Streaming (FAST) which is used by most stock 

exchanges to distribute their market data [13]. Therefore, every 

high frequency trading solution must focus on optimizing the 

decoding process of FAST and the underlying Ethernet, IP and 

UDP protocols as much as possible. To achieve this, we propose 

to offload the complete protocol decoding process into an FPGA 

based hardware accelerator. While accelerators enjoy the 

reputation of being hard to program and to maintain, they provide 

the opportunity of significantly speeding up the process. For 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

WHPCF’11, November 13, 2011, Seattle, Washington,  USA. 
Copyright 2011 ACM 978-1-4503-1108-3/11/11…$10.00. 

 



Trading Server

Member Access Switch

Exchange WAN

Gateway Server

Datacenter Switch

Matching Engine Matching Engine

4

Gateway Server

Trading ServerTrading Server

Feed Engine

Member Access Switch

example, offloading Ethernet, UDP and IP decoding from 

software to hardware, bypassing the complete operating system’s 

software stack, can improve latency by an order of magnitude, 

from 20us to 2us. To address the disadvantage of accelerators in 

terms of programmability we propose a novel approach that 

utilizes a Domain Specific Language (DSL) programmable 

microcode engine to accelerate processing of FAST messages. 

This approach offers easy adaptability to stock exchanges and 

feed handlers that employ their own version of the FAST 

protocol. A detailed description of the microcode engine and the 

utilized DSL will be presented in this paper. Furthermore, we 

provide an analysis of the FAST data rates we are currently facing 

in trading systems and we propose optimization techniques that 

are required to cope with these data rates. 

2. BACKGROUND 
The following paragraphs will provide background information 

about the basic concepts of trading and the trading infrastructure. 

In addition, the basic properties of the FAST protocol will be 

introduced, defining the requirements of the trading accelerator 

we present in this paper. 

2.1 Trading Infrastructure 
A typical trading infrastructure consists of three different entities 

which are the stock exchange, the market data feed handlers and 

the market participants or traders. The stock exchange receives 

buy and sell orders from the market participants through so-called 

gateway servers. The stock exchange then tries to match these 

orders using its matching engines. The market participant is 

informed in the case of a successful trade while pending orders 

which are not fulfilled can be canceled by the market participants. 

Current bid and ask prices are made transparent to the market 

participants through feed handlers. The feed handlers receive their 

data from the stock exchange and transmit it with minimum 

latency to the interested market participants. In many cases, the 

FAST protocol is utilized to transport the market data feeds. The 

described trading infrastructure is shown in Figure 1. 

 

Figure 1. Trading Infrastructure 

 

2.2 Utilized Protocol Stack 
In current electronic trading deployments a number of protocol 

layers need to be traversed to be able to execute trades. 

2.2.1 TCP/IP, UDP and Ethernet 
The basic communication protocol utilized by stock exchanges 

and all other market participants is TCP/IP or UDP over Ethernet. 

Non critical information like market data feeds are generally 

transferred using UDP to decrease the latency and overhead, 

critical data including buy and sell orders are generally 

transmitted using the reliable protocol TCP/IP. Optimized 

processing of the UDP stack represents a basic requirement for 

effective high frequency trading systems. For our trading 

accelerator we decided to offload UDP processing completely into 

hardware. 

2.2.2 FAST 
The FAST protocol, which runs on top of UDP, has been 

specified to transmit market data, from exchanges or feed handlers 

to market participants. FAST messages contain different fields 

and operators that are used to transport meta- as well as payload 

data. FAST, has been optimized for minimal bandwidth usage 

and, therefore, exploits several compression techniques. The first 

important technique is to use delta updates, which instead of 

continuously transmitting all stocks and their corresponding data, 

only updates, for instance the pricing difference between the 

current and the previous validation of a stock, are provided. The 

second technique implements variable length encoding for each 

data word to compress the raw data as much as possible. While 

these techniques enable to keep up with the increasing data rates 

that are provided by the feed handlers, it increases processing 

complexity significantly. To transform the compressed FAST data 

stream into processable data, the complete stream needs to be 

decoded and interpreted in real time. If at any time the processing 

system cannot keep up with the data rate, critical information is 

lost. Furthermore, by decompressing the data stream, the 

bandwidth that needs to be processed effectively increases. Hence, 

to develop a high performance trading accelerator, two different 

goals need to be achieved. First, the decoding of the different 

protocols need to be performed with the lowest possible latency. 

Second, it must be guaranteed that the data rate can be processed 

at all times. To analyze the data rates of current trading systems, a 

closer look into the FAST protocol is required. 

FAST messages are transferred using the UDP protocol. To 

reduce UDP overhead, multiple of these FAST messages are 

encapsulated in a single UDP frame. FAST messages do not 

contain any size information nor do they define a framing. 

Instead, each message is defined by a template which needs to be 

known in advance to be able to decode the stream. Most feed 

handlers define their own FAST protocol by providing 

independent template specifications. Care has to be taken as a 

single decoding mistake requires dropping the entire UDP frame. 

Templates define a set of fields, sequences and groups, where 

groups are a set of fields that can only occur once and sequences 

are a set of fields that can occur multiple times.  

Figure 2. UDP Frame Including Multiple FAST Messages 

 

Each message starts with a presence map (PMAP) and a template 

identifier (TID) as it is shown in Figure 2. The PMAP is a mask 

and used to specify which of the defined fields, sequences or 

groups are actually present in the current stream. Fields can either 

be mandatory or optional and can in addition have an operator 

assigned to it. It depends on the presence attribute (mandatory or 

optional) and the assigned operator if a field uses a bit in the 

PMAP. This adds additional complexity, as it has to be 

determined in advance whether the PMAP needs to be interpreted 

or not. 

The TID is used to identify the template needed to decode the 

message. Templates are specified using XML; an example 

template definition is given below. 

PMAP1 TID1 Message1 PMAP2 TID2 Message2 PMAPn TIDn Messagen

Message 1 Message 2 Message n

UDP frame



 

<template name="This_is_a_template" id="1"> 

  <uInt32 name="first_field"/> 

  <group name="some_group" presence="optional"> 

    <sint64 name="second_field"/> 

  </group> 

  <string name="third_field" presence="optional"/> 

</template> 

In this example the TID equals 1 and the template consists of two 

fields and one group. A field can be either a string, an integer, 

signed or unsigned, 32 or 64 bit wide, or a decimal, which is a set 

of a 32 bit wide signed integer for the exponent and 64 bit wide 

signed integer for the mantissa. 

Data compression is achieved by removing leading zeros within 

each data word. For example only one byte is transmitted for a 

sint64 (64bit signed integer) with value ‘1’ even if the actual 

value is 64bit wide. 

To enable decoding of compressed data, the so-called stop bits are 

used. In each byte, only the first seven bits are used to encode 

actual data, the eighth bit is used as a stop bit in order to be able to 

separate the fields. For decompression, the stop bit needs to be 

removed and the remaining seven bits need to be shifted and 

concatenated in all cases where a field is larger than a single byte. 

Consider the following incoming binary stream: 

10000111 00101010 10111111 

These three bytes are two fields as it can be seen at the underlined 

stop bits. In order to receive the actual value of the first field and 

assuming it is an integer, it is sufficient to replace the eighth bit 

with a 0. The result is: 

Binary value: 00111111 

Hex value: 0x3F 

The second field spans over two bytes. To get the actual 

transmitted value of this field, the first seven bits of each of the 

two bytes need to be concatenated and padded with two 0 bits. 

The result is: 

Binary value: 00000011 10101010 

Hex value: 0x03 0xAA 

To aggravate decoding, fields also have to be decoded differently 

depending on their presence attribute. An optional integer for 

example needs to be decremented by one, a mandatory integer, 

however, does not. In case of ASCII encoded fields it is sufficient 

to replace the stop bits with ‘0’ bits. 

2.2.3 Decision Making 
Decision making, for example the decision to buy or sell a stock, 

can be a very complex and resource consuming task depending on 

the applied algorithm. Essentially there are a variety of given 

parameters and incoming variables that are compared using 

mathematical and statistical approaches. A detailed analysis of the 

various algorithms that can be applied is out of the scope of this 

paper. Due to its complexity, the decision making process is not 

offloaded to the FPGA but kept in software. 

3. BASELINE IMPLEMENTATION 
In our previous works [14], we have presented an FPGA based 

accelerator for high frequency trading. Our proposed approach 

offloads Ethernet, IP, UDP and decoding of the FAST protocol 

from software into hardware. The amount of parallelism and the 

high operating frequencies provided by modern FPGAs enable to 

significantly increase FAST decoding throughput compared to 

software based solutions. In addition, by integrating the network 

interface itself as well as the network stack into the same chip, 

latency can be reduced significantly. The proposed architecture, as 

shown in Figure 3, which we describe herein only briefly will act 

as the baseline for the detailed analysis and the novel 

optimizations we are introducing in this paper. 
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Figure 3. Trading Accelerator Architecture 

 

3.1 IP, UDP and ETH decoding in Hardware 
To reduce the latency of market data processing we opted to move 

decoding of the complete IP, UDP and Ethernet stack into 

hardware. Our utilized FPGA, a Xilinx Virtex-6, provides high 

speed serial transceivers which can act as a PHY to directly access 

the network switch using 10Gbit Ethernet. The Ethernet MAC as 

well as decoding of the different protocol layers is handled by a 

number of internal modules. All elements are implemented in 

Register Transfer Level (RTL) code and utilize hand-optimized 

finite state machines (FSMs) to provide minimum latency and 

high throughput. The hardware modules operate at 156 MHz and 

provide a 64 bit data bus resulting in an on-chip bandwidth of 

1.25GByte/s which matches the incoming data rate of 10Gbit/s. 

3.2 FAST decoding in Hardware 
To further improve the performance of our proposed trading 

accelerator, also FAST decoding has been offloaded into 

hardware. However, while UDP decoding is basically identical for 

each application, the FAST protocol is much more generic and 

flexible. In particular, each feed handler can define own templates 

and PMAPs, which makes a comprehensive hardware 

implementation using FSM based logic unfeasible. Therefore, we 

opted for a different approach to implement the FAST decoder. 

On the hardware side we developed a microcode engine that 

supports a set of instructions which enables it to decode any 

variation of the FAST protocol. To support a new template, only a 

specific microcode instruction stream needs to be developed, with 

the advantage that no modifications to the hardware are required.  

The microcode itself is derived from a specification written in a 

domain specific language (DSL) which we specifically developed 

for this project. The DSL description is then passed to a compiler 

which transforms it into binary microcode that can be executed by 

the microcode engine. The rational for using a microcode engine 

instead of a general purpose processor is performance. Due to the 

limited set of instructions which are specifically tailored to 

operate on FAST data, processing can be accelerated by several 

orders of magnitude. While our engine utilizes only 2-3 
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instructions to process a field in the FAST data stream, software 

based CPU implementations might require several 100’ds of 

instructions per field. Nevertheless, as it will be seen in the next 

paragraphs, the FAST processing engine represents the limiting 

factor for performance. 

Figure 4 provides an overview of the hardware implementation of 

the FAST decoder. All stages are fully pipelined and utilize FIFO 

buffers to compensate for different and non deterministic latencies 

of the different units. All three stages operate at 200 MHz and 

utilize a 64 bit data path. In our utilized FPGA technology, the 

resource consumption of the FAST processing engine is 5630 

Lookup Tables (LUTs).  

 

Figure 4. FAST Decoder 

 

3.2.1 FAST Decompressor 
The FAST Decompressor detects stop bits and aligns all incoming 

fields to a multiple of 64 bit. Having fixed size fields is required 

to alleviate decoding of FAST for the successive units. 

3.2.2 FAST Microcode Engine 
The microcode engine runs a program that is loaded into the 

FPGA on startup with an individual subroutine for each template. 

A jump table provides the pointers that enable to jump to the right 

subroutine depending on the template ID that is defined at the 

start of each FAST message. All fields in the FAST messages are 

decoded according to the corresponding subroutine. Depending on 

the subroutine, the content of the fields is either discarded, further 

processed by the microcode engine or forwarded to the DMA unit.  

3.2.3 FAST DMA Engine 
To provide the trading software with the decoded FAST stream, a 

DMA engine has been developed. Each field in the different 

templates is tagged with an eight bit tag to allow efficient and 

unique identification by the trading software. The DMA engine 

forwards the received data into a ring buffer that can be directly 

accessed by the trading software. Relying on user level 

communication to bypass the operating system and utilizing 

polling instead of interrupts reduces latency to the minimum. 

4. DOMAIN SPECIFIC LANGUAGE 
The binary code for the Microcode Engine is produced by an 

assembler from a simple domain specific language that has been 

designed for this purpose. The assembler code for the template 

presented in the introduction above would look like the following. 

 

Table 1. DSL Code Snippet 

NOP  STORE_PRES  

SET_TID 0 STORE_TEMP  

NOP  JUMP_TEMP  

CON_U32_MAN 1 INCR_PC_DATA  

NOP  JUMP_PRES 1 

CON_S64_MAN 2 INCR_PC_DATA  

CON_ASCII 3 INCR_PC_PM_DATA  

 

As can be seen, the proposed domain specific language defines 

four columns. The two left most columns describe the data value 

which is processed in that specific time step; while the two right 

most columns specify the command that shall be executed by the 

microcode engine. In particular, the first column defines the field 

with its presence attribute, while the second column maps the 

field to a unique identifier such that it can be later interpreted by 

software. The third column defines the control command, which 

increments the program pointer, jumps over some commands, 

shifts out data from the data FIFO or checks the PMAP. The last 

column is used to specify the jump target. Not shown here are 

NOPs that are required to accommodate the branch penalty. Using 

an assembler in collaboration with a microcode engine makes it 

easy to adapt the FPGA to template changes of an exchange or 

even to support additional exchanges without any knowledge of 

developing FPGA designs. This speeds up the adaption of the 

FPGA to protocol modifications significantly. 

5. FAST PROTOCOL ANALYSIS 
In [14], we showed that our baseline implementation provides an 

aggregated latency of only 2.6 us to decode the Ethernet, UDP 

and FAST data stream and transfer it to user space where it can be 

accessed by software. However, with increasing bandwidth of 

market data feeds it gets increasingly challenging to cope with the 

ascending data rates. To build a system that can operate under all 

market conditions, specifically in periods of very high volatility, 

the FAST protocol and its data rates need to be analyzed in more 

detail. In particular, the maximum data rates that can occur in 

realistic trading systems need to be understood. Therefore, we 

developed a theoretical model that describes an upper bound for 

the data rate, taking into account the different compression 

mechanisms and processing overhead of FAST. Second, we 

present a more realistic model derived from measurements of real 

market feed data. Subsequently, we present a number of 

optimization techniques to increase the throughput of our trading 

accelerator. Formula 1 shows the sustained FAST data rate that is 

provided by the feed engine. Note, that although, peak data rates 

can be higher, only the sustained data rate is of interest as peak 

data rates can be absorbed with a buffer of sufficient size between 

the Ethernet and the FAST processor: 

   (1) 



wherein compression is the compression factor of the FAST 

protocol, and overhead the overhead of the Ethernet and UDP 

protocol. Accordingly, we can denote the maximum data rate that 

can be supported by our trading accelerator as: 

        (2) 

wherein cf is the clock frequency, CPI denotes cycles per 

instructions and fieldsize represent the number of bits per 

field/instruction. 

We can give an upper bound for Dfast by choosing the theoretical 

maximum for the values Dfeed which is currently 10Gbit/s, and for 

the compression rate which is eight as a maximum of 64 bits can 

be compressed to the size of a byte. To provide a realistic 

estimation of the overhead we performed an analysis of several 

GBytes of market data feeds. While the overhead of UDP and 

Ethernet depends on the size of the packets and various other 

factors we could determine a median overhead of about 10% for 

the Ethernet, IP and UDP headers and framing. 

   

Measurements of real market feed data, however, shows that 

current data rates are closer to 2Gbit/s and that the median 

compression rate is approximitely 4. Note that in our case we are 

decompressing every field to 64 bits, even if the original data was 

only 32 bits wide. Hence, we can give  

  

In the same way, we can calculate the sustained data rate Dmax 

that can be processed by our trading accelerator. In the current 

implementation fieldsize equals 64 bits and cf equals 200 MHz. 

One might suggest to increase one or both of these values to 

increase throughput, however, both appears to be difficult. As 

FAST is a truly sequential protocol, processing of a field depends 

on the previous field, which renders it impossible to increase the 

data width by processing multiple fields in parallel. The operating 

frequency already represents the maximum that can be achieved 

with the current three pipeline stage design in the deployed FPGA 

technology. While a deeper pipeline could allow a further increase 

of the clock rate, the sequential nature of FAST ensures that there 

are only a very limited amount of instructions that can be 

executed independently. Furthermore, as will be seen in the next 

paragraph, performance is mainly limited due to branches in the 

microcode. A deeper pipeline, therefore, could be even 

counterproductive as it would increase the branch penalty. The 

last parameter which we can analyze is CPI. In particular, the 

analysis of our baseline architecture revealed that in average our 

engine requires 2.66 cycles to process a field, which leads to a 

maximum data rate of the FAST processor of 4.8Gbit/s: 

  

As Dmax < Dfast it is obvious that in periods of high volatility our 

engine might not be able to cope with the data rate. As discussed, 

the only parameter that can be improved is CPI. Therefore, we 

propose three different optimizations for improving the CPI of our 

approach. 

6. OPTIMIZATION TECHNIQUES 
As outlined in the previous paragraph, the optimization of the CPI 

parameter represents the only possibility to increase the data rate 

of the design. Therefore, it is necessary to determine the 

instructions which consume multiple clock cycles. An analysis of 

the generated microcode instruction stream reveals that in all 

cases branch instructions are responsible for reducing the amount 

of fields that can be processed per cycle whereas the main reasons 

are control flow branches and processing of variable sized fields. 

In our design the cost of a branch instruction is effectively three 

cycles, one cycle for the compare instruction and two cycles to 

fetch the instruction pointer from the instruction memory. As it 

can be seen in Table 2, each time the program counter (PC) is 

changed due to an instruction, the execution logic will see the 

effect not until three cycles later. In contrast to sequential code 

where the PC is simply incremented, branches require the 

introduction of two NOP instructions into the pipeline. The table 

shows a typical program flow, where row 1 defines the control 

instruction, in this case it implements processing of an ASCII 

field. The issue with ASCII fields is that they have an arbitrary 

length, therefore it is necessary to take a branch depending on 

whether the end of the field has been detected. In this case, 

JUMP_EOFIELD_DATA will simple increment the PC otherwise 

it will set the PC back to the original program counter that points 

to the ASCII handling sequence.  

 

Table 2. Branch Penalty 

CON_ASCII_MAN 42 JUMP_EOFIELD_DATA -3 

NOP  INCR_PC  

NOP  INCR_PC  

CON_U32_MAN 43 INCR_PC_DATA  

 

Due to its size, the instruction code needs to be stored in block 

RAMs. Providing an instruction cache was considered, but 

dismissed due to the relatively low temporal and spatial locality 

provided by the microcode and the hardware complexity which 

limits the size of such an Icache to only a few entries. Therefore, 

we followed a different direction and developed a set of branch 

avoidance techniques which we will present in the following. 

6.1 Custom Instruction Segments 
Decoding of FAST messages follows certain rules which are 

explicitly defined by the TID and PMAP. Therefore, for each 

incoming message our microcode engine first performs a lookup 

of the TID to determine the instruction code that needs to be 

executed for this template. Within that instruction stream, further 

branches are necessary depending on the presence of individual 

fields defined by the PMAP. An obvious solution that 

significantly reduces the number of branches is to offer discrete 

microcode segments, not only for each template but also for each 

{TID, PMAP} tuple as this tuple uniquely predetermines all 

branches of a message. The disadvantage of this approach, 

however, is that it increases the development overhead 

substantially as for each combination a microcode segment needs 

to be provided. Furthermore, the size of the instruction code 

would increase significantly. Nevertheless, an analysis of large 

traces of FAST data regarding the utilized {TID, PMAP} tuples, 

provides an interesting observation. As it can be seen in Figure 5, 

only five tuples represent a 92% probability of occurrence. 

Therefore, it might be beneficial to provide discrete microcode 

segments for these tuples while processing all other tuples with 

the generic microcode segments. This approach has been 

implemented and indeed reduces the number of branches 

significantly. The evaluation shows that CPI could be reduced 

from 2.66 to 2.35 which equals an improvement of 13%. The size 



of the microcode was increased only marginally and can be stored 

in the same block RAM capacity. The development efforts to 

implement the additional microcode sequences were modest due 

to our efficient DSL based approach. 

 

 

Figure 5. Occurrences of all supported TID, PMAP Tuples 

 

6.2 Branch Precalculation 
As outlined, each branch instruction requires three clock cycles, 

and effectively causes two bubbles or NOPs in the processing 

pipeline. The main reason for this delay is the latency of the block 

RAM that is utilized to store the microcode. In our architecture, 

there exist two different types of branch instructions. The first one 

uses the TID to lookup the instruction pointer segment, the other 

instruction is used to branch within the microcode segment. The 

template segment lookup latency can be completely hidden by 

performing a speculative lookup of the incoming fields and 

forwarding that information to the template memory. As UDP 

frames contain a large number of templates, the TID lookup 

occurs often providing a good opportunity for optimization.  

This approach will not reduce the startup latency for the very first 

FAST message of an UDP packet, because the first lookup will 

still imply the three cycle penalty. However, as the decompressor 

can always process one field per cycle and is hence much faster 

than the microcode engine, the FIFO in between the two units will 

already contain the new branch address as soon as the microcode 

engine is finished with the first FAST message. Forwarding of 

branch information in this way can, thereby, reduce the TID 

branch penalty completely and provided a CPI reduction from 

2.35 to 2.1.  

6.3 Variable Length Field Processing 
Another source of branch instructions is the processing of variable 

length fields. Due to the stop bit compression scheme integers 

within the raw FAST stream can have a size of in between 8 – 72 

bits (64 bit payload + 8 stop bits). As our datapath is only 64 bits 

wide, integers can either span one or two clock cycles which 

needs to be checked for each field and can lead to a branch. In 

both cases the compare instruction introduces additional NOP 

cycles. We addressed this issue by increasing the datapath to 72 

bits and by speculatively decompressing the field as an integer. In 

the case where the field, in fact, represents a multi cycle integer it 

can be processed directly; in all other cases the additional 8 bits 

are simply ignored. This approach avoids all branch instructions 

for integer processing completely. Implementing the variable 

length field processing optimization resulted in an improvement 

of CPI from 2.1 to 1.7. 

7. EVALUATION 
We have evaluated the performance of our design by 

comparing the different optimization techniques to our baseline 

approach. Figure 6 presents the improvements of our techniques 

in terms of the maximum data rate. In total, our baseline approach 

that offers a Dmax of 4.8Gbit/s could be improved by over 56% to 

a new Dmax, optimized of 7.5Gbit/s.  

 

Figure 6. Optimization Techniques 

 

To put our results in perspective we compare our FPGA based 

trading accelerator to conventional software based CPU 

approaches. Therefore, we reference performance results [7] that 

have been measured on an Intel Xeon 5472 and an IBM Power6 

using a software based FAST decoder. According to the paper we 

assume that the average size of a message is 21 bytes. Figure 7 

shows the maximum data rates that can be achieved on the three 

different architectures. The left column shows the single-thread 

performance while the right column depicts the multi-thread 

performance of the different architectures. It can be seen that the 

single-thread performance of our design of 7.5Gbit/s is about one 

order of magnitude higher than the performance of the CPU 

approaches (320Mbit/s and 640Mbit/s respectively). In addition, 

we present multi-threaded performance results, although of 

limited use, as individual messages can only be processed by a 

single thread concurrently. As a result, multi-thread 

implementations can only process multiple independent streams in 

 

Figure 7. FAST Data Rate 
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parallel. The Intel implementation uses a maximum of 4 threads, 

IBM uses 16 threads and our engine uses 2 threads. Although, as 

shown in Figure 3 we were able to fit up to four FAST processors 

into our design, we have limited our approach to a maximum of 

two units as in this case the host interface as well as the ethernet 

connection already becomes the performance limiting bottleneck. 

Nevertheless, our approach is well prepared for even higher 

upcoming data rates.  

Another reason for offloading FAST decoding to an FPGA is the 

latency reduction that can be achieved. We have compared the 

latency of processing an average sized FAST message (21 bytes) 

of the different implementations. As can be seen in Figure 8, the 

Intel Xeon implementation requires 261 ns, the IBM 

implementation 476 ns while our FPGA based microcode engine 

only requires about 40 ns to decode a 21 byte FAST message.  

 

 

Figure 8. FAST Decoding Latency 

 

8. RELATED WORK 
A good introduction to HFT is given in [1]. An introduction to 

FAST processing and its acceleration is provided in [6], while the 

previously mentioned “faster FAST” processing engine using a 

multi-threaded approach is presented in [7]. While both 

approaches focus on accelerating FAST decoding, to the best of 

our knowledge our approach is the first one that deploys FPGA 

hardware for this purpose. Morris [8] presents an FPGA assisted 

HFT engine that accelerates UDP/IP Stream handling similar to 

[9]. Sadoghi [10] proposes an FPGA based mechanism for 

efficient event handling for algorithmic trading. Mittal proposes a 

FAST software decoder that is executed on a PowerPC 405 

embedded in a Xilinx FPGA [12]. Finally, Tandon has presented 

“A Programmable Architecture for Real-time Derivative Trading” 

[11]. 

9. CONCLUSION 
In this paper we have presented a novel FPGA based accelerator 

for High Frequency Trading. Our design integrates the Ethernet 

MAC as well as IP, UDP and FAST protocol encoding to provide 

lowest possible latencies and highest data rates. While the 

application independent Ethernet and UDP decoders are 

implemented using optimized finite state machines, we developed 

a unique microcode engine for decoding FAST messages to 

increase the flexibility. Following this approach, arbitrary FAST 

templates and protocols can be adapted to support a wide range of 

stock exchanges and feed handlers. The microcode engine can be 

programmed via software using a domain specific language we 

specifically developed for this purpose. Our DSL programmable 

engine combines high programmability with high performance, 

providing data rates of up to 941MByte/s and a latency as low as 

40ns for decoding FAST messages which is one order of 

magnitude faster than traditional software based CPU approaches. 
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