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Abstract

Prefetching is a well-studied technique for addressing the
memory access stall time of contemporary microprocessors.
However, despite a large body of related work, the memory
access behavior of applications is not well understood, and it
remains difficult to predict whether a particular application
will benefit from a given prefetcher technique. In this work
we propose a novel methodology to classify the memory
access patterns of applications, enabling well-informed rea-
soning about the applicability of a certain prefetcher. Our
approach leverages instruction dataflow information to un-
cover a wide range of access patterns, including arbitrary
combinations of offsets and indirection. These combinations—
or prefetch kernels—represent reuse, strides, reference locality,
and complex address generation. By determining the com-
plexity and frequency of these access patterns, we enable
reasoning about prefetcher timeliness and criticality, expos-
ing the limitations of existing prefetchers today. Moreover,
using these kernels, we are able to compute the next address
for the majority of top-missing instructions, and we propose
a software prefetch injection methodology that is able to
outperform state-of-the-art hardware prefetchers.
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Figure 1. The landscape of prefetcher designs which weighs
heavily toward low performance or high cost

1 Introduction

Von-Neuman architectures suffer from the well-known
processor-memory performance gap: While processors have
enjoyed exponential increases in performance, memory has
scaled in terms of bandwidth and capacity but not in ac-
cess latency. As a result, the cycle time of modern proces-
sors is now two orders of magnitude smaller than the ac-
cess latency of DRAM. One way computer architects have
addressed this problem is by employing deep memory hi-
erarchies with small, low-latency caches. However, given
that data set sizes are increasing [28] and transistor scaling
is slowing down [17, 20], we cannot rely solely on cache
capacity scaling. Prefetching works around limited cache
capacities by speculatively moving data from slow memory
into fast caches in advance, so that later demand loads can
access the data from those caches with low latency. This can
be an efficient technique as it often requires very few hard-
ware resources. However, it relies on an accurate prediction
mechanism and sufficient time to prefetch the correct data
elements.

There exists a large body of prior research on prefetch-
ers including stream prefetchers [13, 23, 25, 42, 44], correla-
tion prefetchers [27, 38, 45], and execution-based prefetch-
ers [12, 15, 15, 21, 30, 32, 36, 37, 39, 54] which have shown
significant performance gains. Surprisingly however, the
prefetchers deployed by contemporary microprocessors such
as Intel Xeon, are limited to simple, conservative designs such
as next-line and stride prefetchers [48]. This is because, as
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a whole, the prefetcher proposals in the literature do not
capture the trifecta of performance, generality, and cost as
shown in Figure 1. Low-cost designs, such as stride prefetch-
ers, are easy to implement but only improve a very small
and specific set of access patterns, leaving lots of perfor-
mance potential on the table. Highly general designs, such
as run-ahead prefetchers, promise high performance but
come with prohibitive costs such as additional hardware
threads or cores. Neither extreme tries to understand the
underlying access patterns of the application. Thus, it is still
an open problem to design a prefetcher that yields high per-
formance, is general to a wide range of access patterns, and
is implementable. As a result, current caches and prefetchers
still leave up to 60% of performance on the table in the data
center [4, 28].

One longstanding challenge for prefetcher design is that
computer architects and software developers generally have
only a limited understanding of applications’ memory access
behaviors. This results in a potpourri of prefetcher designs
that are excellent for certain types of workloads or kernels
but not for others. As such, it is often unclear whether or not
an application is amenable to a given prefetching technique,
and in many cases a mismatched prefetcher can even reduce
performance by creating useless memory traffic and cache
evictions. A successful prefetch design that greatly improves
generality while minimizing implementation burden must
be made aware of the diverse access patterns of complex
applications. Even hardware-based prefetchers must move
towards this approach.

To address the challenges above, this paper takes a new ap-
proach: Instead of designing a new prefetcher that improves
performance for a specific type of access behavior, we de-
velop a novel methodology to understand and classify all of
the memory access patterns of applications. Our methodol-
ogy can be used to evaluate and optimize existing prefetchers,
and, crucially, develop new prefetcher techniques. We offer
insights and answers to key questions such as the following:

e What percentage of application cache misses can be
handled by a particular prefetcher?

e What are the upper bounds for application miss cov-
erage and performance improvement that a given
prefetcher can provide?

e What type of prefetcher capabilities are required to
prefetch a certain memory access pattern, or a given
percentage of all misses in an application?

e How much opportunity is there for a prefetcher to run
ahead and emit timely prefetches for a given cache
miss?

We base our methodology on the observation that memory
access patterns are concretely encoded in the application
binaries themselves. By extracting these patterns directly, we
can avoid the inaccuracy of guessing the patterns a priori, or
the overhead of relearning the patterns indirectly. With this

dataflow-based approach, we can classify every important
miss in an application and reason not only about what type
of computation is required to compute the next address, but
also how much time there is to prefetch each next miss. Then,
taking the application as a whole, we can reason about what
type of prefetching techniques would improve performance,
and whether they could be implemented in hardware or as
custom injected software prefetches.

In order to focus only on the dataflow paths that are rele-
vant to the application, we leverage both static binary anal-
ysis and dynamic profiling information. In particular, we
perform a data dependency analysis for all load instructions
that cause a significant number of cache misses to determine
the sequence of instructions required to compute the delin-
quent (missed) load address. These instruction sequences
are compacted to form prefetch kernels which we can then
classify. Such an automated technique for classification and
analysis of applications’ memory access behaviors provides
significant value for entities that run diverse and complex
warehouse-scale computer (WSC) applications: First, our
technique is scalable and performed entirely offline which
enables a comprehensive, automated prefetch analysis for a
large number of applications. Second, this approach can accu-
rately predict the utility of prefetching on a per-application
basis and hence can filter out applications that are unlikely
to benefit from prefetching. Third, our technique can be
leveraged to tune exposed prefetcher knobs, such as aggres-
siveness, without performing a comprehensive search of
the configuration space. Finally, dataflow-based memory
analysis informs the capabilities that are required for new
prefetcher designs to be effective and gives us bounds on
what we can expect from them.

We applied our methodology to a suite of memory inten-
sive SPEC 2006 [22], PARSEC [6] and WSC applications to
show the benefits of dataflow-based classification. In con-
trast to prior work which has shown the benefits of dif-
ferent prefetching techniques, our approach enables auto-
mated reasoning about why a particular prefetcher works or
doesn’t work for an application. Section 5 shows that some
applications cannot benefit, even from an oracle prefetcher,
and quantifies the expected gains of a particular type of
prefetcher. We also provide insights about the complexity of
WSC applications and show why optimizing WSC applica-
tions is challenging. Finally, focusing on commercially-viable
implementations, Section 6 introduces three software based
prefetcher designs that leverage dataflow analysis. Our eval-
uation shows that there exists no simple “one size fits all”
prefetcher design and that prefetcher programmability is
required to achieve high performance. In particular, by lever-
aging application-specific prefetcher configurations to ac-
count for timeliness and memory access types, we show that
dataflow-informed software-based prefetching can reclaim
up to 100% of performance lost to stalls in small benchmarks,
and up to 44% of lost performance in large WSC workloads.



Pattern Recurrence relation #Z \ Example \ Notes
Constant A, =A *ptr
Delta A=A, +d streaming, array traversal | d = stride
Pointer Chase | A, = Ld(A,-1) next = current->next Load address is derived from the value
of previous load
Indirect Delta | A, = Ld(B,_1 +d) x(M[i])
Indirect Index | A, = Ld(Bp—1+c + d) MIN[i]] ¢ = base address of M, d = stride
_ ¢; = data offset
on(E:les: j:;elr’ :ilsce 2” _ fc;(; “ re) Linked list traversal ¢» = next pointer offset
n n-1 %2 B,, = address of the n™" struct

Table 1. Classification of Memory Access Patterns

2 Background

Prefetchers track information about past memory accesses
in order to predict future accesses. The amount of state being
tracked as well as the prefetcher design itself determines the
memory access patterns that can be learned by the prefetcher.
Efficient prefetchers preload cache lines from slow memory
into processor caches before they are used, thus reducing
the average memory access time (AMAT). The performance
of a prefetcher is determined by two main metrics, cover-
age and accuracy. Coverage defines the percentage of future
memory accesses (or cache misses) a prefetcher can deter-
mine, while accuracy is defined as the ratio of prefetched
memory elements to those used by future demand loads.
Low coverage generally only bounds the potential perfor-
mance improvement of prefetching, while low accuracy can
lead to a slowdown if useless data evicts useful data from a
cache or increases memory latency. Other important metrics
are prefetch timeliness and cache size. The cache size deter-
mines the time period a prefetched memory element remains
accessible with low latency before it is evicted. Timeliness
refers to the time between a prefetch and the demand load
of a cache line. If data is prefetched too late, the memory
access latency of a demand load cannot be hidden, while
prefetching too early can lead to an eviction of an otherwise
accurately-prefetched data element.

Prior work has shown that the performance improvement
delivered by prefetching is highly workload-dependent. For
instance, the Canneal application from the PARSEC [6]
benchmark suite suffers from low instructions per cycle
(IPC) due to a high AMAT. While Canneal seems to be a
perfect candidate to benefit from prefetching, prior work [3]
shows that even complex prefetching schemes hardly im-
prove performance. This paper addresses the question of
why specific prefetchers are unable to address a particular
workload. Therefore, we first provide a taxonomy of memory
access patterns that exist in applications. We then define the
operations that are required to prefetch a particular pattern
and then develop the methodology to automatically classify
the misses of an application.

3 Memory Access Classification

Applications exhibit a wide variety of memory access pat-
terns, ranging from simple reuse and strides to complex
calculations with memory indirection. A prefetcher’s per-
formance is thus proportional to the number of cache-miss-
causing access patterns it can predict. In order to understand
the access patterns that impede performance the most, we
focus on the load instructions that contribute to the most
cache misses. We make the observation that there exists a
recurrence relation that defines the difference between two
subsequent load addresses of the same program counter (PC).
We define a recurrence relation Z as A, = f(A,-1), where
A is a memory address, n represents the n'' execution of
a particular load instruction and f(x) is an arbitrary func-
tion. The complexity of f(x) determines the capabilities a
prefetcher requires to predict and prefetch a certain future
cache miss. Table 1 shows some of the common patterns we
observed while analyzing a wide set of applications, ordered
by increasing complexity.

Note that while Table 1 cannot capture all potential access
patterns, most accesses we have observed fit into one of
these categories or a composition or nesting of them. For
instance, double-linked list or tree traversals can be classified
as constant plus offset reference.

Classifying memory accesses according to Table 1 pro-
vides the following insights: Given an application and its
memory access classification, we can determine the capabili-
ties required by a prefetcher to address a certain percentage
of misses. For instance, delta patterns do not contain a load
(Ld) and can be predicted by performing an arithmetic opera-
tion on address A, to get A,+1. For architectures that support
prefetching certain patterns, we can then quantify the ef-
ficacy of their prefetchers. In particular, we can determine
the percentage of successful prefetches for each particular
class. This classification also enables a better understanding
of prefetcher timeliness, since, while achieving timelines for
some prefetch patterns is simple, for others it can be com-
plex to impossible. For instance, for the delta pattern we
can prefetch A, = A,_i + d = k where k is a multiplicative



factor that determines prefetcher timeliness (The higher the
value of k, the further we prefetch into the future). The same
applies to the Indirect Index pattern where future i values
are easily predictable and can be used to prefetch arbitrary
addresses stored in N. However, for pointer chase, running
ahead is difficult as a load needs to be resolved first to pre-
dict the next address. If the memory latency given by the
load chain is higher than the independent work executed
between subsequent delinquent loads, hiding the memory
latency is impossible, even with infinite run-ahead. Our ap-
proach enables these types of analyses and gives insight
about the potential and the actually-achieved performance
of a prefetcher technique.

The classification scheme of Table 1 maps memory ac-
cesses to design patterns and data structures and is useful for
the human observer. However, these patterns are challenging
to leverage for automated processing. Complex applications
will often use compositions or variations of these patterns,
for instance, a variation of constant plus offset reference is a
tree traversal where both children are visited. To address this
issue, we formalize our approach to express prefetch patterns
as follows: For a given load instruction and its function to
compute the next address, f(x) can be expressed as a prefetch
kernel which consists of a number of data sources and opera-
tions on those sources which generate the delinquent load
address. There are three types of data sources: Constants,
registers and memory locations. An operation might be any
instruction (or micro-op) specified by the ISA of the archi-
tecture being analyzed. We list the most-frequently-used
operations that our approach leverages for classification in
Table 2. By binning multiple patterns into the same class (e.g.
multiple loads are classified as load) this approach becomes
general for handling arbitrarily-complex patterns while pro-
viding a rich set of analytical capabilities. For instance, it
allows us to determine whether a pattern is indirect (uses the
value returned by a load) or whether the data sources that
feed into loads are constant or depend on a prior execution
of the kernel. Furthermore, by analyzing prefetch kernels we
can determine the instructions (capabilities) that a prefetcher
needs to support to achieve a certain miss coverage of the
application. We can also obtain insights about timeliness
by analyzing the kernel’s complexity and depth of the load
chain. In the next section, we will explain how to obtain
prefetch kernels from applications in an automated way.

4 Prefetch Kernel Extraction

Our proposed methodology performs offline analysis of ap-
plication binaries in combination with traces that contain
their instruction sequences and memory load and store ad-
dresses. Utilizing dynamic information from traces allows us
to focus only on execution paths and misses that matter, and
is critical for reducing kernels to their most basic behaviors.

Machine Classification | Corresponding Pattern

Constant Constant

Add Delta

Add, Multiply Complex

Load, Add Linked List, Indirect Index, ...
Load, Add, Multiply Complex

Table 2. Machine Operations and Patterns

4.1 Dataflow Extraction Overview

Each miss in the application is caused by an address that
was calculated by one or more instructions in the program
binary (or libraries). The goal of dataflow analysis is to ex-
tract and then classify these address-generating instructions
for each miss. As a side effect, the kernels also fully describe
how to compute the next memory address accessed by the
instruction. Because there is typically an intractable number
of dataflow paths in most programs, we leverage dynamic
profile information to prune our work to the paths that mat-
ter most for prefetching. We start by collecting application
traces with Memtrace [7]. Each trace contains a sequence
of instruction program counters (PCs) as well as the mem-
ory addresses of all load and store instructions. We also
collect a cache miss profile comprised of a ranked list of
PCs that cause cache misses. Such a profile can be gener-
ated by feeding the traces through a cache simulator, or via
performance counters such as Intel’s Precise Event-Based
Sampling (PEBS) [16]. It is important to note that a miss
profile is specific not only to individual workloads, but also
to the machines on which they are run: If we were to classify
and then run an application on two machines with differ-
ent memory hierarchies, the classification might focus on
unimportant dataflow graphs. As such, we assume that all
dataflow analyses (and any resulting optimizations) are made
on a per-application, per-architecture basis.

The combination of the program and library binaries,
a program trace, and a miss profile allows us to rebuild
the dataflow graphs for each miss-causing instruction in
the application. These graphs can be used for classification
as described in Section 5. Furthermore, our kernel-based
prefetcher, described in Section 6, is based on these kernels.

A data dependency graph, or prefetch kernel, fully de-
scribes the data (e.g., constants) and computations that are
required to form a miss address. The vertices of the graph
represent operands, which can be constants, registers, or
memory locations. The edges of the graph encode the opera-
tions (add, load, assign, etc.) between vertices which form
the data dependencies. The graph is directed where the root
(sink) vertex is the miss-causing instruction address, and
there are one or more source vertices. The depth of the graph
defines the critical path length of the kernel.



To perform kernel extraction, we search through the in-
struction trace in execution order for occurrences of miss-
causing PCs. Each time an important miss-causing PC is
found, we form a new dataflow graph that begins at that PC
and searches backward in time until the last occurrence of
the same PC. This window of execution history can be as
small as a few instructions (e.g., a miss PC within a tight
loop), or as large as millions of instructions in scale-out WSC
workloads like web search. The root node of the graph is the
memory address of the miss PC, which may be as simple as
a fixed constant, or, in the case of x86, a combination of base,
index, and segment registers as well as a scale and displace-
ment. Whatever the case, each component of the address is
added to the graph and then itself searched for its own data
dependencies by looking even further back in the execution
sequence. If a vertex is part of a load instruction, we check
if there is a prior store to the same address. If so, we can
connect the data dependence from the load to the store since,
within a single thread, this is guaranteed to be the source.
Load-to-store dependencies are very common, especially in
x86 because of frequent register spilling. Our ability to follow
dependencies through memory distinguishes our approach
from prior work on prefetch-slicing and static-only analy-
sis. For instance, the pointer analysis performed by static
approaches to determine data dependencies can be challeng-
ing if not impossible whereas our approach can determine
dependencies through memory natively.

We continue building the kernel recursively until all of
the source vertices in the graph are terminal. A vertex is
terminal if it is a constant (e.g., an immediate, displacement,
or scale value), a register that cannot be traced back further
(e.g., from a random number source), or any operand that
has reached the edge of the instruction sequence (i.e., it has
reached the prior occurrence of the miss PC in question).
Thus each terminal vertex is a dataflow source, and can be
a constant, a register, or a location in memory. Finally, for
dataflow sources that change after use (at any point up until
the graph root), we add the paths that describe these changes
(See Section 4.3).

We note that our technique determines data dependencies
within a sequence, ignoring control flow dependencies. We
leverage the fact that the captured dynamic traces already re-
solve all branches for us and hence we do not need to follow
different paths as would be the case for static analysis tech-
niques. Instead, our tool analyses all instruction sequences
in between pairs of the same miss PC, and as a result, the
tool might discover different data dependency graphs for the
same load PC. We track the frequency of occurrence of these
different graphs and only utilize those for further processing
that are executed frequently. As we will show in the next
section, omitting divergent control flow paths enables us to
compact prefetch kernels significantly.

4.2 Compaction

At this point, the extracted instruction graph represents the
subset of the original application’s execution history that is
required to compute the load address of a delinquent load.
A raw dataflow kernel typically includes a lot of extra and
unnecessary operations that make classification difficult. For
example, a kernel for a stride access pattern should be as sim-
ple as adding a constant to the prior address. However, it may
actually contain memory loads and stores caused by register
spilling and function calls (e.g., if the base address is passed
as a stack parameter). Proper classification of memory access
patterns relies on our ability to reduce these graphs to their
minimal form, otherwise we would not be able to recognize
even simple patterns like strides. To enable compaction, we
developed the following techniques for removing dataflow
artifacts introduced by the ISA and compiler.

Store-Load Bypassing In x86, register spilling leads to fre-
quent data movement between registers and the stack in
memory, consisting of matching push/pop, or more gener-
ally, store/load instruction pairs. While static analysis tools
can match push/pop pairs (because the relative memory ad-
dresses of stack operations are well-defined), they cannot
match general store/load pairs as the memory addresses are
unknown at compile time. Our technique leverages dynamic
memory traces, matching all store/load pairs and bypass-
ing memory operations by directly connecting store source
registers to load destination registers.

Arithmetic Distribution and Compaction Many
dataflow graphs contain operations that ultimately cancel
out and should be pruned for proper classification. For
example, an immediate value added to a known-zero register
(e.g., $0 in MIPS or a register XOR’ed with itself) does not
actually require addition as it represents a constant value.
Much more complex scenarios arise when, for instance, a
fixed base address for an array is passed over the stack. In
this case the stack pointer would be identified as a dataflow
source, and we have to show that the base address is fixed
even though the stack pointer may change frequently in
the graph. We can do this by following the pushes and
pops of the stack through the dataflow graph showing that
they are balanced between subsequent executions of the
graph kernel. If they are balanced, the stack pointer is fixed
between executions of the kernel and we can then conclude
that the base address is also fixed.

In order to facilitate arithmetic compaction and reduction,
we flatten the dataflow graphs by distributing and reducing
nested arithmetic operations. For example, if a graph repre-
sented the formula (3 + 4) — (6 + 1), it would be flattened to
3+4—6—1 and then simplified to zero and pruned. Arithmetic
distribution and compaction is expensive computationally,
but we’'ve observed that it can reduce graphs by a factor of
1,000x, especially for kernels that span wide call stacks.



Assignment and Zero Pruning Assignments between
registers (e.g.,mov %rcx, %rdxinx86)occur frequently but
are not relevant for classification. All trivial assignments, as
well as those revealed by other reductions such as store-load
bypassing or distribution, are optimized out of the dataflow
graphs. Additionally, many instances of zero values occur
either as constants or as computational patterns (such as xor
%rax, ‘%rax to clear registers in x86). Removing these ver-
tices often causes large subpaths of the graphs to be pruned.

4.3 Kernel Extraction Example

This section provides an example execution of our offline
trace analysis tool to generate a prefetch kernel. Figure 2
shows a code snippet of a linked list traversal that calls a triv-
ial work function at each node. Since each node is allocated
on the heap, its memory address is not required to have any
relationship to other nodes in the list. In other words, there
is no inherent spatial locality between dynamically-allocated
heap objects. However, linked list nodes are related to each
other through their next pointers, a case of reference locality.
Thus a dataflow graph should relate the access of one node
to the next with indirection via a load instruction.

In this program, profiling shows that a cache miss occurs
in do_work when the 5" field of the node is accessed. We
can make an important observation here: Cache misses are
triggered by the first access to a cache line, the do_work
function in this case, and not by the primary pointer chas-
ing instruction node=node—next in simple_chase. As
a result, our tool needs to be able to observe data flow
dependencies through function calls and memory. Fig-
ure 3 shows the execution trace of one iteration of the
simple_chase loop, where the last instruction (0x4013fe
at the bottom) is the cache miss. The assembly code is
in the AT&T syntax of instruction source_operand,
destination_operand.

To start the analysis, consider line 35 of the dynamic trace
shown in Figure 3 which shows the miss-causing load in-
struction 0x4013fe. The tool starts with this instruction and
then traverses the trace in backwards direction until either
all of the dataflow sources are terminal or it finds the same
PC again. The resulting graph is the raw, non-compacted
prefetch kernel. We can see that 0x4013fe utilizes the rax
register as a source operand to obtain the target memory
address. We then search for the next line in the upward di-
rection utilizing rax as a destination register which is the
previous line 34. In line 34, we can observe that rax is read
from main memory, potentially because of register spilling.
Tracing the data flow through memory is challenging as we
need to know the effective address used to read from memory.
Fortunately, our dynamic traces not only contain instruc-
tions but also the effective memory address of each load and
store (mov with indirect addressing). Using that additional
effective address information (not shown in Figure 3) we
can also follow dependency chains through memory. Note

void simple_chase(Node #*node, int count) {
for (int i = 0; i < count; i++) {
do_work(node) ;

node = node->next;

}
}
void do_work(Node *node) {

node->field[6] = node->field[5] + node->field[4];
}

Figure 2. Linked List Pseudocode

that register spills will be removed from the prefetch-kernel
within the optimization pass, however, for now we need to
observe dependencies through memory to continue the tra-
versal. As shown by the arrows in Figure 3, the tool traverses
the trace in a backwards direction, tracking all data flow
dependencies until it reaches line 12, pop %rbp. Although
the tool continues traversal until it hits line 1 (the boundary
of the prior loop iteration), it cannot find an earlier instruc-
tion that stores the data for rbp, and thus rbp is a dataflow
source (as well as all of the constants that were found along
the path).

Even after simplifying the graph with assignment and
store/load bypassing, the resulting dataflow kernel graph is
still overly complex for a simple linked list access pattern:

A, = 0x28 + load(0x38 + load(—0x8 + load(rsp))) (1)

This is because simple backwards traversal is insufficient
for graph reduction: We also need to analyze if and how
source operands are changed by instructions that are not
contained in the backwards pass in order to classify the
graph. In particular, we now need to perform a forward pass
for each discovered source operand. Taking the source in-
struction pop %rbp from line 12, we determine that the load
address (the stack pointer) is constant since the number of
push/call instructions is equal to the number of pop/ret
instructions and thus the source data register rbp will al-
ways be loaded from the same memory location. Next, we
determine that the value of rbp does not change from the
time it is loaded (line 12) until it is stored (line 30). Then,
observing that the source data in rbp is constant, we can
eliminate the two inner loads of Equation 1 and arrive at

Ay, = 0x28 + load(0x38 + rax) (2)

where rax is the value of rax at line 16. Next, we ob-
serve that rax is loaded in line 15, modified in line 17, and
stored in line 18, creating the recurrence relation rax, =
load(rax,_; + 0x38). Substituting this for the second term
of Equation 2 yields the recurrence relation for a linked list
described earlier in Table 1, and the dataflow graph kernel
can be labeled as a linked list traversal.
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Trace:

<do_work>

4013fe: movsd 0x28(%rax),%xmml ;xmml = fields[5]

401403: mov -0x8(%rbp) ,%rax ;move fields addr
;into -8(rbp)

401407: movsd 0x20(%rax),%xmm0 ;xmm0 = fields[4]

40140c: addsd %xmm1l,%xmmO ;sum = fields[5]

; + fields[4]

401410: mov -0x8 (%rbp) ,%hrax

401414: movsd %xmm0,0x30(%rax) ;fields[6] = sum

401419: nop

40141a: pop  %rbp

40141b: retq

<simple_chase>

401456: mov -0x8(%rbp) ,%rax ;after work,
;1load node to rax

40145a: mov Oxiié&égﬁl,lrax ;node=node->next

40145e: mov  %ra®=0x8(%rbp) ;store node to
;-8(rbp)

401462: addq $0x1,-0x10(/rbp) ;increment count

401467: jmp 40143c <sifnple_chase+0x20>

40143c: mov

401440: sub $0x1,%ra ;Check & exit

401444: cmp  ‘rax,-0xA0(%rbp)

401448: jae 401469 gsimple_chase+0x4d>
40144a: mov -0x8(%rbp) Lrax ;Load node
40144e: mov %raﬂ?%?ﬁg—“r ;node in rdi
401451: callqg 4013f2/ <do_work>

<do_work>

4013f2: push %rb

4013f3: mov  Y%rsp,%rbp

4013f6: mov %rdi,-0x8(%rbp) ;fields in rdi,

;stored to stack

4013fa: mov —Ox8(%r§§;}Zrax
4013fe: movsd 0x28(%ra®),%xmml ;xmml = fields[5]

Figure 3. Linked List Dynamic Trace

In summary, the dataflow process extracts and reduces
dataflow graphs, analyzes source operands for zero pruning,
and finally classifies each graph.

4.4 Implementation

We implemented our dataflow methodology in C++ in ap-
proximately 15,000 source lines of code. It is a stand-alone
program that accepts an application binary (and libraries),
execution trace, and miss profile as inputs, and outputs data
classification information as well as software prefetch in-
jection information which we use in Section 6. The graph
analysis engine is ISA-agnostic, as all instructions are broken
down into very basic micro-ops (so, for example, an x86 push
instruction would be decomposed into a register decrement
and memory store). However, the tool requires a front-end

to convert application binary instructions into the micro-op-
like graph nodes. Despite its enormous complexity, we target
the x86 instruction set due to its prevalent use in large WSC
environments. However, additional ISAs including ARM,
POWER, or RISC-V could be supported with considerably
less effort. We utilize Intel’s XED [24] library to parse x86
op code classes and source and destination operands. Our
tool supports the intricate details of x86 including different
register sizes (a 32 bit register can be consumed by a 64 bit
instruction in x86), REP-prefixed (repetitive) instructions
and conditional instructions, as well as over 100 instruction
classes.

For non-trivial dataflow applications (such as large WSC
workloads like web search), we need to be able to process
data dependency graphs of millions of vertices and edges
and thousands of prefetch kernel instances. Computational
efficiency, therefore, is of significant importance in both time
and space. We employed a number of algorithmic improve-
ments to reduce the runtime complexity of our tool, includ-
ing multithreading (using a large shared instruction window
pool), decoded instruction caching, hybrid data structures
to support efficient allocation layout and insertion/deletion,
and other cache and data structure optimizations to reduce
memory fragmentation in the heap. With these and other
optimizations in place, we can currently process 10 million
trace instructions per second (MIPS) for simple applications
and 0.1 - 5 MIPS for complex workloads, depending on the
graph sizes and depths of the applications. Our initial naive
implementation was over hundred times slower and quickly
ran out of memory on commodity server machines.

5 Analysis

In this section we utilize our tool to analyze eight
memory-bound applications. We chose 471 . omnetpp and
462.libquantum from SPEC CPU2006 [22], Canneal from
PARSEC [6], the monte carlo neutron transport algorithm
XSBench [47], and the high-performance conjugate gradi-
ent benchmark XHPCG [14]. Furthermore, we evaluate three
WSC applications [5] from the Google fleet; A web search
leaf node, knowledge graph backend, and an ads match-
ing service. For each of the WSC applications, we collect
traces with a representative single-machine loadtest. As in
a profile-guided compilation approach, we execute the ap-
plications once, instrumented with DynamoRIO’s Memtrace
tool to generate application traces. The traces are then post-
processed with our dataflow tool described in Section 4 to
generate the following prefetch kernel analysis. For small
applications, we analyze enough miss instructions to provide
at least 95% miss coverage. For complex WSC applications
with long miss tails, we currently limit our analysis to the
top 200 miss PCs, which provides between 64%-86% miss
coverage.
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Figure 4. Memory Access Pattern Classification

5.1 Prefetch Kernel Classification

The access behavior of each miss-causing instruction is char-
acterized by the complexity and type of calculations gen-
erating its addresses. Figure 4 shows the dataflow kernel
classification for each of our applications. Each kernel is
binned into classes similar to those described in Table 2,
and the size of each classification bucket corresponds to the
number of kernels that matched it. Because of control flow
deviation, multiple kernels may exist for a single delinquent
load PC, and each is classified separately.

We can draw several insights from Figure 4. For in-
stance, for 462.1ibquantum we see that virtually all cache
misses can be computed with addition (in this case, a fixed
delta), and, therefore, can be prefetched by a simple stride
prefetcher (or with software prefetching). The opposite holds
for canneal, xsbench, and xhpcg where fewer than 20%
of misses correspond to the add or add, shift categories
prefetchable by stride prefetchers. For these, we can now
bound the expected gains of a stride prefetcher in terms of
miss coverage.

We also see that for most applications, computing the
next address involves loading data from memory. This is not
surprising, since many data structures rely on indirection,
but it also reveals quantitatively why traditional hardware
prefetchers are ill-equipped for these applications: Indirec-
tion typically breaks simple spatial correlations between
addresses and these kernel addresses appear random in the
access stream. As such, as few as 10% of misses are likely to
be covered in apps like xsbench by stride-based prefetching.

Interestingly, in our large WSC applications, a significant
portion of misses (>30%) can be computed without indi-
rection. However, many of these misses have large reuse

distances which cause their data to be evicted and thus they
aren’t amenable to high-degree stride prefetching. Also sig-
nificant, many of these “simple” kernels still require complex
calculations involving many operations as we’ll see next.
Lastly, the large number of different patterns in WSC ap-
plications exceeds typical prefetcher resources such as the
number of streams a stride prefetcher can observe.

In the WSC workloads, some kernels are shown as uncat-
egorized. This is not a limitation of dataflow-based analysis,
but rather a consequence of not implementing the long tail of
hundreds of x86 instruction encodings and variations needed
to fully analyze every kernel. A more complete implementa-
tion (or simpler ISA) would properly categorize these slices.

5.2 Prefetch Kernel Complexity

Another dimension of access pattern characterization is the
number of calculations required to form an address. Fig-
ure 5 shows a cumulative distribution function (CDF) of the
number of calculations (add, shift, multiply, load, etc.) a
prefetcher must support (per kernel) to achieve a certain
percentage of miss coverage. For simple applications like
462.1libquantum, five calculations per kernel covers all
misses in the program. On the other hand, nearly 40% of
misses in Ads have kernels of more than 10 operations, with
some more than 100.

It is valuable to understand the computational complex-
ity of an application’s access patterns, since it informs us
about the difficulty of learning patterns indirectly as well as
about the storage and computational resources of a hardware
prefetcher. Our large WSC application analysis suggests that
prefetchers with simple pattern detection will be incapable
of covering a majority of cache misses.
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5.3 Prefetch Kernel Timeliness

Dataflow analysis gives us accurate address computations,
but even accurate prefetches are useless if they can’t be com-
pleted faster than the program needs them. We can lever-
age our dynamic profiling information with our compacted
prefetch kernels to reason about how much time slack is
available for prefetching each miss. Figure 6 shows a prefetch
kernel scatter plot, presenting the prefetch kernel latency
on the x-axis and the program latency (time between sub-
sequent loads of the miss PC) on the y-axis. Each dot cor-
responds to one unique prefetch kernel, and the color of
the kernel corresponds to its execution frequency. Dots near
the blue line (with slope 1) represent prefetch kernels with
approximately the same latency as the program. These ker-
nels are challenging to prefetch, sometimes because they
are executed in a tight loop (with no unrelated program cal-
culations), because the kernel computations could not be
simplified, or because memory loads dominate the latency
(e.g., a pure pointer chase). If there is any run-ahead slack
at all, then a high prefetch degree can help, where we define
prefetch degree d as the number of recursive executions of a
prefetch kernel. Applying a prefetch kernel multiple times
enables further runahead by prefetching the next d misses of
a delinquent load. Otherwise (and especially if these kernels
contain chained loads as well), it becomes impossible to run
ahead of the main program rendering prefetching useless.

On the other hand, kernels with larger distances from the
blue line are capable of running ahead of the program and
are likely to be prefetched in time. In this case, low prefetch
degrees are sufficient and, to avoid cache pollution, it can be
beneficial to delay injection of the prefetch. By leveraging
this data, the prefetch degree, timeliness, and injection sites
can be optimized for every prefetched load individually. We
show the performance benefit achieved by adjusting per-load
parameters in Section 7.

6 Prefetcher Design

We propose a new software prefetcher design based on
dataflow analysis. Our approach executes the target binary
once to obtain execution traces and miss profiles, performs
dataflow analysis, and finally injects prefetches into a new bi-
nary, as in automatic feedback-driven optimization (FDO) [9].
In other words, prefetches are automatically injected by the
compiler at the injection sites we specify, and the compiler
re-links a new optimized binary. Inserting useful prefetches
requires that we address the following questions:

e What address should be prefetched?
e Where should prefetch instructions be inserted?
e How aggressively should we prefetch?

Prior works on compiler assisted prefetching [1, 8, 10, 18,
33, 35, 46, 52] struggle to address these questions. In particu-
lar, they either require manual annotation or are significantly
limited in the access patterns they can extract from source
code (e.g., they can only prefetch simple loops with regular
stride accesses). These prior approaches also have limited
knowledge about the timeliness of a prefetch and hence have
often been ignored in favor of hardware techniques.

Our dataflow methodology offers new opportunities for
software-based prefetching. First, prefetch kernels are capa-
ble of expressing arbitrarily-complex formulas to compute
the prefetch address, and can utilize multiple source regis-
ters and even memory as inputs. Second, by analyzing the
distance in instructions between recurrent delinquent load
PCs in the trace, we can determine optimal insertion sites
for the prefetch instructions. In particular, by leveraging dy-
namic information such as IPC as well as microarchitectural
knowledge of the cache and DRAM latencies, we can com-
pute favorable insertion sites that are timely. We adopt the
prefetch dynamic window injection technique [5] to mini-
mize fan-in and fan-out of our insertion sites. Third, by lever-
aging additional profiling information contained in the trace,
we can tune the prefetch degree (aggressiveness) for each
individual delinquent load PC. In particular, for dense loops
that contain few instructions unrelated to the delinquent
load, high-degree prefetching is generally useful. However,
if the loop count is small, then prefetching too far ahead will
only pollute the cache. Our prefetcher utilizes Formula (3)
below to compute the prefetch degree (D), where LoopCnt is
the average number of iterations of a loop that resembles a
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recurrent access, MissLat represents the average DRAM to
core latency and KernelOps is the number of instructions of
a compacted prefetch kernel.

D = max(LoopCnt, (IPC * MissLat)/KernelOps) (3)

For kernels without loads, the address for a higher-degree
prefetch can be computed by applying the kernel repeatedly.
However, for complex kernels, loads need to be resolved
before reapplying the formula, thus limiting the effectiveness
of high-degree prefetching.

While our technique can also be implemented in hard-
ware, we opted against it because of its high complexity and
cost and lower flexibility. Prior works, including run-ahead
execution [21, 36, 37], precomputation threads [12, 54] or
helper threads [32, 39], require complex hardware or utilize
entire SMT cores for the purpose of prefetching, introducing
unrealistic hardware overheads. Due to its complexity, we
perform the dataflow analysis offline, once per application.
Executing the prefetch kernels at runtime requires the capa-
bility to execute a wide range of instructions and hence at
least a simple core would be required. As the main program
never depends on prefetch kernel instructions, there is signif-
icant ILP among the two streams which can be leveraged by
superscalar out-of-order processors for efficient execution
of the kernels. By injecting kernels in software, we avoid
large dedicated on-chip memory which would be required
to hold the kernels in hardware. Furthermore, this enables
greater flexibility such as configuring the trigger point for
the prefetch or the aggressiveness in a kernel-specific way.

Our technique can be implemented with existing proces-
sors, however, there arises one issue. If the prefetch kernels
contain load instructions, executing those speculatively can

lead to illegal memory accesses causing a segmentation fault.
Therefore, we propose one hardware change to existing pro-
cessors which is the support of a speculative load instruction
specmov. The specmov instruction tries to access the effec-
tive address in memory and is dropped instead of leading
to an exception if the address is unmapped or the page ac-
cess checks have failed. The dropped load also sets a flag in
the condition code register which needs to be checked by a
subsequent branch instruction to exit the prefetch kernel pre-
maturely in the case of a misspeculation. As an alternative,
prefetch kernels could be executed as part of a transaction
such as Intel’s TSX [19], however, serialization before and
after the transaction would significantly reduce ILP between
the main program and the independent prefetch kernel with-
out applying additional hardware modifications.

Our methodology extracts prefetch kernels from execution
traces in which all branches have been resolved and hence
prefetch kernels do not contain control flow instructions.
This enables efficient compaction of the kernels, however, it
means that our tool may find multiple kernels for a given
delinquent load. For instance, for every loop, the dataflow
analysis will at least determine two kernels: One kernel re-
flects the regular iterations of the loop and another reflects
the last iteration where the loop is exited. The dataflow analy-
sis will find both kernels and count the number of executions
of each kernel. We only utilize a prefetch kernel if it is exe-
cuted significantly more frequently than the other kernels
of the same PC. If two kernels have the same frequency, we
prefetch both. If more than two frequent kernels exist, we
ignore them entirely for prefetching. Our experiments have
shown that prefetching more than two kernels often leads
to cache pollution, offsetting any benefits of prefetching.



Parameter Value

CPU Intel Haswell E5

L1 Instruction cache 32 KiB, 8-way
L2 Unified cache 256 KiB, 8-way
L3 Unified cache Shared 2.5 MiB/core 22-way

All-core turbo frequency | 2.5 GHz

60 cycles (average)
DDR4 10GB/s/core 200 cycles
Table 3. System Configuration

L3 cache latency

Memory

7 Evaluation

We evaluate our proposed prefetcher technique via simula-
tion and compare it against several baselines. The first base-
line reflects a contemporary Intel processor with a simple
stream prefetcher that can detect regular strides. Based on
this architecture we evaluate compiler-assisted techniques
such as prefetching constant prefetch kernels with a fixed
degree as well as variable per load degree. Finally, we evalu-
ate a prefetcher that leverages the specmov instruction to
also prefetch complex memory access patterns.

7.1 Methodology

We implemented our kernel prefetcher as part of the
zsim [43] simulator which we modified to include a
trace-driven execution mode. We collect traces with Dy-
namoRIO’s [7] memtrace client, and limit traces to two bil-
lion instructions during steady-state execution. We inject the
prefetch kernels at the insertion sites determined by dataflow
analysis. If the insertion site is part of an inlined function, we
insert the kernel at each location. To perform high-degree
prefetching, we execute the kernel in a loop to compute the
next degree prefetch addresses. In case there exist two fre-
quent kernels for a delinquent load, we insert both kernels
as described in Section 6. All instructions executed as part of
prefetch kernels are modeled as overhead and not included
in IPC improvements.

The baseline stride prefetcher observes L3 misses and
prefetches into the L1 cache. Our software prefetches also
target the L1 cache. As zsim implements an inclusive memory
hierarchy, this guarantees that lines are also prefetched into
the L3 cache. Prefetching is memory-bandwidth-limited and
both hardware and software prefetches are dropped when-
ever the processor consumes more than 90% of the peak mem-
ory bandwidth. For the processor we utilize an Intel Haswell-
like configuration with the properties shown in Table 3. We
limit DRAM bandwidth to 10GB/s per core. We use the same
set of applications as used in the study performed in Section 5:
462.1ibquantum and 471 . omnetpp from SPEC 2006 [22],
Canneal from PARSEC [6], XSBench [47], XHPCG [14] and
the WSC applications Web Search,Knowledge Graph,and
Ads from Google. To show the upper-bound of performance

gains that can be obtained with prefetching, we compare
each approach against a perfect memory hierarchy in which
memory accesses are always served from the L1 cache, in-
cluding cold misses.

7.2 Results

Figure 7 shows the performance improvement that we mea-
sured with our prefetching methodology. We compare a
stride prefetcher (red, left) with dataflow-informed prefetch-
ers of simple, load-less kernels and fixed prefetch degrees
(df_1,df 2, df 4, df 8) as well as a variable-degree (df_var)
dataflow prefetcher that can utilize prefetch kernels with
memory loads (df_var_load). Furthermore, we show the the-
oretical upper bound performance (perfect) where every
access hits the L1 cache (gray, right).

Aswe showed in Figure 4, 462 . 1ibquantum performs pre-
dictable accesses with a constant stride. This causes frequent
L3 cache misses that are easy to predict by all prefetchers,
however, a high prefetching degree is required to achieve op-
timal performance. This is challenging for both software and
hardware approaches that generally need to be configured
to prefetch a fixed degree, but is addressed by our software
prefetch techniques that leverage a variable per-load degree.
471.omnetpp, canneal and xsbench exhibit a large frac-
tion of complex kernels that include chained loads. As a
result, the stride prefetcher and the software techniques that
are limited to prefetching non-load kernels are unable to
improve performance significantly, while the prefetching
technique leveraging specmov delivers a speedup of 1.38X,
1.14x and 1.9X%, respectively.

As shown in Figure 6, 471.omnetpp, canneal and
xsbench utilize relatively large dataflow kernels, and hence,
the gains achieved by prefetching load chains is limited by
timeliness. According to Figure 4, 50% of xhpcg’s dataflow
kernels are composed of add/multiply operations that do not
require loads. The extracted address computation formulas
only leverage simple arithmetic, but nevertheless, cannot
be learned by the stride prefetcher which can only handle
kernels limited to add operators with constant addends. For
xhpcg, our tool fails to determine the optimal prefetch degree
as a more aggressive degree of 8 delivers higher performance.
Nevertheless, for the other applications, variable prefetch
degree always performs better than using a fixed degree.

All three WSC applications showed a wide range of
dataflow kernel classes. They also show an order of magni-
tude higher number of performance-relevant loads and hence
are challenging to prefetch. Nevertheless, for Web Search
our prefetcher shows 9% IPC gain and for Knowledge
Graph an improvement of 6%. These applications have been
performance optimized for years and hence limited gains are
expected, but nevertheless a 9% IPC gain can save millions
of dollars for large WSC providers.
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Figure 7. Software Prefetcher IPC Speedup

8 Related Work

Hardware Techniques: Several hardware mechanisms
have been proposed [2, 12, 15, 21, 30, 32, 36, 37, 39, 54] to
prefetch complex memory access patterns that depend on
the data and control flow of the executed program. These
approaches leverage additional helper threads, running on
separate cores or custom hardware to cause cache misses in
advance of the main executable, thus prefetching data into
caches. These dynamic techniques generally suffer from two
disadvantages: First, they introduce high hardware complex-
ity and cost as they require powerful cores to process the
helper threads. For timeliness, these helper threads need to
be fast and hence they cannot rely on small wimpy cores.
Second, dynamic techniques have limited ability to reduce
the code footprint of the helper threads using compaction.
Performing data dependency analysis in hardware requires
substantial storage space and hence is limited to short instruc-
tion sequences. For example, continuous run-ahead [21] lim-
its dependency chains to 32 operations. Furthermore, while
dependency analysis can filter out independent instructions,
implementing the compaction techniques described in Sec-
tion 4.2 in hardware is challenging. In contrast, our technique
performs the dependency analysis offline, avoiding hardware
overheads and enabling it to process and compact depen-
dency chains of millions of instructions. Temporal prefetch-
ers including GHB [38, 49], ISB [26] and MISB [51] can poten-
tially prefetch arbitrary memory access patterns by storing
long sequences of past accesses. However, to provide high
performance they require megabytes of expensive on-chip
memory. Additionally, they can only prefetch previously-
seen patterns, whereas dataflow kernels compute the next
address based on the current state of the system.

Software Techniques: Software prefetching [8] tech-
niques have been well-studied in prior work. Compiler-based
techniques [1, 10, 18, 46] perform static code analysis to gen-
erate prefetch targets. The performance benefits provided

by static approaches are limited, as only simple structures
such as Singly-Nested Loop Nests (SNLNs) [50] or regular
strides [29, 35, 52] can be learned. In contrast, our approach
can handle complex dataflows of generic software algorithms
and data structures. There exist several works that analyze
more complex recursive data structures such as linked-lists
at compile time to insert jump pointers [11, 33, 40, 41] point-
ing to an element within the same data structure at some
distance e.g. several elements ahead in a linked-list. These
jump pointers are inserted into the original data structure
(e.g. a linked list node) and hence require additional storage
as well as source code modifications for initializing jump
pointer references whenever an element is inserted into a
data structure. Prior works [31, 34] leverage dynamic profil-
ing for determining the most useful prefetch candidates, but
do not leverage the capabilities of trace-based dataflow anal-
ysis to explore timeliness and load classification. Zhang [53]
performs dynamic prefetch optimization based on profiling,
however, this work requires an extra thread while running
the main application.

9 Conclusion

In this paper we introduced a new methodology for analyz-
ing memory access patterns of applications for prefetching.
Our offline trace-based dataflow analysis provides detailed
insights about the memory access types that applications
exhibit and how they affect execution performance. Our tech-
niques enable automated classification of memory patterns,
and allow us to reason about the effectiveness of a prefetcher
for a given application. We applied our approach to propose
new software-based prefetcher designs that leverage per-
load configuration knobs such as prefetcher aggressiveness
to achieve performance benefits many times greater than
a stride-based baseline with trivial implementation cost. Fi-
nally, we anticipate that our technique will be leveraged in
future work to develop new software- and hardware-based



prefetcher designs. We expect that these new designs will
have to be highly configurable, preferably by software, to
cover the wide range of access patterns that we quantify in
this work.
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