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The high access latency of DRAM continues to be a performance
challenge for contemporary microprocessor systems. Prefetching is
a well-established technique to address this problem, however, exist-
ing implemented designs fail to provide any performance benefits
in the presence of irregular memory access patterns. The hardware
complexity of prior techniques that can predict irregular mem-
ory accesses such as runahead execution has proven untenable
for implementation in real hardware. We propose a lightweight
mechanism to hide the high latency of irregular memory access pat-
terns by leveraging criticality-based scheduling. In particular, our
technique executes delinquent loads and their load slices as early
as possible, hiding a significant fraction of their latency. Further-
more, we observe that the latency induced by branch mispredictions
and other high latency instructions can be hidden with a similar
approach. Our proposal only requires minimal hardware modifica-
tions by performing memory access classification, load and branch
slice extraction, as well as priority analysis exclusively in software.
As aresult, our technique is feasible to implement, introducing only
a simple new instruction prefix while requiring minimal modifica-
tions of the instruction scheduler. Our technique increases the IPC
of memory-latency-bound applications by up to 38% and by 8.4%
on average.

CCS CONCEPTS

« Computer systems organization — Superscalar architec-
tures.

KEYWORDS

prefetching, criticality, instruction scheduling, branch prediction,
out-of-order execution

ACM Reference Format:

Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. 2022. CRISP: Crit-
ical Slice Prefetching. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS °22), February 28 — March 4, 2022, Lausanne, Switzerland. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3503222.3507745

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507745

300

UPC
w

N

0 200 400 600 800 1000 1200

Time (clock cycles)

1400 1600 1800 2000

Figure 1: UPC improvement provided by CRISP over OO0
execution for a pointer-chasing microbenchmark

1 INTRODUCTION

The processor-memory performance gap continues to be one of the
most significant performance challenges of contemporary micro-
processors. Memory loads missing the cache hierarchy suffer from
long DRAM latency, leading to pipeline stalls with a detrimental ef-
fect on instructions per cycle (IPC). Two main approaches have been
developed in the past to address this challenge. Latency-avoiding
techniques utilize prefetching of regular [12, 28, 52, 53, 55, 61, 75,
76, 86, 94, 99, 108, 110, 111] or irregular [16, 48, 82, 84, 95] patterns
as well as helper threads [24, 33, 33, 70, 73, 123] to read data specu-
latively into caches before the demand load of the data occurs, ef-
fectively hiding the high memory access latency. Latency-tolerating
techniques such as out-of-order (OOO) execution [116] continue to
execute independent instructions behind long-latency loads in the
sequential instruction stream, avoiding pipeline stalls. The oppor-
tunities for reordering instructions have been further extended by
systems that consider instruction criticality [3, 20, 66, 81, 90, 91, 102]
and increase the number of instructions that can be reordered with
delinquent loads.

While these prior approaches have shown promising perfor-
mance benefits under favorable conditions, they suffer from two
major shortcomings: high hardware complexity and low flexibility.
For instance, runahead prefetchers [84, 85, 95] introduce significant
overheads for learning and storing promising prefetch candidates
and their instruction slices. They may introduce power overheads
by executing redundant instructions and, if the runahead interval is
too short, are ineffective. Continuous runahead engines [48] also in-
troduce additional compute cores for executing (redundant) instruc-
tions to generate prefetches. OOO processors have exploited critical-
ity mainly for improving energy efficiency (3, 20, 66, 81, 90, 91, 102]
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and for optimizing the cache hierarchy [10, 87, 115] but not for
prefetching. These techniques also introduce complex hardware
and storage requirements for classifying critical instructions at run-
time. As a result, there has been limited adoption of these proposals
in modern microprocessors.

Furthermore, previously proposed hardware techniques suffer
from limited flexibility while our proposed software technique al-
lows us to adjust the criteria for defining instruction criticality and
enable application-specific optimizations. Instruction scheduling
is NP-Hard [13, 14] for all but non-trivial pipelines and, for perfor-
mance reasons, needs to be performed with minimal latency. As a
result, deploying complex scheduling heuristics in hardware is infea-
sible, and hence most CPU schedulers utilize an oldest-instruction-
first policy at best, ignoring criticality. In contrast, software tech-
niques enable sophisticated policies for classifying delinquent loads
as critical instructions based on the execution frequency, miss ratio,
and memory-level parallelism (MLP) properties of each individual
load. Furthermore, the number of address-generating instructions
referred to as load slices and the critical-path length of these load
slices can be considered for determining criticality. In contrast to
hardware techniques that can only process load slices of a limited
size such as 32 instructions [48], software techniques are not limited
by meta-data storage overheads. Finally, while hardware techniques
for extracting load slices based on iterative backwards dependency
analysis (IBDA) [20] only consider register dependencies, our pro-
posed software technique observes dependencies through memory,
a critical capability enabling precise and comprehensive load slices.

To address the shortcomings of prior work, we propose CRISP, a
lightweight yet flexible mechanism for accelerating hard-to-predict,
delinquent load instructions that frequently miss the cache. Our ap-
proach leverages the performance monitoring unit (PMU) hardware
counters and instruction tracing capabilities of modern micropro-
cessors to determine critical loads and their load-address-generating
instruction slice profiles at compile time. We then utilize post-link-
time optimization [22, 88] to tag the critical instructions of a load
slice as prioritized. Our technique then “prefetches” these critical
instructions by extending the processor’s instruction scheduler to
prioritize critical instructions. To further improve performance,
CRISP introduces branch slices which reduce branch misprediction
penalties by executing hard-to-predict branch instructions as early
as possible. In general, CRISP can analyze and prioritize any high-
latency instruction (such as division or FBSTP), although delinquent
loads generally have the highest performance impact.

The only hardware requirement of our proposal is a mechanism
to mark and prioritize the execution of critical instructions inside
the CPU. Without loss of generality, on x86 we propose a new in-
struction prefix for tagging critical instructions, and we minimally
modify the scheduler to prioritize their execution. By performing
most of the work in software as part of a feedback-driven optimiza-
tion (FDO) [22] flow, our technique provides high flexibility while
avoiding complex and costly hardware modifications.

To illustrate the operation of CRISP, we analyze a synthetic work-
load that interleaves a linked list traversal exhibiting hard-to-predict
loads with an embarrassingly parallel vector multiplication as part
of a loop. In each loop iteration, a scalar number is read from the
next linked list element and multiplied with a vector. Figure 1 shows
the pops retired per cycle (UPC) for a traditional OOO processor
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and CRISP, for four loop iterations. The OOO processor operates
at the maximum UPC of 6 until it experiences a last-level cache
miss due to reading the next element from the linked list. At this
point, the processor stalls since all further instructions depend on
the load. CRISP addresses this challenge by tagging the delinquent
load and its load slice as critical which promotes its execution to
before the vector multiplication of the previous loop iteration. By
executing critical instructions as early as possible, CRISP improves
the average UPC of this workload by over 30%. Existing OOO sched-
ulers generally do not pick younger loads for scheduling as long
as older ready instructions are available in the reservation station.
This issue also cannot be easily addressed with the compiler as it
requires re-ordering of instructions across loop-iterations.
In summary, CRISP contributes over prior work as follows:
e CRISP avoids the execution of redundant instructions inherent
to runahead prefetching
o CRISP avoids the complexity and storage overheads for extracting
load slices in hardware
o CRISP increases flexibility by performing criticality extraction in
software
o CRISP allows for higher miss coverage and accuracy by observing
memory dependencies
o CRISP extracts only the critical instructions of a load-slice
e CRISP introduces branch slices for reducing the impact of branch
mispredictions
o CRISP introduces a low-complexity, criticality observing, matrix-
based instruction scheduler
CRISP leverages the combined techniques above to improve the
performance of applications exhibiting hard-to-prefetch loads by up
to 38% and by 8.4% IPC on average while introducing only minimal
hardware modifications. CRISP improves performance over IBDA
by up to 4.3x while avoiding most of its hardware overheads.

2 BACKGROUND

Modern microprocessors leverage out-of-order (OOO) execution
for improving IPC by executing instructions when their operands
are available rather than by program order. As part of this, proces-
sors implement a decoupled-frontend architecture [97, 114] which
can fetch up to hundreds of instructions ahead in the sequential
execution stream and place them into an instruction queue. To fetch
future instructions across basic block boundaries of sequential code,
processors employ branch prediction [71, 109, 121] mechanisms
such as the state-of-the-art TAGE predictor [103]. With a decoupled
frontend, a processor can exploit instruction-level parallelism by
searching the instruction queue for instructions that are ready to
execute, even if earlier instructions have unresolved register or
memory dependencies. Before instructions are selected and issued
by the scheduler, they are placed in the reorder buffer (ROB) which
tracks in-flight instructions and commits them back in program
order. To avoid stalls due to a full ROB, schedulers generally prefer
to issue the oldest instructions as early as possible to increase the
likelihood that the instruction at the head of the ROB can retire.
However, in many cases, executing latency-critical instructions
early can improve performance far more than selecting the oldest
instructions, but information about criticality is generally unavail-
able to the scheduler. As we will show in Section 3.1, loads that miss
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the CPU cache hierarchy needing to be served by main memory
frequently induce pipeline stalls by remaining at the head of the
ROB until the data arrives from main memory, thus prohibiting all
other instructions from retiring.

Prior work that considered criticality-based instruction schedul-
ing including Long Term Parking [102] and Delay and Bypass [3]
have focused on in-order pipelines for improving energy efficiency.
These approaches sacrifice 10% and 5% performance, respectively,
over an OOO core by simplifying the scheduling of non-critical in-
structions to improve energy efficiency in the frontend by 67% and
47%, respectively. Our technique leverages criticality for improving
IPC by reducing memory stall cycles induced by hard-to-prefetch
irregular memory access patterns. Both prior works also introduce
significant hardware complexity for implementing the IBDA [20]
required to extract load slices. Furthermore, these load slices are of-
ten incomplete as IBDA struggles to observe dependencies through
memory, only supports a limited number of small slices, and suffers
from limited flexibility as the algorithm is hard-coded in hardware.
CRISP addresses these challenges by introducing a new software-
based approach.

3 INSTRUCTION CRITICALITY

CRISP identifies high-latency load instructions that frequently in-
duce pipeline stalls due to cache misses and tracks their load-
address-generating instructions (slices). These load slices can be
as simple as a single constant or might involve hundreds of prior
instructions that combine to form an address. By tagging these in-
structions as critical and prioritizing their execution, the instruction
scheduler can hide a large fraction of the memory access latency,
improve memory-level parallelism (MLP) and overall performance.
In the following, we discuss a code example to show the operating
principle of CRISP.

#define VEC_SIZE 32
struct Node {
Node *next;

4 int val;
S H

std::vector<int>vec(VEC_SIZE);
7 Node *current; // set elsewhere
s while (current) {
9 //__builtin_prefetch(current->next);
10 for (int i = @; i < VEC_SIZE; i++) {
1 vec[i] *= current->val;
12 }
13 current = current->next;

4}

Figure 2: Linked List Pseudocode

3.1 Motivating Example

Consider the code snippet in Figure 2 which shows a linked list
traversal in an outer loop as well as a vector-scalar multiplication
in the inner loop. The vector multiplication can execute at high
IPC due to abundant instruction-level parallelism (ILP). However,

302

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

the memory access in line 11 is likely to miss the cache result-
ing in high latency. The load operation of current->next stalls
the CPU pipeline as the vector-multiply instructions of the next
outer loop iteration depend on the value returned by the missing
load (current->val). Out-of-order execution cannot hide the load
latency in this case as the processor would have to execute the
delinquent load instruction before executing the inner loop, as this
would allow overlapping the delinquent load of the next node with
the current node’s vector multiplication. Existing OOO processors
fail to do this as the scheduler generally prioritizes older instruc-
tions such as the loads reading the vector elements. We confirmed
this performance pathology on an Intel Xeon Gold 5117 by com-
piling the kernel shown in Figure 2 with GCC version 9.3. The
kernel executes at an IPC of 1.89, whereas if we manually move the
pointer-chasing memory operation of the next iteration to before
the vector multiplication by inserting the prefetch in line 12, IPC
increases to 2.71. In the next section, we propose an automatic
software-based approach that determines delinquent loads as well
as their load-address-generating instructions to determine criti-
cal instructions that should be executed as early as possible. By
providing this information to the CPU scheduler it can prioritize
delinquent loads and their instruction slices, avoiding the need
for manual prefetch insertions while effectively prefetching even
irregular memory accesses such as in pointer chasing applications.

3.2 Determining Delinquent Loads

Due to the complexity of modern OOO cores, determining the la-
tency criticality of instructions is challenging. We define a load
to be critical if its last level cache (LLC) miss rate is higher than
a particular threshold, for instance, 20% (Section 5.5 explores this
threshold), its memory address cannot be easily predicted by the
hardware prefetcher (not a constant or stride), and if the number of
independent instructions behind the load in the sequential instruc-
tion stream is small. Furthermore, criticality is application-specific.
For instance, for a memory-bound application, a large fraction of
the program instructions may be part of at least one load slice.
In the case where most instructions of a program are flagged as
critical, the scheduler will have no opportunity to prioritize any
instruction. We empirically determined that the prioritization of
critical instructions performs best if the ratio of critical instructions
among all instructions is 5%-40%. In other words, there must be
a sufficient mix of non-critical instructions for the scheduler to
deprioritize, in order to hide the latency of the critical loads. By
performing multiple profiling passes CRISP can empirically test
different injection thresholds to determine the application-specific
optimized ratio of critical instructions. There exist several other
factors that determine the criticality of a load and its load slice
including,

the load’s execution ratio over other loads in the program

the LLC miss rate of the load

the pipeline stalls induced by the load

the baseline IPC and instruction mix of a program

the MLP of the program at the time where the load occurs

the time a load becomes ready to be scheduled, determined by
its dependency on other high latency instructions
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While modern CPUs generally lack the observability for directly
measuring all of the above metrics, Intel Xeon' processors pro-
vide other measurement capabilities such as performance mon-
itoring unit (PMU) counters [25], precise event-based sampling
(PEBS) [118], last branch record (LBR) [31], and processor trace
(PT) [64]. For instance, IPC can be measured directly while the
instruction mix can be obtained via VTune or PMU counters. The
execution frequency of a specific load compared to all others can
be measured with PEBS or PT. A load’s average memory access
time (AMAT) can be approximated by measuring its cache misses
via PEBS. The pipeline stalls induced by a load and MLP can be
approximated by observing precise back-end stalls and load queue
occupancy. Based on measurements of these metrics, we derived
a heuristic for determining criticality performance gains for our
analyzed applications. In particular, we only flag loads as critical
if they represent more than 5% of all executed loads of a program,
if their LLC miss ratio is above 20%, and if the average MLP is
below 5 for phases that include said load. Based on the instruction
mix (number of loads over other instructions) and baseline IPC we
scale these percentages linearly to account for application-specific
behavior.

3.3 Load Slice Extraction

In order to increase the opportunities for hiding memory access
latency, it is necessary to reorder critical loads before non-critical
instructions as early as possible. Loads frequently depend on other
instructions (e.g., to compute a non-trivial memory load address),
and these instructions, which we refer to as a load slice, need to
be identified and prioritized as well. For our study, we trace the
execution of a program using DynamoRIO’s [17, 18] Memtrace
tool, alternatively, Intel’s PT can be used?. After obtaining a trace,
we perform load slice extraction by iterating through the trace
until one of the delinquent load instructions (see Section 3.2) is
found. We then traverse the trace in the reverse program order
direction, following the data dependencies between instructions
to determine all ancestor instructions. Therefore, the algorithm
maintains a queue called frontier containing all instructions for
which ancestors have not been explored yet. The algorithm starts
by inserting the delinquent load into the frontier and by analyzing
its source registers. The current instruction is removed from the
frontier, and ancestors are inserted into the frontier, to be analyzed
in the next round, except for the following reasons: (1) The ancestor
instruction is already contained in the load-slice, (2) The instruction
source operand is a constant and does not have an ancestor (3) The
ancestor instruction is a system call return instruction, (4) The end
of the trace has been reached. The algorithm terminates for a given
delinquent load whenever the frontier is empty.

Figure 3 shows an example of the load slice extraction process
based on assembly code obtained by compiling the source code of
Figure 2. Using the techniques described in Section 3.2 the load with
PC 0x15e9 on line 30 is flagged as a critical load instruction. We
traverse its data dependencies in the backwards direction until we
reach line 25 with PC 0x15da. As @x15da depends on the previous

! AMD and ARM-based microprocessors provide similar capabilities.
2To observe dependencies through memory the PTWrite instruction [26] available on
Kaby Lake is required.
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. for(int i = @; i < LIST_SIZE - 1; i++) {

» 1594: movl  $0x@,-0x18(%rbp)

5 159b: mov -0x18(%rbp) , %eax

4+ 159%e: cltq

5 15a0: cmp  $0x1fffe,%rax

¢ 15a6: ja 15f7 <_Z8traversev+0x86>
7 for(int e = @; e < VEC_SIZE; e += 1) {
s 15a8: movl  $0x@,-0x14(%rbp)

o 15af: cmpl  $0x3f,-0x14(%rbp)

o 15b3: jg 15da <_Z8traversev+0x69>
1 vector[e] *= val;

> 15b5: mov -0x14(%rbp) , %eax

13 15b8: cltq

4+ 15ba: mov %rax,%rsi

15 15bd: lea Ox5bac(%rip),%rdi

o 15c4: callg 1b66 <_ZNSt6vectorImSaIm>
17 15¢9: mov (%rax) ,%rdx

s 15cc: imul -@x8(%rbp),%rdx

o 15d1: mov  %rdx, (%ax)

20 for(int e = @; e < VEL_SIZE; e += 1) {

21 15d4: addl  $0x1,-0x14(%rbp)
> 15d8: jmp 15af <_Zdtraversev+ox3e>
23 }

24 cur = cur->next;

25 15da: mov -0x10(%rbp) Zrax
2% 15de: mov (%raﬂ’ﬁax

27 15el: mov %ra@1 0\ %rbp)
28 val = cur->val; /

2 15e5: mov -0x10 (%rbp)} %rax
0 15e9: mov Ox8(%r JLpax

51 15ed: mov %rak;-0x8(%rbp)

for(int i = @; 1 < LIST_SIZE - 1;
53 151 addl  $0x1,-0x18(%rbp)
32 15f5: jmp 159b <_Z8traversev+0x2a>

i++) {

Figure 3: Pointer Chase Assembly

loop execution of @x15e1, the load slice extraction terminates due
to arecursive dependency as 0x15e1 is already contained in the load
slice. Note that line 18 with PC @x15cc is not part of the load slice
as there only exists a forward dependency between this instruction
and the load slice. In particular, the instruction instance of @x15cc
of the next loop iteration only depends on the value produced by
0x15e9. As a result, the processor can reorder the execution of the
critical load slice before line 2, hiding the memory latency of the
memory access in line 30.

After extracting the load slice, we flag all load slice instructions as
critical by prepending the new ‘critical’ instruction prefix during the
feedback-driven optimization pass. Our implementation is similar to
prior work that leverages dataflow analysis for classifying memory
access patterns [6].

3.4 Branch Slice Extraction

Initial experiments with our system showed that the benefit of
prioritizing loads with irregular memory access patterns and their
load slices is significantly higher on a system with a perfect branch
predictor. For loops that contain hard-to-predict branches (mispre-
diction rate > 15%), we observed that the execution time of a loop
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iteration is determined to a large degree by the time required to
resolve the branch outcome. Hence, prioritizing load slices within
those loops does not automatically lead to significant performance
gains. This effect was particularly relevant for SPEC’s 1bm as dis-
cussed in Section 5.3. We address this challenge by extending our
classification methodology to include hard-to-predict branches and
their branch slices as critical, forcing the scheduler to also compute
these branches as early as possible, thus hiding a large fraction of
the original branch misprediction latency. Similarly to load slices we
define a branch slice as the set of instructions required to compute
the branch outcome. While branch slicing improves performance
for branch-bound applications in isolation, it notably synergizes
well with load slicing. In Section 5.3 we show that the benefit of
combining load and branch slicing can be greater than their individ-
ual contributions. Branch slicing highlights the flexibility of CRISP,
since we are adapting its software-based criticality extraction for
new branch policies and optimizations. We discuss additional op-
portunities for how our technique can be leveraged in Section 6.

3.5 Why Hardware-Only Techniques Are
Insufficient

Hardware proposals such as the load slice architecture [20], long
term parking (LTP) [102], and Delay and Bypass [3] prioritize loads
and their slices to hide the memory access latency in in-order pro-
cessors. When applied to an OOO machine, these prior techniques
suffer from the following shortcomings: a) a lack of detailed profil-
ing information, b) an inability to observe dependencies through
memory, c) an inability to perform critical path analysis, and d) lim-
ited on-chip storage capacity for slices. Determining performance-
critical loads requires detailed information about the execution
frequency of each load, its cache-level miss rate, and the dependen-
cies of other instructions on this load. This information is generally
unavailable in hardware and hence prior techniques have resorted
to simple, less accurate techniques such as treating all loads as
critical. Hardware methods that utilize IBDA, capture incomplete
instruction slices as they can only observe dependencies through
registers, but not memory which is crucial for x86 due to register
spilling. For instance, in Figure 3, line 31 the value in the rax regis-
ter is passed through the stack (rbp). For complex applications, load
slices can contain thousands of instructions exceeding the ROB and
reservation station size of modern processors. Figure 4 shows the
average size of a load slice for Spec and datacenter applications (we
provide application details in Section 5). The challenge is that if the
instructions of a load slice fill all slots of the reservation station,
there exist no opportunities for the scheduler to prioritize critical
over non-critical instructions. CRISP, therefore, only promotes the
instructions of a slice that are on the critical path. Therefore, CRISP
treats the instruction slice as a directed acyclic graph (DAG) and it
then computes the aggregated path latency between each leaf in-
struction and the root (the delinquent load). For most instructions,
we assign a fixed latency according to the processor implemen-
tation [1, 41] where for loads we utilize the AMAT in cycles as
determined in Section 3.2. The DAG required for this analysis can
be computed from an instruction trace but is generally unavailable
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Figure 4: Average load slice size

in hardware. Lastly, storing criticality information in hardware in-
troduces significant storage overheads whereas CRISP introduces
only minimal hardware modifications.

3.6 Why Software-Only Techniques Are
Insufficient

Instructions can be reordered by the compiler to prioritize criti-
cal loads. In fact, compilers today implement code-hoisting tech-
niques to execute loads and their slices as early as possible. For
instance, LLVM’s Hoist() function moves loop-invariant loads
into the loop’s preheader block by storing the loaded value into
a register. This optimization is performed by most modern com-
pilers and partially hides the load latency while guaranteeing that
loads are executed only once instead of at each loop iteration. Most
performance-critical loads, however, are loop-dependent and as
such, they cannot be reordered across basic blocks resulting in lim-
ited optimization opportunities. CRISP, on the other hand, leverages
hardware speculation to execute prioritized load slices as early as
possible, even across basic blocks. In particular, as the frontend per-
forms branch prediction to provide future instructions, the CRISP
scheduler selects critical instructions to be executed first while
skipping older non-critical instructions of earlier loop iterations.
These early-executed, critical instructions do not affect correctness
if misspeculated, as they are squashed by the hardware after re-
solving the misprediction. Another issue of static code hoisting
techniques is that loads can be potentially be moved from a cold
into a hot basic block, reducing performance. For this reason, LLVM
had to introduce PGO-based instruction hoisting which only moves
instructions if the recipient basic block is cold, highlighting the
need for a more dynamic mechanism. More generally, static code
scheduling such as embraced by VLIW [35, 39, 104] has shown to
be inferior to dynamic instruction scheduling mechanisms.

4 IMPLEMENTATION

CRISP is implemented predominantly in software to achieve high
flexibility and performance while introducing only minimal hard-
ware modifications.
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Figure 5: CRISP Software Infrastructure

4.1 Software Support

Datacenter operators such as Google and Facebook rely on feedback-
driven optimization [22] and post-link-time optimization [68, 88]
to improve the performance of their workloads. These techniques
are particularly successful in datacenters, as the cost and over-
head introduced by post-compile-time optimizations can be easily
amortized in large-scale systems. To facilitate such an approach, dat-
acenters automate the sequence of compilation, profiling, tracing,
post-compile optimization, and deployment. We integrate CRISP
into this flow as steps (2) and (3) as shown in Figure 5. CRISP lever-
ages system-wide profiling techniques (1) such as GWP [56, 98]
or ODS [15] and AsmDB as a system-wide instruction tracing
method [7]. The profiling and tracing data as well as the unmodified
binaries are then fed into a tool described in Section 3.3 to extract
load slices and branch slices. Here we also perform optimizations
such as filtering out uncommon code paths and merging code slices
that refer to the same delinquent load instruction. We then rewrite
the compiled assembly code adding the new instruction prefix to ev-
ery critical instruction using post-link-time compilation [44, 68, 88].
The analyzed traces contain 100M instructions and have a size of
5GB (1.6GB compressed). The analysis and slice extraction step
takes on the order of 100 seconds. Previous works including Aut-
oFDO [22], BOLT [88], AsmDB [7], I-SPY [59], Ripple [60], and
Twig [58] have shown that profile-guided optimization techniques
are practical and that they are deployed in data centers today.

4.2 Hardware Support

CRISP requires minimal hardware to recognize and prioritize flagged
latency-critical instructions as well as a method to mark critical in-
structions, either directly in their encodings or through a sideband
method. Without loss of generality, our implementation targets
an x86-based system and introduces two modifications to achieve
this. First, we extend the instruction decoder to interpret the new
latency-critical instruction prefix and tag all critical instructions
as they progress through the CPU pipeline. Second, we extend the
scheduler to prioritize these critical instructions. Our approach can
be implemented in both unified reservation station (RS) architec-
tures as well as in systems that leverage a separate scheduler for
each functional unit. The scheduler needs to observe the critical-
ity of every instruction and select critical-tagged instructions over
non-critical instructions.
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We implement CRISP as part of an age matrix-based RAND sched-
uler which represents the state-of-the-art in contemporary proces-
sors [5, 100]. RAND schedulers insert newly-fetched instructions
into random slots in the instruction queue (IQ), providing space
efficiency while significantly reducing the circuit complexity over
traditional self-compacting queue-based schedulers (SHIFT) [36].
While SHIFT provides the advantage of perfectly ordering instruc-
tions according to their fetch cycle, it is no longer used [5] as
compaction is too expensive to be feasible at high clock frequencies.
The IPC performance of RAND schedulers can be improved by ob-
serving instruction fetch order, leveraging an age matrix [92, 100],
as deployed by AMD Bulldozer [43] and IBM POWERS [107] pro-
cessors. The age matrix for an IQ with N entries works as follows:
every entry in the IQ maintains an N-bit age vector initialized to
all ones. When an instruction is enqueued, the bit corresponding
to its slot in the IQ is cleared in the age vector. When subsequent
instructions enter the IQ, they clear their corresponding bit in all
age vectors of prior instructions. When an instruction is ready to
schedule (source operands available) it sets the bit according to
its slot in the BID vector. Each ready instruction then performs
a bitwise AND of its age mask and the BID vector. Only for the
oldest instruction, the result will be all zeros. Therefore, to pick a
particular instruction, the result vector is reduced to a single-bit
signal using an n-bit NOR operation. The overall propagation delay
is determined mainly by the reduction-NOR which consists of n
transistors and hence scales with the size of the IQ. All bitwise
operators can be implemented with a single logic level. To enable
CRISP, we extend the age matrix circuit as follows: in addition to
the BID vector, we also generate a PRIO vector for all instructions
that are both ready and prioritized. Each instruction performs a
bitwise AND of its age mask and the PRIO vector. The PRIO vector
is reduced via n-bit NOR to generate the select signal. Furthermore,
CRISP adds a multiplexer to select between the oldest prioritized
instruction and, if such does not exist, the oldest instruction. The
additional gates introduced by CRISP are shown in Figure 6 in blue.

4.3 Storage and Timing Overhead

To support CRISP, each slot in the IQ is extended with a single bit
to identify its priority, resulting in a space overhead of 1/n. The
impact of CRISP on the critical path delay is limited as most of the
additional logic, including the costly NOR-reduction, is processed in
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Figure 7: IPC Improvement of CRISP over the OO0 and IBDA baselines
Table 1: Simulated System
with load slicing. Next, we perform sensitivity studies to evaluate
[ Parameter | Value l the impact of the ROB size on CRISP’s performance and we analyze
CPU Intel Xeon Skylake . o s . . .
different thresholds for determining critical instructions in software.
Number of cores per socket 20 R R R |
All-core turbo frequency 3.0 GHz Finally, we evaluate the code footprint overhead of introducing our
Frontend width and retirement | 6-way new instruction prefix.
Functional Units 4 ALU, 2 Load, 1 Store
Branch Predictor TAGE [103]
Branch Target Buffer (BTB) 8K entries

ROB

224 entries

Reservation Station

96 entries (unified)

Baseline Scheduler

6-oldest-ready-instructions-first

Data Prefetcher BOP [76] and Stream
Instruction Prefetcher FDIP [96], 128 FTQ entries
Load Buffer 64 entries

Store Buffer 128 entries

Uncore

L1 instruction cache 32 KiB, 8-way

L1 data cache 32 KiB, 8-way

LLC unified cache Shared 1 MiB/core, 20-way
L1 D-cache latency 4 cycles

L1 I-cache latency 3 cycles

L3 cache latency 36 cycles

Memory DDR4-2400 (1 channel)

parallel to the existing design. The critical path length is increased
by one additional logic level (AND to generate PRIO) and one multi-
plexer. The multiplexer can be implemented with a transmission
gate without introducing an additional logic level. If the picker
logic still represents the most timing critical stage, the AND gate
can be moved into the previous pipeline stage so that the PRIO and
RDY signals are generated in the same cycle (this implementation
increases the storage overhead to 2/n). As a result, CRISP can be
implemented with minimal overheads to the critical path delay of
the scheduler. In the evaluation in Section 5 we assume the same
scheduling latency for CRISP as for the baseline scheduler. CRISP
also introduces additional runtime overheads in the instruction
cache by adding priority prefixes to instructions. We evaluate the
impact of this modification in Section 5.7.

5 EVALUATION

We evaluate our approach via cycle-accurate simulation. We first
evaluate the IPC performance gains provided by CRISP over an
00O baseline. We then evaluate branch slicing and its synergy
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5.1 Methodology

We evaluate CRISP on Scarab [51], a cycle-accurate simulator that
models modern out-of-order cores with high fidelity. Scarab models
a detailed decoupled frontend, functional units (of different types)
contention, branch prediction, BTB, RAS, a multi-level cache hier-
archy, and a detailed memory system leveraging Ramulator [63].
The most important system parameters resemble a Skylake-like
Intel processor [27] and are summarized in Table 1. The CRISP im-
plementation as well as all baselines share the same parameters
apart from the scheduler modifications introduced by CRISP.

We evaluate memory-intensive workloads from SPEC2017 [50],
Xhpcg [30], as well as data center applications including Moses,
Memcached, and Img-dnn from Tailbench [57]. For each applica-
tion, we execute 200M representative instructions. For all exper-
iments, we enable a best-offset data prefetcher (BOP) [76] which
prefetches periodic access patterns and regular strides such as the
vector loads in listing 2. We also experimented with a regular stride
and GHB [86] prefetcher, however, we omit these results for brevity
as the performance improvement of CRISP over these baselines was
similar in comparison to BOP.

To perform our experiments we execute the application once,
obtaining PMU counter measurements and instruction traces as
described in Section 3.3. We then determine critical instructions and
annotate them in the code. We then re-execute the applications on
Scarab, observing criticality in the scheduler. We perform profiling
and performance evaluation on two separate executions, utilizing
different inputs. In particular, for profiling and slice-extraction we
leverage SPEC’s train inputs, while for evaluation we utilize the ref
inputs. We also varied the inputs for the other applications such as
using different input dimension parameters for xhpcg.
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Figure 8: Performance impact of branch slices, load slices, and their combination

5.2 IPC Improvement of CRISP

We evaluate the IPC improvement provided by CRISP over the OOO
baseline in Figure 7. We also compare CRISP to a hardware-only
design referred to as IBDA which performs load slice extraction
via iterative backwards dependency analysis. IBDA utilizes the
same OOO core as CRISP, while adding a 4-way set associative
instruction slice table (IST) with 1024 entries as proposed in the
load-slice architecture [20] for iterative backwards dependency
analysis. We also evaluate an 8K entry (8-way), 64K entry (16-way),
and infinitely sized IST. IBDA also maintains a 32 entry delinquent
load table to capture the most frequently executed loads missing
the LLC. We compare CRISP to IBDA to evaluate the advantages of
software-based load and branch slice extraction.

Figure 7 shows that CRISP provides an average IPC speedup of
8.4% and a maximum speedup of 38% over the OOO baseline. CRISP
also significantly outperforms IBDA which achieves an average
improvement of only 4.3X % over the baseline. There exist various
reasons why IBDA cannot provide the same performance level as
CRISP. In moses, load slices are too long and too large to be cap-
tured by the IST. For 1bm, IBDA suffers by lacking the capability of
extracting branch slices as even for an infinite IST, IBDA underper-
forms CRISP. In namd and Xhpcg, IBDA misses important load slices
due to its inability of following dependencies through memory. In
bwaves, IBDA captures the wrong delinquent loads which, although
exhibiting high LLC MPKI, are not performance-critical as they are
executed in phases of high MLP. For fotonik, perlbench and
moses, IBDA selects too many (non-critical) instructions from the
load slice (as it lacks critical path analysis) inducing a performance
reduction over the baseline. Furthermore, note that CRISP intro-
duces virtually no hardware overheads whereas IBDA introduces
significant processor modifications and metadata storage overheads.
We do not show MPKI numbers as CRISP only reorders memory
accesses without reducing cache misses. A helpful metric to con-
firm the IPC gains is to count the cycles that instructions reside at
the head of the ROB without retiring. We can observe that CRISP
indeed reduces these stall cycles as reflected by the IPC gains.
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5.3 Branch Slicing

CRISP leverages load slices and branch slices to execute long latency
instructions as early as possible. We developed branch slicing after
observing that in the case of 1bm, the benefits from load slicing
were significantly increased when enabling a perfect branch pre-
dictor. The reason is that frequent branch mispredictions prevent
the decoupled frontend from running ahead and fetching suffi-
cient instructions into the reservation stations, which prohibits
the scheduler to exploit criticality efficiently. Figure 8 shows the
IPC performance gain of CRISP when utilizing load slices, branch
slices, and both combined. We can see that cactus, 1bm, perlbench,
and memcached synergistically utilize branch and load slices to im-
prove performance as the combined performance is both higher
compared to only prioritizing branch- or load slices. deepsjeng,
1bm, nab, namd provide over 3% IPC gains just from prioritizing
branch slices, showing that critical branch prioritization is a useful
technique on its own.

5.4 Reservation Station Size Sensitivity Study

In CRISP, the reservation station (RS)-and to a lesser degree, the
ROB size-determine the opportunities for the scheduler to reorder
instructions. As future microprocessors are likely to increase the
size of these structures (e.g., Intel’s Sunny Cove architecture in-
creased the RS size from 96 to 128 entries over Intel Skylake), we
analyze the performance improvements of CRISP for an RS and
ROB increased by 50% and 100%, respectively. As shown in Figure 9,
CRISP provides significant performance improvement across the
different RS/ROB configurations. Xhpcg benefits significantly from
larger structures improving its IPC gain from 12.5% (Skylake) to
over 25% for a Sunny-Cove-like core. On the other hand moses ex-
hibits the largest performance gains for the smaller 64RS/180ROB
configuration. Analyzing the results we found that for moses a large
ROB improves performance significantly and hence the relative
improvement provided by CRISP is smaller. Xhpcg can realize ad-
ditional prioritization opportunities from CRISP with a large ROB
enabling significant performance gains.
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Figure 10: Sensitivity study for miss rate criticality threshold

5.5 Load Slice Criticality Threshold Study

The flexible software-based design of CRISP enables sophisticated
heuristics to classify between critical and non-critical instructions.
Here we evaluate one important control knob; the miss ratio of
delinquent loads. Tagging delinquent loads with a high execution
frequency but low miss rate as critical can be problematic, as even
loads that are likely to be served by the on-chip caches will be
prioritized by the scheduler. This reduces the opportunity for pri-
oritizing other critical instructions that are actually going to miss
the LLC. In Figure 10 we compare CRISP performance for three
configurations varying the miss threshold T from 5% to 1% to 0.2%.
In particular, CRISP prioritizes a load if it contributes greater than T
misses of the total misses experienced by the application. As can be
seen, a miss threshold of 1% provides the best overall performance,
while, for instance, moses performs best with a miss threshold of 2%.
For Most other applications this miss threshold provides reduced
performance gains. For future work, we envision an iterative mech-
anism that profiles applications with different miss ratio thresholds
to enable additional application-specific optimizations.
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Figure 11: Total number of critical instructions

5.6 Total Number of Critical Instructions

In Figure 11 we show the total number of critical instructions
of all load and branch slices for the evaluated applications. For
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Figure 12: Static and dynamic instruction footprint overhead introduced by the CRISP prefix

perlbench, gcc, and moses, CRISP classifies over 10,000 unique in-
structions as critical. To perfectly capture those instructions, hard-
ware techniques such as IBDA would have to deploy 100’s of KB
of meta-data storage. CRISP, in contrast, only adds a single byte
prefix per critical instruction and by storing prefixes as part of the
instruction footprint additional storage structures are avoided.

5.7 Instruction Prefix Overhead

CRISP introduces a new instruction prefix to identify load and
branch slices, increasing the static and dynamic (considering the
execution frequency of instructions) code footprint of applications
by one byte per critical instruction as shown in Figure 12. While
the static code size increases only minimally, the dynamic code
footprint increases more significantly, by 5.2% in average, as critical
instructions are common in hot loops. While this increases the pres-
sure on the icache, we observed a worst-case increase in instruction
cache MPKI of only 2.6% for our evaluated applications.

6 DISCUSSION

We explore additional techniques to exploit criticality and discuss
the impact of CRISP on security.

6.1 Further Exploiting Criticality

We envision additional opportunities for leveraging the newly-
proposed instruction prefix. First, other high-latency instructions
such as division can be accelerated with CRISP. Here, the challenge
is to determine the exact performance impact of a specific instruc-
tion as, in the case of division, the latency can depend on the input
operands. Therefore, we envision adding new events to the PMU
for determining the PC of arbitrary instructions that induce sig-
nificant stall cycles. Another class of instructions that may benefit
from criticality support are vector instructions such as AVX-512,
which are becoming increasingly important in the machine learn-
ing domain. Prior works [32, 45, 101] have observed a significant
transition latency leading to CPU stalls when the first AVX-512
instruction is detected after a phase of AVX-512 inactivity. By prior-
itizing the first AVX-512 instruction, the vector unit can be enabled
before additional AVX-512 instructions clog the pipeline. Second,
criticality information can be leveraged by other components in the
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system aside from the scheduler. For instance, depending on the
memory consistency model, the latency of delinquent loads may
be further reduced by re-ordering them in the load queues, on-chip
interconnection network [77], and DRAM scheduler [42]. Third,
criticality can be leveraged to increase performance predictability
for enforcing service level objectives (SLO) such as tail latency
requirements. In an SMT [34]-enabled processor, the instructions
of a latency-sensitive thread can be prioritized over instructions
of a latency-insensitive thread enabling both high CPU utilization
while enforcing SLOs.

6.2 Security Implications

Speculative execution attacks such as Spectre [65] and Meltdown [72]
have shown how to leak information through covert side channels.
We discuss the potential effects of CRISP on security, focusing on

its hardware components as the software analysis and tracing tech-
niques leveraged by CRISP are already available today. One possible

attack enabled by CRISP is to execute an application with all critical

or all non-critical instructions on a hardware thread to leak the

number of critical instructions of a separate thread running on the

same SMT core. By observing the criticality of instructions of a

neighboring thread in certain application phases, it may be possible

to extract signatures identifying the other application running on

the same core. We claim that leaking criticality is less severe than

leaking data through SMT as previously demonstrated by PORTS-
MASH [2], TLBleed [46], CacheBleed [120], and MemJam [78]. The

previously-proposed mitigation techniques such as disabling SMT
and leveraging port-independent code are equally applicable to

CRISP.

Prioritizing instructions of one hyperthread over another hyper-
thread on the same core introduces a potential denial of service
attack (DoS) by simply tagging all instructions of a program as crit-
ical. Here, a mitigation technique that guarantees forward progress
of the victim thread is to reserve some execution resources ensuring
that every SMT thread is guaranteed to execute a certain number
of instructions per time period. This problem can also be addressed
by policies guaranteeing the scheduling of some non-critical in-
structions in the presence of abundant ready, critical instructions,
or by simple round-robin arbitration between threads.
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7 RELATED WORK

Prior work has addressed the performance challenges introduced
by long-latency DRAM accesses via latency-avoiding and latency-
toleration techniques. There exists a large body of work on prefetch-
ing regular memory accesses. Stream prefetchers [52, 99] and pattern-
based prefetchers [28, 53, 61, 62, 76, 86, 94, 105, 108] learn the delta
between the effective addresses of subsequent cache misses to pre-
dict future accesses. These designs introduce moderate hardware
complexity and can prefetch simple stride and periodic patterns.
Spatial prefetchers [9, 12, 37, 111] have higher metadata stor-
age overheads than delta prefetchers, allowing them to memorize
arbitrary lines within a page for prefetching. As a result, these
types of prefetchers can increase coverage over delta prefetch-
ers. However, they are still limited to prefetching recurrent pat-
terns and hence fail to prefetch, for instance, linked list traver-
sals and other irregular memory access patterns. CRISP can be
combined with these prior approaches to increase coverage by
reducing the miss penalty of irregular memory accesses. Tempo-
ral prefetchers [8, 49, 54, 119, 122] track the temporal order of
cache line accesses based on Markov prefetching [55] introducing
significant storage overheads in the order of megabytes in con-
trast to CRISP. Runahead prefetchers [6, 33, 48, 82-84, 89, 95] and
helper threads [21, 23, 24, 70, 73, 74, 110, 117, 123, 124] prefetch
irregular memory accesses as in linked-list traversals, however,
they introduce significant hardware complexity or consume sepa-
rate SMT-threads [34] whereas CRISP requires only minimal hard-
ware modifications. Branch runahead [93] addresses hard-to-predict
branches by prioritizing their execution minimizing the misspre-
diction penalty. As other runahead techniques, this approach intro-
duces significant hardware complexity and pipeline modifications.
Latency toleration techniques such as OOO execution [19, 116]
hide high memory access latency by executing independent instruc-
tions instead of stalling the CPU pipeline. In contrast to CRISP,
00O techniques, however, fail to improve performance if there do
not exist sufficient independent instructions after the delinquent
load (see Figure 1). Instruction criticality has been leveraged to
improve scheduling in prior works including Fiforder [4], Long-
term parking [102], and Delay-and-Bypass [3]. These works parti-
tion the instruction queue into smaller sub-queues holding ready,
non-ready, critical, and non-critical instructions to improve the
scheduling energy-efficiency. The Load-Slice (LC) [20], Forward
Slice Core [67], Freeway [66], and Front-end Execution Architec-
ture [106] works propose architectures in which non-critical in-
structions are executed by an in-order pipeline while loads are
allowed to bypass. In contrast to CRISP, all of these prior works
do not improve delinquent load latency and, in fact, often reduce
performance by 5% [102] to 9% [3] over an OOO baseline. Criti-
cality Driven Fetch [29] proposes to determine critical instruction
chains and prioritizes their fetch, allocation, and execution. This
work requires considerable modifications of the entire processor
pipeline. NOREBA [47] proposes a hardware-software co-designed
technique to early-retire non-speculative instructions for freeing
up slots in the ROB. While this technique enables issuing additional
instruction after the load it does not enable issuing instructions
before the load. Balasubramonian [10], Subramaniam [115], and
Nori [87] have leveraged load-criticality to optimize data allocation
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in caches to reduce the latency and power consumption of caches
requiring significant cache modifications in contrast to CRISP. All
these works determine criticality solely in hardware introducing
complexity and overheads while limiting accuracy. For instance,
LC [20] treats all loads as critical instructions because measuring
the cache miss rate for each load for a more precise measure would
introduce substantial metadata storage overheads. Prior works per-
form load slice extraction via IBDA [20, 125] leading to incomplete
slices as they lack the capability of observing instruction depen-
dencies through memory. CRISP, in contrast, enables sophisticated,
flexible, and application-specific metrics for determining instruc-
tion criticality while enabling the extraction of comprehensive load
slices. Furthermore, CRISP introduces branch slices over prior work
to reduce the performance impact of branch mispredictions.
Further techniques optimizing load scheduling include the Re-
covery Buffer [79, 80] and the Waiting Instruction Buffer [69] which
move the dependent instructions of a cache miss into a separate
queue to reduce the size of the main instruction queue. In contrast to
CRISP, these techniques target instructions after a delinquent load
for improving energy-efficiency. Srinivasan [112, 113], Fisk [40],
Fields [38] and Muthler [81] have explored deferring instructions
based on their slack, defined as the time an instruction can be de-
layed without affecting performance. These approaches serve loads
with high slack from slower hardware resources providing addi-
tional resources to latency-critical loads. In contrast to CRISP, the
approaches introduce significant hardware overheads and complex-
ity due to redesigning the processor frontend. Furthermore, estimat-
ing the slack requires microarchitectural simulation suffering from
inconsistencies between the simulator and the real hardware. Fo-
cused value prediction [11] tries to predict the results feeding into
long-latency loads to reduce the critical path length of dependent
instructions. Value prediction is complementary to CRISP as break-
ing dependency chains exposes more ILP, generating additional
opportunities for criticality-based scheduling mechanisms.

8 CONCLUSION

Memory accesses missing the last-level cache suffer from high
DRAM latency which introduces pipeline stalls that greatly reduce
performance. Out-of-order execution fails to hide the memory ac-
cess latency if most of the subsequent instructions depend on the
missed memory access. Prefetching techniques are either limited to
handling easy-to-predict regular memory access patterns or they
introduce unacceptable hardware complexity or cost. We propose
CRISP, a technique to prefetch critical memory accesses and their
load-address-generating instructions by prioritizing them in the
instruction scheduler. CRISP is predominantly implemented in soft-
ware to increase flexibility and performance by leveraging load-slice
filtering and by observing dependencies through memory. CRISP
also introduces branch slicing, a technique that reduces the impact
of branch mispredictions, especially when combined with critical
load prefetching. Our techniques improve the IPC performance of
modern microprocessors for memory-latency-bound applications
by up to 38% and by 8.4% on average.
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