AsmDB: Understanding and Mitigating
Front-End Stalls in Warehouse-Scale Computers

Grant Ayers*
Stanford University

Hyoun Kyu Cho
Google

Trivikram Krishnamurthy*
Nvidia

Nayana Prasad Nagendra*

Princeton University

Svilen Kanev
Google

Heiner Litz*
UC Santa Cruz

David I. August

Princeton University

Christos Kozyrakis
Stanford University

Tipp Moseley
Google

Parthasarathy Ranganathan
Google

ABSTRACT

The large instruction working sets of private and public cloud
workloads lead to frequent instruction cache misses and costs
in the millions of dollars. While prior work has identified the
growing importance of this problem, to date, there has been
little analysis of where the misses come from, and what the
opportunities are to improve them. To address this challenge,
this paper makes three contributions. First, we present the
design and deployment of a new, always-on, fleet-wide mon-
itoring system, AsmDB, that tracks front-end bottlenecks.
AsmDB uses hardware support to collect bursty execution
traces, fleet-wide temporal and spatial sampling, and so-
phisticated offline post-processing to construct full-program
dynamic control-flow graphs. Second, based on a longitudinal
analysis of AsmDB data from real-world online services, we
present two detailed insights on the sources of front-end stalls:
(1) cold code that is brought in along with hot code leads
to significant cache fragmentation and a corresponding large
number of instruction cache misses; (2) distant branches and
calls that are not amenable to traditional cache locality or
next-line prefetching strategies account for a large fraction
of cache misses. Third, we prototype two optimizations that
target these insights. For misses caused by fragmentation, we
focus on memcmp, one of the hottest functions contributing to
cache misses, and show how fine-grained layout optimizations
lead to significant benefits. For misses at the targets of dis-
tant jumps, we propose new hardware support for software
code prefetching and prototype a new feedback-directed com-
piler optimization that combines static program flow analysis
with dynamic miss profiles to demonstrate significant benefits

*Work performed while these authors were at Google.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISCA ’19, June 22-26, 2019, Phoeniz, AZ, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6669-4/19/06.
https://doi.org/10.1145/3307650.3322234

for several large warehouse-scale workloads. Improving upon
prior work, our proposal avoids invasive hardware modifica-
tions by prefetching via software in an efficient and scalable
way. Simulation results show that such an approach can elim-
inate up to 96% of instruction cache misses with negligible
overheads.

ACM Reference Format:

Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun
Kyu Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krish-
namurthy, Heiner Litz, Tipp Moseley, and Parthasarathy Ran-
ganathan. 2019. AsmDB: Understanding and Mitigating Front-
End Stalls in Warehouse-Scale Computers. In The 46th Annual
International Symposium on Computer Architecture (ISCA ’19),
June 22-26, 2019, Phoeniz, AZ, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3307650.3322234

1 INTRODUCTION

Nearly every device across the world, from IOT and mobile
devices to self-driving cars, is now being served by services
hosted in huge datacenters, which are dubbed Warehouse-
Scale Computers (WSC) [3, 13, 26]. The continued growth in
cloud-based, digital services has led WSCs to process increas-
ingly large datasets with increasingly complex applications.
WSC workloads are characterized by deep software stacks in
which individual requests can traverse many layers of data
retrieval, data processing, communication, logging, and moni-
toring. As a result, data and instruction footprints have been
growing for decades.

The instruction footprint of WSC workloads in particular
is often over 100 times larger than the size of a L1 instruction
cache (i-cache) and can easily overwhelm it [2]. Studies show
it expanding at rates of over 20% per year [16]. This results
in instruction cache miss rates which are orders of magnitude
higher than the worst cases in desktop-class applications,
commonly represented by SPEC CPU benchmarks [9].

Because the performance of a general-purpose processor is
critically dependent on its ability to feed itself with useful
instructions, poor i-cache performance manifests itself in
large unrealized performance gains due to front-end stalls.
We corroborate this challenge for our WSCs on a web search

https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/3307650.3322234

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

Backend

core _ Bad

Speculation

Backend
memory

Frontend

bandwidth L
Retiring

Frontend
latency

Figure 1: CPU performance potential breakdown
(Top-Down) on a web search binary.

binary. Figure 1 presents a Top-Down [33] breakdown of a
web search loadtest running on an Intel Haswell CPU. 13.8%
of total performance potential is wasted due to “Front-end
latency,” which is dominated by instruction cache misses.
We also measured L1 i-cache miss rates of 11 misses per
kilo-instruction (MPKI). Using the simulation methodology
described in Section 5.5, we measured a hot steady-state
instruction working set of approximately 4 MiB. This is
significantly larger than L1 instruction caches and L2 caches
on today’s server CPUs, but small and hot enough to easily
fit and remain in the shared L3 cache (typically 10s of MiB).
Thus, it is reasonable to assume that most i-cache misses are
filled by the L3 cache in the worst case.

In this paper, we focus on understanding and improving the
instruction cache behavior of WSC applications. Specifically,
we focus on tools and techniques for “broad” acceleration' of
thousands of WSC workloads. At the scale of a typical WSC
server fleet, performance improvements of few percentage
points (and even sub-1% improvements) lead to millions of
dollars in cost and energy savings, as long as they are widely
applicable across workloads. In order to enable the necessary
horizontal analysis and optimization across the server fleet,
we built a continuously-updated Assembly Database (AsmDB)
with instruction- and basic-block-level information for most
observed CPU cycles across the thousands of production
binaries executing them (Section 2). We further correlate
AsmDB with hardware performance counter profiles collected
by a datacenter-wide profiling system — Google-Wide Profil-
ing (GWP) [30] — in order to reason about specific patterns
that affect front-end performance. Collecting and processing
profiling data from hundreds of thousands of machines is a
daunting task by itself. In this paper, we present the archi-
tecture of a system that can capture and process profiling
data in a cost-efficient way, while generating terabytes of
data each week.

A fleet-wide assembly database such as AsmDB provides
a scalable way to search for performance anti-patterns and

L “Deep” acceleration would involve focusing on a handful of workloads
and trying to recover most of the &~ 15% performance opportunity.

Ayers and Nagendra, et al.

opens up new opportunities for performance and total-cost-
of-ownership (TCO) optimizations. WSC servers typically
execute thousands of different applications, so the kernels
that matter most across the fleet (the “datacenter tax” [16])
may not be significant for a single workload, and are easy
to overlook in application-by-application investigations. We
leverage AsmDB’s fleet-wide data in several case studies to
understand and improve i-cache utilization and IPC of WSC
applications.

We start with extensive analysis of AsmDB data, identifying
the instructions that miss in the i-cache. We find that, while
not particularly concentrated in specific code regions, most
i-cache misses still share common characteristics (Section 3).
Specifically, missing instructions are often the targets of
control-flow-changing instructions with large jump distances.
This points us towards exploring scalable automated solutions
— with compiler and/or hardware support and no developer
intervention — which can exploit these behaviors.

On the compiler side (Section 4), we outline several op-
portunities to target code bloat and fragmentation, which
put unnecessary pressure on i-cache capacity. We find that
intra-function fragmentation — where cold cache lines are
brought in unnecessarily along with the hot portions of a
function — is especially prevalent. Even after compiling with
the necessary feedback-directed optimization (FDO) to elim-
inate guesswork, 50% of the majority of functions’ code is
cold, but frequently mixed with the hot parts. On a finer
granularity, individual cachelines are also often fragmented
and waste cache capacity, especially so in small functions.
This suggests that classic compiler code layout optimizations
such as inlining and hot/cold splitting can be more effec-
tively and aggressively tuned, perhaps at link- or post-link
time, when precise information about global control flow is
available.

We prove this concept by manually applying similar opti-
mizations to the most extreme case of code bloat uncovered
by AsmDB — the library function memcmp. We demonstrate
that, given the high front-end pressure of WSC applications,
optimizing memcmp for better i-cache behavior can be a net
performance win, even despite lower throughput numbers in
isolated microbenchmarks.

Finally, we propose and evaluate a profile-driven optimiza-
tion technique that intelligently injects software prefetch
instructions for code (program instructions) into the binary
during compilation (Section 5). We outline the design of the
necessary “code prefetch” instruction, which is similar in
nature to existing data prefetch instructions, except that it
fetches into the L1-I cache and utilizes the I-TLB instead
of the D-TLB. The implementation of such an instruction
has negligible hardware cost and complexity compared to
purely hardware methods and is commercially viable today.
While it can be implemented on top of a wide variety of hard-
ware front-ends, we demonstrate its viability on a system
which employs only a next-line instruction prefetcher. Our
prefetch insertion algorithm uses profile feedback information
from AsmDB and performance counter profiles to ensure timely
prefetches with minimal overhead. We prototype its effects on

AsmDB: Front-End Stalls in WSC

memory traces from several WSC workloads and show that
it is possible to eliminate up to 96% of all L1-I cache misses
while only adding 1.5% additional dynamic instructions for
code prefetches.

2 ASMDB

We built the Assembly Database (AsmDB) with the goal to
provide assembly-level information for nearly every instruc-
tion executed in our WSCs in an easy-to-query format. AsmDB
aggregates instruction- and control-flow-data collected from
hundreds of thousands of machines each day, and grows by
multiple TiB each week. We have been continuously popu-
lating it over several years. In this section, we highlight the
system design decisions which enable such scale and compare
it with previous systems for datacenter-wide performance
monitoring.

While the initial motivation for building AsmDB was manu-
ally answering simple horizontal questions about instruction
mixes (“is x87 usage negligible?”), we have been increasingly
using it for more sophisticated analyses, and especially so for
finding instruction-cache-related optimization opportunities.
This paper demonstrates several cases where AsmDB proves
invaluable for that purpose: for spotting opportunities for
manual optimizations, finding areas for improvement in ex-
isting compiler passes, as well as serving as a data source for
new compiler-driven techniques to improve i-cache hit rates.

AsmDB is a specialization of generic datacenter-wide pro-
filing systems like Google-wide-profiling (GWP) [30], which
collect many different types of performance profiles. AsmDB is
implemented in the GWP framework in order to share large
portions of the underlying infrastructure. However, unlike
more traditional performance profiles, AsmDB data requires ex-
tensive offline post-processing to reach a form that is easy to
query by end users. It also has loftier coverage goals (“nearly
every instruction executed in our WSCs”), which both en-
ables new types of analyses, as well presents new scalability
challenges, especially in dealing with the necessary storage.

Schema. AsmDB is a horizontal columnar database. Each
row represents a unique instruction along with observed dy-
namic information from production — the containing basic
block’s execution counts, as well as any observed prior and
next instructions. Each row also contains disassembled meta-
data for the instruction (assembly opcode, number/type of
operands, etc.). This makes population studies trivial, as
illustrated by the query in Figure 2 which ranks the relative
usage of x87/SSE/AVX /etc. instruction set extensions. In
addition, each row has metadata for the function and binary
containing every instruction, which allows for queries that
are more narrowly targeted than the full fleet (Section 4.4).
Finally, each instruction is tagged with loop- and basic-block-
level information from dynamically-reconstructed control-flow
graphs (CFGs). This enables much more complex queries
that use full control-flow information (Section 5).

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

SELECT
SUM(count) /
(SELECT SUM(count) FROM ASMDB.last3days)
AS execution_frac,
asm.feature_name AS feature
FROM ASMDB.last3days
GROUP BY feature ORDER BY execution_frac DESC;

Figure 2: Example AsmDB SQL query which ranks x86
extensions (e.g. SSE, AVX) by execution frequency
across our WSC fleet.

Collection. AsmDB uses profiling data collected from a ran-
dom sample of production machines using hardware last-
branch-records (LBRs) — which capture bursts of execution
traces of up to 32 basic blocks each. Most importantly, unlike
traditional performance counters, LBR samples contain the
destinations of all control-flow-changing instructions. This
enables faithful and accurate reconstruction of dynamic pro-
gram control flow. Collection is built on top of the data source
for AutoFDO [5], which similarly uses LBRs to reconstruct
basic block execution counts for compiler feedback-directed
optimization. Overheads are similarly low: {1% when tracing,
which only occurs for about 10 seconds per machine, per day.

Post-processing. Collected LBR samples only contain the
addresses and counts of basic blocks. AsmDB requires an ad-
ditional post-processing pass to produce instruction-level
information suitable for querying. This offline pass fetches
the binary bytes for each basic block, disassembles the con-
tents, and fills out the metadata described earlier. We extend
our existing symbolization service (which discovers, parses
and indexes debugging symbols for every binary built in our
WSCs) to also handle the actual binary bytes as well and to
serve them on demand. Since debugging symbols are usually
10x larger than the binary they represent, this only increases
complexity and does not hinder scalability.

In addition, post-processing discovers basic block prede-
cessors and successors and identifies loops using Havlak’s
algorithm [12, 14] for full control-flow-graph (CFG) recon-
struction.

With tens of thousands of binaries in a WSC, this step can
be extremely costly in both computation and storage. We keep
resource consumption reasonable by ignoring the very long
tail and only populating AsmDB from the top 1000 binaries by
execution cycles. This still captures 90% of observed cycles.
Post-processing a single days’ worth of collected data takes
~ 8 hours with a 400-machine MapReduce [7], and produces
~ 600 GiB compressed output. Thus, a years’ worth of AsmDB
data only takes up ~ 200 TiB.

Design considerations. The main design goal for AsmDB is
wide coverage — it contains assembly for 90+% of fleet-wide
execution cycles. In addition, coverage is high within a binary
itself — using LBR traces along with offline postprocessing
allows us to capture relatively cold portions of the binary,
which traditional sampling-based profiling (e.g. GWP) is

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

=
o
o

o]
(=]

[=2]
o

H
(=]

N
o

“““ Instructions L1l Misses L2I Misses

.0 0.2 0.4 0.6 0.8 1.0
Unique cache lines (Million)

Executed instructions (CDF%)

(o =)

Figure 3: Fleet-wide distribution of executed instruc-
tions, L1-, and L2-instruction misses over unique
cache lines. Like instructions, misses also follow a
long tail.

likely to miss. This difference is particularly important for
studies on cold code (Section 4).

In addition to post-processing feasibility, the main design
constraint is restricting data cardinality to keep storage costs
from exploding, while keeping enough metadata to enable
useful queries. The recorded metadata in AsmDB is carefully
limited to fields that compress well in columnar stores. For
example, it explicitly excludes any runtime attributes (job
names, datacenter names, etc.), for which the data typically
has high variance and would compress poorly.

3 WHERE ARE THE MISSES COMING
FROM?

We begin our investigation into front-end stalls by charac-
terizing and root-causing instruction-cache misses. We first
use fleetwide miss profiles to confirm that, as many other
WSC phenomena, i-cache misses also follow a long tail, and
sooner or later that must be addressed by some form of au-
tomation. We then start looking for patterns that automated
optimization can exploit by combining datasets from Google-
Wide Profiling (GWP) and AsmDB. We focus on miss-causing
instructions and find that indirect control-flow, as well as
distant calls and branches are much more likely to be the
root causes for misses.

3.1 Miss working sets

Working set sizes can tell us in broad strokes how to prioritize
optimization efforts. For example, image processing workloads
typically have tiny instruction working sets and manually
hand-optimizing their code (similar to Section 4.4), is usually
beneficial. On the contrary, WSC applications are well-known
for their long tails and flat execution profiles [16], which are
best addressed with scalable automatic optimization over
many code locations.

Figure 3 shows that i-cache misses in WSCs have similarly
long tails. It plots the cumulative distributions of dynamic
instructions, L1-I, and L2-I misses over unique i-cache lines
over a week of execution, fleetwide. Misses initially rise sig-
nificantly steeper than instructions (inset), which suggests
there are some pointwise manual optimizations with outsized

Ayers and Nagendra, et al.

£ZZ) Direct branch
I Indirect branch

XXX Direct call
[Indirect call

=
Websearch 7KH
Ads TBE

Knowledge-

graph : : /m E
0 5 10 15 20
Instruction composition (%)

E= Return

Fleet-wide

Figure 4: Control-flow instruction mixes for several
WSC workloads. The remaining 80+ % are sequential
instructions.

performance gains. However, the distribution of misses ta-
pers off, and addressing even two-thirds of dynamic misses
requires transformations in &~ 1M code locations, which is
only conceivable with automation. In the rest of the paper,
we show how a global database of assembly instructions can
be useful in both the manual (Section 4.4) and automated
cases (Section 5).

3.2 Miss-causing instructions

When optimizing instruction cache misses, it is not only
important to identify the instructions that miss themselves,
but also the execution paths that lead to them. These are
the miss-causing instructions.

In the vast majority of cases, the predecessor of a particu-
lar instruction in execution is simply the previous sequential
instruction. Figure 4 illustrates this for several large WSC bi-
naries, along with a fleetwide average from AsmDB. More than
80% of all executed instructions are sequential (continuous
or non-branching). The majority of the remainder (;10%)
are direct branches, which are most typically associated with
intra-function control-flow. Direct calls and returns, which
jump into and out of functions, each represent only 1-2% of
total execution. Indirect jumps and calls are even rarer.

Sequential instructions have high spatial locality and are
thus inherently predictable. They can be trivially prefetched
by a simple next-line prefetcher (NLP) in hardware. While
there are no public details about instruction prefetching
on current server processors, NLP is widely believed to be
employed. And because NLP can virtually eliminate all cache
misses for sequential instructions, it is the relatively small
fraction of control-flow-changing instructions — branches, calls,
and returns — which ultimately cause instruction cache misses
and performance degradation.

Intuitively, branches typically jump within the same func-
tion so their targets are more likely to be resident in the
cache due to reuse (temporal locality) for backward-pointing
branches such as loops, and either reuse or NLP (with suffi-
ciently small target offsets) for forward-pointing branches. On
the other hand, we expect calls to miss more often because
they jump across functions which can span a wide range of
distances in the address space. This defeats NLP and is more

AsmDB: Front-End Stalls in WSC

Miss-Causing Instructions

Return

Indirect
call

Direct
call

Indirect
branch

Direct
branch

0 5% 10% 15% 20% 25% 30% 35% 40%
Figure 5: Instructions that lead to i-cache misses on
a web search binary.

> 100 I s s
o~ H o
=) i IR]
28
SO I b3
8% 60 E
55 f .
SE 40 i Direct branch
S 2 : Indirect branch
=] H
2% 20} ,‘. === Direct call
o N ,,»’2 wIndirect call
O Ob=z===== === | §

-(?).4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Target jump distance in cache lines (Million)

Figure 6: Fleetwide distribution of jump target dis-
tances.

difficult to capture by reuse due to limited cache sizes and
flat callgraphs of WSC binaries.

In order to test this intuition, we send a full instruction
trace from a web search binary through a simple L1 cache
simulator with a next-two-line prefetcher, and mark each
access that is a miss. For each miss, we look at the previous
instruction in the program sequence which, assuming “perfect”
(triggering on every access) NLP, is necessarily a control-flow-
changing instruction. By counting these by type we built a
profile of “miss-causing” instructions shown in Figure 5.

Interestingly, despite having higher temporal locality and
being more amenable to NLP, direct branches are still re-
sponsible for 38% of all misses. These misses are comprised
mostly of the small but long tail of direct branch targets
that are greater than two cache lines away in the forward
direction (18% of the profile). Perhaps more surprising is
that direct calls account for 36% of all cache misses despite
being only 1-2% of all executed instructions. This confirms
that the probability of causing a miss is much higher for each
call instruction, compared to that of a branch. Indirect calls,
which are often used to implement function pointers and
vtables, are even less frequently executed but also contribute
significantly to misses. In contrast, returns rarely cause misses
because they jump back to code that was often recently used.
We summarize these probabilities in a dimensionless “miss
intensity” metric, defined as the ratio of the number of caused
misses to the execution counts for a particular instruction

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

| Discontinuity Type [Miss Percent | Miss Intensity

Direct Branch 38.26% 2.08
Indirect Branch 7.711% 59.30
Direct Call 36.27% 54.95
Indirect Call 16.54% 71.91
Return 1.22% 1.37

Table 1: Instruction miss intensities for web search

100

._.,..-o»-o—t-

sor *

60} |

40

20 ’,' 44 Indirect branch
@ -e |ndirect call

o0 5 10 15 20

Number of targets

Instruction distribution
(CDF %)

Figure 7: Cumulative distribution of number of tar-
gets for indirect jumps and calls.

type. In other words, miss intensity helps us rank instruc-
tion classes by how likely they are to cause misses in the
cache. We see from Table 1 that the miss intensities of direct
branches and returns are much lower than the other types,
which indicates their targets are more inherently cacheable.

We can confirm this is not limited to web search or due to
the cache model used to tag misses by looking into fleetwide
AsmDB jump distances. Figure 6 presents this data as a cumu-
lative distribution function (CDF) of distances in bytes to the
next instruction. Around 99% of all direct branches fleetwide
jump to targets that are fewer than 500 cache lines away, and
hence they are sharply centered around zero in the figure
which is depicted at the scale of million cache lines. On the
other hand, over 70% of direct calls have targets more than
100,000 cache lines (6.4 MiB) away. While such distances do
not guarantee a cache miss, they do increase the likelihood
that simple prefetchers without knowledge of branch behavior
will be insufficient to keep the data cache-resident.

Indirect calls and branches roughly track the behavior of
their direct counterparts. However, they are so infrequent that
their targets are relatively cold (and unlikely to be resident
in the cache), leading to the high miss intensity in Table 1.
Note that, in practice, indirect calls and branches tend to
have a very small number of targets per instruction (Figure 7
— 80+% of indirect calls and 58% of indirect branches always
jump to a single address), which implies that they are very
easily predictable with profile guided optimization.

In summary, the key takeaways from our instruction miss
analysis are that 1) calls are the most significant cause of
cache misses, and 2) branches with large offsets contribute
significantly to misses because they are not fully covered by
reuse and simple next-line prefetching.

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

107
memcpy __ memcmp

iUl P 12
§ § 1058 10~
e 8 o ° 8
s=10* 5% (80 8. - o 8 o
T > o o0 [e} =
102300 o 6=
® 5102800 © S a9
Z“_ 10 ooo Oo 0800 Q 8 2

10° a : : 0

0 5 10 15 20

Function size (KiB)

Figure 8: Normalized execution frequency vs. func-
tion size for the top 100 hottest fleetwide functions.
memcmp is a clear outlier.

4 CODE BLOAT AND
FRAGMENTATION

Before we focus our attention to optimizing the targets of very
distant branches in Section 5, we outline some opportunities
for improving i-cache behavior on a much finer granularity.
Namely, we identify reducing cache fragmentation on the
intra-function and intra-cacheline level with feedback-driven
code layout. A global database of assembly instructions and
their frequencies such as AsmDB critically enables both proto-
typing and eventually productionizing such optimizations.

Briefly, fragmentation results in wasted limited cache re-
sources when cold code is brought into the cache in addition
to the necessary hot instructions. Such negative effects get
increasingly prominent when functions frequently mix hot
and cold regions of code. In this section we show that even
among the hottest and most well-optimized functions in our
server fleet, more than 50% of code is completely cold. We
attribute this to the deep inlining that the compiler needs to
perform when optimizing typical WSC flat execution profiles.
This suggests that combining inlining with more aggressive
hot/cold code splitting can achieve better i-cache utilization
and free up scarce capacity.

4.1 Code bloat

One common symptom for excessive i-cache pressure is code
bloat, or unnecessary complexity, especially in frequently-
executed code. Figure 8 is an attempt to diagnose bloat from
AsmDB data — it plots normalized function hotness (how often
a particular function is called over a fixed period) versus the
function’s size in bytes for the 100 hottest functions in our
WSCs. Perhaps unsurprisingly, it shows a loose negative cor-
relation: Smaller functions are called more frequently. It also
corroborates prior findings that low-level library functions
(“datacenter tax” [16]), and specifically memcpy and memcmp
(which copy and compare two byte arrays, respectively) are
among the hottest in the workloads we examined.

However, despite smaller functions being significantly more
frequent, they are not the major source of i-cache misses.
Overlaying miss profiles from GWP onto Figure 8 (shading),
we notice that most observed cache misses lie in functions
larger than 1 KiB in code size, with over half in functions
larger than 5 KiB.

Ayers and Nagendra, et al.

=
o
o

o]
o

L ~67%

o
o

-=-- Function count
— Function execution

N
o

N
o

Cumulative distribution (%)

o

0 2 4 6 g 10 12 14 16
Function size (KiB)

Figure 9: Distribution of execution over function

N
ul

N
o
.

iy
o
.

w

Maximum inlined stack depth
G
]

o

0 5 10 15 20 25 30
Function size (KiB)

Figure 10: Maximum inlining depth versus function

size for the 100 hottest fleetwide functions.

This contradicts traditional optimization rules of thumb,
like “Most [relevant] functions are small”. But it also holds
for execution cycles — as illustrated in Figure 9 — only 31% of
execution fleetwide is in functions smaller than 1 KiB. Small
functions are still prevalent: 67% of all observed functions
by count are smaller than 1 KiB. However, a large portion
of them are very cold. This suggests that, as expected for
performance, small hot functions get frequently inlined with
the help of profile feedback?.

The ubiquity and overall aggressiveness of inlining is best
illustrated in Figure 10, which plots the depth of observed
inline stacks over the 100 hottest functions. Most functions 5
KiB or larger have inlined children more than 10 layers deep.
‘While deep inlining is crucial for performance in workloads
with flat callgraphs, it brings in exponentially more code at
each inline level, not all of which is necessarily hot. This
can cause fragmentation and suboptimal utilization of the
available i-cache.

4.2 Intra-function fragmentation

In order to understand the magnitude of the potential prob-
lem, we quantify code fragmentation on the function level.
We more formally define fragmentation to be the fraction of
code that is definitely cold, that is the amount of code (in
bytes) necessary to cover the last 10%, 1%, or 0.1% of execu-
tion of a function. Because functions are sequentially laid out
in memory, these cold bytes are very likely to be brought into
the cache by next-line prefetching. Intuitively, this definition

2At the time of collection, over 50% of fleet samples were built with
some flavor of profile-guided optimization.

AsmDB: Front-End Stalls in WSC

408"
fe
» .

20f0 e 0e®

R .'x.'; .

Hot code (%)

4 .
Iy

Hot code (%)

100

80

100

50

Hot code (%)

80k Tt

60 *eq®

aop 7
[

20p °

5

10 15

k) .
20 25 30

Function size (KiB)

5 10 15 20 25 30
Function size (KiB)

0

5 10 15 20 25 30
Function size (KiB)

Normalized dynamic
execution count (logscale)
=
© & o o o
o > o ©

-
o
N

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

Region B\

Region A\
i ;
\ ‘ ;‘ p \‘\fﬂ\"\\w“\f"j“"\f'ﬂ\f'q

NN
I \J

Figure 11: Fraction of hot code within a function
among the 100 hottest fleetwide functions. From left
to right, “hot code” defined as covering 90%, 99%
and 99.9% of execution.

Function size (KiB)

100 100

X 8op 8 80}

(%) wn

g . o 2

£ 60}, ¢ £ 60

© °

3 Fo 2

§ a0 "o ., § a0p

E el E
o Al : ° .

2 20/ o e of £ 20 o8 oo .
."v“:f' . . .’ A R . .
ol®ey e c o el st e L .
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Function size (KiB)

Figure 12: Intra-cacheline fragmentation vs function
size for hotness thresholds of 90%, and 99%.

measures the fraction of i-cache capacity potentially wasted
by bringing them in.

Using AsmDB data, we calculate this measure for the top
100 functions by execution counts in our sever fleet. Figure 11
plots it against the containing function size. If we consider
code covering the last 1% of execution “cold”, 66 functions
out of the 100 are comprised of more than 50% cold code.
Even with a stricter definition of cold (< 0.1%), 46 functions
have more than 50% cold code. Perhaps not surprisingly,
there is a loose correlation with function size — larger (more
complex) functions tend to have a larger fraction of cold code.
Generally, in roughly half of even the hottest functions, more
than half of the code bytes are practically never executed,
but likely to be in the cache.

4.3 Intra-cacheline fragmentation

Fragmentation in the i-cache also manifests itself at an even
finer granularity — for the bytes within each individual cache-
line. Unlike cold cache lines within a function, cold bytes
in a cache line are always brought in along the hot ones,
and present a more severe performance problem. We defined
a similar metric to quantify intra-cacheline fragmentation:
counting the number of bytes (out of 64) necessary to cover
90% or 99% of the line’s accesses. Similarly to the last section,
we declare a line fragmented if it only uses 50% or fewer of
its bytes to cover execution. Figure 12 shows the fraction
of fragmented lines for each of the top 100 functions in our
server fleet. At least 10% of functions have more than 20% of
cache lines that are fragmented, and fragmentation is more

\% ‘ “

Relative instruction address (KiB)

5

Figure 13: Instruction execution profile for memcmp.
90% of dynamic instructions are contained in 2 cache
lines; covering 99% of instructions requires 41 i-
cache lines.

common for small functions. In other words, while these
functions are executing, at least 10% of i-cache capacity is
stranded by fragmented lines. This suggests opportunities in
basic-block layout, perhaps at link, or post-link time, when
compiler profile information is precise enough to reason about
specific cache lines.

4.4 Memcmp and the perils of
micro-optimization

To illustrate the potential gains from more aggressive layout

optimization, we focus on the most extreme case of bloat we

observed in AsmDB — the library function memcmp.

memcmp clearly stands out of the correlation between call
frequency and function size in Figure 8. It is both extremely
frequent, and, at almost 6 KiB of code, 10x larger than
memcpy which is conceptually of similar complexity. Exam-
ining its layout and execution patterns (Figure 13) suggests
that it does suffer from the high amount of fragmentation
we observed fleetwide in the previous section. While covering
90% of executed instructions in memcmp only requires two
cache lines, getting up to 99% coverage requires 41 lines, or
2.6 KiB of cache capacity. Not only is more than 50% of code
cold, but it is also interspersed between the relatively hot
regions, and likely unnecessarily brought in by prefetchers.
Such bloat is costly — performance counter data collected by
GWP indicates that 8.2% of all i-cache misses among the 100
hottest functions are from memcmp alone.

A closer look at the actual code from glibc can explain the
execution patterns in Figure 13. It is hand-written in assembly
and precompiled, with extensive manual loop unrolling, many
conditional cases for the various alignments of the two source
arrays, and large jump tables.

In our experience, code usually evolves into similar state

from over-reliance on micro-optimization and micro-benchmarking.

‘While writing in assembly can in rare cases be a necessary
evil, it prevents the compiler from doing even the most basic
feedback-directed code layout optimizations. For example,
it cannot duplicate or move the “compare remainders” and
“exit” basic blocks marked RegionA and RegionB in Figure 13
closer to the cases that happen to call them the most (in this
case the beginning of the function). This results in expensive

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

and hard-to-prefetch jumps, and cache pollution. Similarly,
when mostly evaluated on microbenchmarks, all relevant code
usually fits in the i-cache, which is certainly not the case for
large applications. This encourages developers to add more
elaborate corner cases (e.g. for alignment) that improve the
microbenchmark without regard to bloat.

We tested this hypothesis by macro-benchmarking a ver-
sion of memcmp that is specifically optimized for code size (only
2 i-cache lines) and locality. In short, it only special-cases very
small string sizes (to aid the compiler in inlining very fast
cases) and falls back to rep cmps for larger compares. Even
though it achieves slightly lower throughput numbers than
the glibc version in micro-benchmarks, this simple proof-of-
concept showed an overall 0.5%-1% end-to-end performance
improvement on large-footprint workloads like web search.

AsmDB allows us to spot extreme cases such as memcmp over
thousands of applications. In this case, memcmp was the single
immediately apparent outlier both in terms of code bloat and
i-cache footprint. Manually optimizing it for code size was
practical and immediately beneficial.

However, manual layout optimization does not scale past
extreme outliers. Generalizing similar gains is in the domain of
compilers. Compiler optimizations like hot/cold splitting [6]
and partial inlining [32] aim to address fragmentation by only
inlining the hot basic blocks of a function. However, they
have recently been shown to be particularly susceptible to the
accuracy of feedback profiles [25], especially with sampling
approaches like AutoFDO [5].

The high degree of fragmentation we observed suggests
there is significant opportunity to improve i-cache utilization
by more aggressive and more precise versions of these op-
timizations than found in today’s compilers. Alternatively,
post-link optimization could be a viable option which does
not suffer from profile accuracy loss. The latter approach has
been shown to speed up some large datacenter applications
by 2-8% [25].

5 SOFTWARE PREFETCHING FOR
CODE

While addressing fragmentation and code bloat can recover
a fraction of the i-cache capacity being wasted, the multi-
megabyte instruction working sets in WSC applications sug-
gest that even removing all fragmentation will not suffice to
eliminate frontend bottlenecks. In Section 3 we showed that
distant branches and calls cause the largest fraction of cache
misses. Prior work has addressed these misses with significant
hardware architectural modifications [10, 11, 18-20, 20, 22]
or static control flow analysis [24, 28]. However, in WSC en-
vironments it has been commercially infeasible to implement
these large hardware changes, and it is likewise intractable
to optimize the nearly boundless number of possible control
flow combinations in binaries hundreds of megabytes in size.

We improve upon prior work by leveraging the control
flow information from AsmDB, and propose a novel compiler
optimization that automatically inserts code prefetch instruc-
tions into performance-critical execution paths within the

Ayers and Nagendra, et al.

Too Early Too Late
— r Window @
_/&
\—/W

Figure 14: A prefetch is never late, nor is it early, it
arrives precisely when it means to.

application binary. Specifically, our approach reconstructs
the control flow graph of the applications from AsmDB and
enriches it with instruction miss profiles to select prefetch
targets. This combined information allows us to inject low-
overhead, high-accuracy software prefetching for the front-end
using a new code prefetch instruction. As a result, we are
able to achieve as much as 96% miss coverage with negligible
application binary growth.

5.1 Requirements

Prefetching represents a prediction problem with a limited
window of opportunity. Effective prefetches are both accu-
rate and timely — they only bring in useful miss targets and
do so neither too early nor too late in order to minimize
early evictions and cache pollution. A prefetcher is effec-
tive if it generates effective prefetches and has high overall
miss coverage. We begin this section with a discussion of the
required information and hardware support which is neces-
sary to ensure accuracy, timeliness, and coverage for WSC
applications.

Finding prefetch targets. In the simplest sense, the set of
targets to prefetch is merely the set of instruction addresses
that miss in the cache. This set is often estimated heuristically.
For instance, next-line prefetchers always predict the next
cache block will be used, and static code analysis can assume
some control flow and determine constructs such as loops
which might be amenable to prefetching [24]. In contrast, our
approach leverages AsmDB to augment heuristic information
with empirical observations about top miss candidates and
dominant control flow. This allows us to achieve high coverage
while minimizing the overheads of prefetching in terms of
bandwidth, energy, and performance in case the prefetch is
not useful or accurate. Alternatively, performance counters
or binary instrumentation tools can also provide information
about top misses [4, 23].

Determining prefetch injection sites. The placement of
prefetches in the execution stream determines their timeli-
ness. An effective prefetch will initiate within a window of
time prior to the miss that is neither too early (and thus
evicted before use), nor too late (and doesn’t arrive before
the miss), as represented by w in Figure 14. Existing compiler
based approaches [24] insert prefetches at a fixed number of
instructions before the miss to roughly match the memory
access latency. However, on modern OOO architectures, IPC
can vary by orders of magnitude for different applications
which leads to untimely prefetch injections. (For instance, in

AsmDB: Front-End Stalls in WSC

150
100

50 [©

Unique instruction paths

Distance behind each miss instruction

Figure 15: Fan-in for some misses can grow very fast
with distance, especially for library functions.

SPEC CPU2006, mcf has an IPC of 0.2 whereas dealIl has
an IPC of almost 2.0 [27].) Our approach addresses this issue
by leveraging per-application IPC obtained from profiling
data to calculate optimal prefetch distances.

In addition to being on time, a prefetch instruction needs
to be on an execution path that is likely to actually lead to
the target miss. This requires knowledge of the program’s
control flow, along with probabilities for specific paths. Some
form of profile feedback is required to obtain this informa-
tion — whether by hardware-enabled tracing (e.g., last-branch
records or Intel Processor Trace), or software binary instru-
mentation (statically-inserted by a compiler or dynamically-
inserted through systems like Pin or DynamoRIO). Static
program analysis alone is insufficient since it must guess
branch outcomes, realized indirect branch targets (this is
especially problematic given that they're a frequent cause of
misses, Section 3), and ultimately cannot determine the im-
portant control flow paths of the application. Our approach
leverages AsmDB and additional profiling data to construct the
control flow graph. Importantly, we do not rely on obtaining
complete graphs; in fact we further prune the graph data to
contain only paths of high execution frequency.

5.2 Software prefetch challenges

Knowledge of cache misses, execution history, and system
details are necessary but not sufficient for effective software
instruction prefetching. A number of second-order challenges
arise that can make practical implementations difficult.

Fan-in. When moving backward from a miss target in
the execution sequence, the number of potential instructions
leading to that miss generally increases. In fact, it grows
exponentially with the branching factor of the control-flow
graph. High fan-in to a miss poses a challenge because it re-
quires additional prefetch instructions to be injected (adding
overhead), and each injection site has a smaller overall impact
in reducing misses.

Figure 15 shows the fan-in for the top twenty instruction
cache misses from a web search profile. In several cases, the
number of paths leading in to a single miss exceeds 100 even
when looking backward only 10 instructions. These are usually
common library calls (for example, the top line is memcmp).

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

For other hot misses, the fan-in is much less significant, even
when looking backward over 50 instructions. Both situations
can be addressed by prefetching, but low-fan-in targets will
incur significantly smaller overheads. Prior approaches [24]
had to aggressively insert prefetches in all paths to obtain
high coverage, and then resort to filtering out superfluous
prefetches in hardware, thus wasting hardware resources and
instruction cache capacity. Our approach leverages profiling
information to only insert helpful prefetches which increase
coverage and minimize overhead and fan-in.

Fan-out. When selecting an injection site for a miss, land-
ing in the window (see Figure 14) is necessary but not suf-
ficient. The window could contain code that is running in
a loop, or which is a hot library function that returns to a
large number of callers. In these situations, adding prefetch
injections will cause a large number of untimely or useless
requests that waste resources. Instead, we want to insert
prefetches in execution paths that are likely to lead to the
miss, or in other words, which have low fan-out. We address
this in Section 5.3 by pruning paths which exceed a maximum
fan-out threshold.

Instruction overhead. Software prefetch instructions carry
overheads, even if optimized. At the very least, they need to
be stored in instruction caches, as well as decoded and issued
by the pipeline. While these overheads should generally be
minimal, overly-aggressive prefetching can end up causing
performance degradation instead of improvement. Our injec-
tion algorithm selects prefetch sites for those that resolve
the highest number of misses and reduce overall instruction
overhead.

5.3 Ensuring timeliness

Prefetch timeliness critically requires that we initiate prefetch
requests within a “sweet spot” window of time that is neither
too early nor too late. Specifically, we need to determine
the distance d and window size w (see Figure 14, measured
in instructions). As outlined in Section 5.1, d and w are
ultimately defined by the microarchitecture and memory
system.

More formally, we define the distance d as the shortest
amount of time before a miss that a prefetch for that cache
line can be made without causing stalls. It is the sum of the
latency of the prefetch instruction itself and the time required
by the memory system to bring the block into the cache. We
assume the prefetch instruction latency is minimal (due to
lack of register dependencies and pipeline pruning) and focus
on the delay of the memory system. Since the instruction
working set easily fits in the L3 cache of a server processor
(Section 1), d in instructions is simply the latency of the L3
cache in cycles, multiplied by the application specific average
IPC. For this work, we use long-term IPC averages for each
application. As IPC can vary further with program phase be-
havior, future work can leverage fine-grain IPC measurements
from a local phase to vary the prefetch distance depending
on the code location.

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

Figure 16: Example instruction execution history
tree.

The window w allows for some leeway in choosing prefetch
sites further than the minimum distance d. Normally we want
to minimize to d in order to reduce the risk of high fan-in
(see Figure 15). On the other hand, larger windows allow
us to minimize the risk of fan-out. By considering all of the
candidate injection sites within the window we can optimize
for both. Consider the three scenarios in Figure 16, assuming
d=1:

Instruction D (at distance 1 from the miss) has minimal fan-
out because it always leads to the miss. In addition, choosing
D instead of its predecessors helps to minimize fan-in to the
miss. Thus D is a good prefetch insertion candidate.

Instruction B is also at distance 1 from the miss. Unfor-
tunately, B jumps to many other locations and only leads
to the miss 5% of the time (due to high fan-out). However,
if all of these paths from B to the miss are from a single
predecessor instruction (for example, A) which is still within
the window, then that is clearly a better prefetch location.

Instruction F is part of a loop. Inserting prefetches any-
where in the loop body (instructions F and E) would cause
redundant prefetch requests and excessive instruction over-
head. Thus even though F only leads to two instructions, it
has high execution fan-out. If a window size of two or greater
allows us to insert a prefetch at the earlier instruction C
(distance 3), then we can maximize the covered execution
paths and avoid the execution fan-out of F and E.

The maximum window size is the limit after which prefetch
injections would lead to early misses, or would otherwise
evict useful data to the detriment of performance. For a fully-
associative LRU cache, the upper-bound maximum window
size would be the cache capacity divided by the average in-
struction size, or 8,192 for a 32-KiB cache and 4-byte average
instruction size. Empirically, we’ve found that window sizes
larger than about 200 instructions cause enough evictions of
useful data to reduce overall performance.

5.4 Prefetch injection procedure

Having a profile of miss instructions, the program execu-
tion sequence, and the window parameters d and w, we are
equipped to compute and inject software prefetches into the

Ayers and Nagendra, et al.

execution stream. At a high level, the process is threefold:
First, construct the execution history for each miss going
back to the end of the window (d 4+ w). Second, find prior in-
structions within the window with low enough fan-out. These
instructions may be located on one or more execution paths.
Third, insert prefetches for each miss target at the computed
injection locations in the program.

This approach provides four key contributions over prior
static approaches: First, we determine prefetch targets based
on miss frequency instead of guessing viable candidates.
Second, we leverage application-specific IPC to determine
the optimal prefetch distance, instead of relying on a fixed
heuristic. Third, we introduce a maximum window size and
corresponding scan that allows us to discover non-intuitive
prefetch optimizations (such as prefetching ahead of loops)
without requiring detailed knowledge of program flow se-
mantics. Fourth, we use profiling information to prune low
probability prefetches in cases of high fan-in or fan-out, thus
reducing the instruction execution and footprint overhead
over more conservative static approaches. We next discuss
the three steps in more detail.

Construct per-miss execution histories. The purpose of
this step is to identify all possible prefetch injection sites for
each miss. For each miss location (identified as described in
Section 5.1), we start a bottom-up walk of the control-flow
graph starting from the miss, adding basic-block counts at
every level. We terminate the walk at every node where it
reaches d + w, leaving us with an execution history graph for
the miss, similar to Figure 16. If instead of the full control-
flow graph, we have an instruction trace, we can similarly
reconstruct the history graphs with a single pass over the
trace.

Compute prefetch injection locations. The injection calcu-
lation step selects the best locations (if any) of the execution
graphs in which to prefetch each miss. It begins by selecting
all prior instructions at distance d, which is the minimum
time required for a prefetch to be timely. Each of these priors
is recursively compared against its own predecessors, up to
the maximum window size (d + w). Selecting among them
choses a node that leads to the target miss most often, with
some minimum threshold percentage to limit fan-out. At the
end of the injection computation, a (possibly empty) set of
injection sites is available for each miss.

Inject prefetches. Finally, after identifying profitable prefetch
sites, we can insert each computed (injection, target) address
pair into the program. This process will vary for each pro-
duction environment. Without loss of generality, we assume
that this is done as post-link step of the compilation process,
and only requires reassembly and relinking, not a full recom-
pilation. Thus, we unburden the programmer from having
to deal with the time and complexity of injecting prefetches
manually in the source code.

Implementation. Our prefetch mechanism is software-based
but relies on a “code prefetch” instruction to load cache blocks
directly into the L1-I cache or adjacent prefetch buffer. In

AsmDB: Front-End Stalls in WSC

| Parameter Value
CPU Intel Haswell E5 18-core
L1 Instruction cache 32 KiB, 8-way

L2 Unified cache
L3 Unified cache
All-core turbo frequency
L3 cache latency

256 KiB, 8-way

Shared 2.5 MiB/core 22-way
2.8 GHz

27 ns / 76 cycles (measured)

Table 2: System Configuration

practice, these instructions often do not exist in commer-
cial server-class processors (x86), or have inconsistent or
implementation-defined semantics (pli for ARM), or don’t
provide the required level of control (icbt on POWER).
From an architectural standpoint, a code prefetch instruc-
tion is simple to implement, and would require the following
properties:

(1) Requests are loaded into the L1-I or prefetch cache
(minimum) or additionally the L2 and L3 caches (op-
tional).

(2) Requests utilize the instruction TLB, if any, and not
the data TLB.

(3) Blocks are brought into the cache in the S state, not
the E state (for MESI-like cache coherent systems).

(4) The instruction has no register dependencies. Target
addresses are encoded in the instruction. If possible,
prefetches are pruned from the back-end portions of the
processor pipeline to minimize overheads and latency.

We imagine that a code prefetch instruction would be an
extension of — or very similar to — existing data prefetch
instructions such as prefetcht* and prefetchnta on x86,
pli on ARM, and icbt on POWER.

5.5 Evaluation methodology

While we envision an end-to-end system that uses fleetwide
profile information and a compiler, we prototyped our pro-
posal using memory traces and simulation. We require simu-
lation because current server-class processors do not include
a suitable prefetch instruction for code. In addition, replaying
trace-driven simulation allows us to perform limit studies
and compare our prefetch insertion approach against an ideal
instruction cache.

Data collection. We use DynamoRIO’s [4] memtrace client
to capture instruction and data memory traces for our target
applications. We limit traces to 2 billion instructions dur-
ing steady-state execution which is more than sufficient for
instruction cache studies.

We use the traces both to construct dynamic control-flow
graphs of observed execution, as well as to identify instruc-
tion cache misses (after simulation). This is for prototyping
convenience and reproducibility only. A real system can use
dynamic CFGs collected from last-branch records (as recon-
structed in AsmDB) and instruction miss profiles collected with
Precise Event-Based Sampling (PEBS) [8], which allow us

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

to identify individual instructions that miss in the L1 or L2
instruction caches.

Simulation. We use a modified version of the ZSim simula-
tor [31]. We included a trace-driven execution mode, as well
as models for our best guess of an Intel-Haswell-based server
processor, with parameters described below. We model a sin-
gle core and allow 10 MiB of L3 capacity in order to ensure
that the instruction working set fits in the L3 cache (see Sec-
tion 1). We also extended ZSim to include an access-driven
next-2-line prefetcher for the instruction cache.

System parameters. We use parameters modeled against
an Intel Haswell datacenter-scale server processor. It has 18
cores, each with a private 32-KiB L1 instruction cache and
unified 256 KiB L2 cache. All 18 cores share a unified 45-MiB
L3 cache. The detailed system parameters are summarized
in Table 2. Based on these parameters and a per-application
average IPC, we can estimate the minimum prefetch distance
d. In the case of web search the average IPC is 0.67, leading
to d = 76 * 0.67 = 51 instructions on average.

Workloads. We focus primarily on three WSC applications
— a web search leaf node, an ads matching service, and a
knowledge graph back-end. For each workload, we collect
traces during a representative single-machine loadtest, which
sends realistic loads to the server-under-test. We also in-
clude three SPEC CPU2006 applications (400.perlbench,
445 .gobmk, 471.omnetpp) to demonstrate that the prefetch-
ing technique generalizes across workloads. Since most of
SPEC CPU suite has a tiny instruction working set, we sim-
ulated 400.perlbench and 471.omnetpp with only 8KiB of
private L1 i-caches. This results in MPKI rates of the same
order of magnitude as our WSC workloads.

5.6 Prefetching results

We fixed the distance at 51 instructions and varied the in-
jection threshold, window size, and miss coverage. Figure 17
shows detailed results for web search. It combines the multidi-
mensional configurations into a single flattened view in terms
of instruction overhead and the percentage of misses that
were eliminated. Here, “instruction overhead” refers to the
additional dynamic prefetches executed by the processor. It
is not the time overhead or increase in the static program size
(in all cases the static program size growth is less than 1%).
All performance improvements measure IPC over a system
without any prefetching.

Our goal is to prefetch the misses we observe in the fleet
which are caused nearly universally by control-flow changing
instructions. These misses lie in the gap between a perfect
instruction cache and what an effective sequential prefetcher
(NLP) can provide, as shown in the miss coverage subplot
of Figure 17. In other words, while NLP covers over 80%
of instruction cache misses for web search, the performance
opportunity measured in Figure 1 comes from the gap.

Our prefetching technique is able to increase the overall
miss coverage of web search up to 96% with no other front-end
assumptions than a next-line prefetcher. Similarly, Figure 18

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

== Next-Line Prefetch e ® o Software Prefetch

100

O
Ul

9% o
oss%0e o000
%

o 0 O
o U1 O
T T

Miss coverage (%)

~
u

=
o N

Performance
improvement (%)

O N b OO

0 0.5 1.0 1.5 2.0 2.5
Instruction Overhead (%)

Figure 17: Overall performance improvement and
miss coverage vs. instruction cost for several prefetch
configurations on web search.

100

80

60

40

Miss Coverage (%)

web ads

knowledge- 400. 445, 471.
search graph perlbench gobmk omnetpp

[Next-line Prefetch|
[0 Software Prefetch |

IPC Improvement (%

web ads

knowledge- 400. 445, 471.
search graph perlbench gobmk omnetpp

Figure 18: Miss coverage and performance improve-
ment for the best-performing configuration for each
workload.

shows that we can achieve miss coverage between 91%-96%
for all other workloads, with a performance improvement
proportional to the front-end-boundedness of the application
and the gap left from NLP. In all cases the dynamic instruc-
tion execution overhead due to prefetches is less than 2.5%,
and the static program growth due to prefetches is between
0.01% and 1%.

6 RELATED WORK

Datacenter-wide profiling. Modern systems for always-on
profiling trace their beginnings to DCPI [1]. Of these, Aut-
oFDO [5] (built on top of Google-wide-profiling (GWP) [30])

Ayers and Nagendra, et al.

is perhaps the most similar to AsmDB. Both AutoFDO and
this work use continuously-collected LBR samples for com-
piler optimization. AutoFDO summarizes them into basic
block counts and maps them back to source code for tradi-
tional feedback-directed optimization during compilation. In
contrast, this work fully materializes a program’s control-flow
graph and uses it both for offline analysis and for post-link
time prefetch insertion on the binary level.

Profiling efforts, both on production WSCs [16] and on
isolated benchmarks [9, 15, 17], have previously identified
i-cache misses as a significant performance bottleneck. This
work stems from the same observations and dives into root-
causes and solutions. Recently, BOLT [25] was inspired by
i-cache fragmentation findings on benchmarks, confirmed by
the fleetwide AsmDB results presented here.

Front-end prefetching. Researchers have proposed a num-
ber of prefetching techniques for reducing front-end stalls.
Temporal streaming prefetchers capture and replay instruc-
tion sequences with high accuracy. However, they typically
have enormous on-chip storage costs in the range of hundreds
of kilobytes per core [10, 11, 20] or per chip [18]. Recent
streaming prefetchers have reduced the required amount of
on-chip storage [18-20]. However, they still require several
megabytes of total chip storage, making them difficult to
implement in commercial processors.

More recently, Boomerang [22] combines fetch-directed in-
struction prefetching [29] with BTB prefetching in a unified
front-end solution that addresses branch misspeculation in
addition to instruction cache misses. However, it is still lim-
ited by BTB capacity. Shotgun [21] addresses this limitation
by optimizing BTB storage for macro-level control flow (i.e.,
unconditional branches) and leveraging spatial locality to
capture micro-level conditional branch discontinuities. All
these techniques rely on major hardware changes — adding a
prefetch engine, fetch target queue, prefetch buffer, an instruc-
tion pre-decoder, and an entirely new BTB design (in the case
of Shotgun). These have not made it into datacenter-scale
processors so far, and each assumes significant complexity,
cost, and risk to implement.

Luk and Mowry [24] have the most similar approach to
reducing i-cache misses compared to this work. They also
insert code prefetches with compiler help, after static control-
flow analysis. Static analysis relies on heuristics for branch
outcomes, indirect targets, and control flow which limits ac-
curacy and significantly increases size overheads. We leverage
empirical dynamic program behavior to target only paths
that are performance-critical. More crucially, they rely on
additional hardware to filter spurious prefetches — both an
active prefetch filter and additional metadata bits in all i-
caches. Our approach avoids spurious prefetches without the
complexities of additional hardware with a combination of
dynamic control-flow analysis and instruction miss profiles.

7 CONCLUSION

This paper focused on understanding and improving instruc-
tion cache behavior, which is a critical performance constraint

AsmDB: Front-End Stalls in WSC

for WSC applications. We developed AsmDB, a database for
instruction and basic-block information across thousands of
WSC production binaries, to characterize instruction cache
miss working sets and miss-causing instructions. We used
these insights to motivate fine-grain layout optimizations to
split hot and cold code and better utilize limited instruction
cache capacity. We also proposed a new, feedback-driven opti-
mization that inserts software instructions for code prefetch-
ing based on the control-flow information and miss profiles
in AsmDB. This prefetching optimization can cover up to 96%
of instruction cache misses without significant changes to
the processor and while requiring only very simple front-end
fetch mechanisms.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and David
Xinliang Li for their constructive feedback on drafts of this
manuscript. We reserve our special thanks for our colleagues
at Google: the platforms performance team for invaluable
help with performance measurement, the memtrace team
for the infrastructure capable of tracing large applications,
and the GWP team for building and maintaining WSC-scale
profiling infrastructure.

REFERENCES

[1] Jennifer Anderson, Lance Berc, George Chrysos, Jeffrey Dean, San-
jay Ghemawat, Jamey Hicks, Shun-Tak Leung, Mitch Lichtenberg,
Mark Vandevoorde, Carl A Waldspurger, et al. 1998. Transparent,
low-overhead profiling on modern processors. In Workshop on
Profile and Feedback-Directed Compilation.

[2] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and
Parthasarathy Ranganathan. 2018. Memory hierarchy for web
search. In High Performance Computer Architecture (HPCA).

[3] Luiz André Barroso, Urs Holzle, and Parthasarathy Ranganathan.
2018. The datacenter as a computer: Designing warehouse-scale
machines. Synthesis Lectures on Computer Architecture (2018).

[4] Derek Bruening. 2004. Efficient, transparent, and comprehensive
runtime code manipulation. Ph.D. Dissertation. Massachusetts
Institute of Technology.

[5] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. Aut-
oFDO: Automatic feedback-directed optimization for warehouse-
scale applications. In Code Generation and Optimization
(CGO,).

[6] Robert Cohn and P Geoffrey Lowney. 1996. Hot cold optimiza-
tion of large Windows/NT applications. In Microarchitecture
(MICRO).

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified
data processing on large clusters. In Operating Systems Design
and Implementation (OSDI).

[8] Stéphane Eranian. 2008. What can performance counters do for
memory subsystem analysis?. In Workshop on memory systems
performance and correctness.

[9] Michael Ferdman, Babak Falsafi, Almutaz Adileh, Onur Kocber-

ber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu

Kaynak, Adrian Daniel Popescu, and Anastasia Ailamaki. 2012.

Clearing the clouds. In Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proac-

tive instruction fetch. In Microarchitecture (MICRO).

Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak

Falsafi, and Andreas Moshovos. 2008. Temporal instruction fetch

streaming. In Microarchitecture (MICRO).

[12] Paul Havlak. 1997. Nesting of reducible and irreducible

loops. Transactions on Programming Languages and Systems

(TOPLAS) (1997).

John L Hennessy and David A Patterson. 2012. Computer archi-

tecture: a quantitative approach.

[10

[11

13

ISCA '19, June 22-26, 2019, Phoenix, AZ, USA

[14] Robert Hundt. 2011. Loop recognition in C++/Java/Go/Scala.
Scala Days (2011).

[15] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie
Luo. 2013. Characterizing data analysis workloads in data centers.
In Workload Characterization (IISWC).

[16] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks.
2015. Profiling a warehouse-scale computer. In Computer Archi-
tecture (ISCA).

[17] Harshad Kasture and Daniel Sanchez. 2016. TailBench: A bench-
mark suite and evaluation methodology for latency-critical appli-
cations. In Workload Characterization (IISWC).

[18] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. Shift: Shared
history instruction fetch for lean-core server processors. In Mi-
croarchitecture (MICRO).

[19] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence:
Unified instruction supply for scale-out servers. In Microarchitec-
ture (MICRO).

[20] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. 2013. RDIP:
Return-address-stack directed instruction prefetching. In Microar-
chitecture (MICRO).

[21] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting
through the front-end bottleneck with shotgun. In Architectural
Support for Programming Languages and Operating Systems
(ASPLOS).

[22] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Na-
garajan. 2017. Boomerang: A metadata-free architecture for con-
trol flow delivery. In High Performance Computer Architecture
(HPCA).

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. 2005. Pin: Building customized program analysis
tools with dynamic instrumentation. In ACM SIGPLAN.

[24] Chi-Keung Luk and Todd C Mowry. 1998. Cooperative prefetching:
Compiler and hardware support for effective instruction prefetch-
ing in modern processors. In Microarchitecture (MICRO).

[25] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
2019. BOLT: A Practical Binary Optimizer for Data Centers and
Beyond. In Code Generation and Optimization (CGO).

[26] David A Patterson. 2008. The data center is the computer. Com-
mun. ACM (2008).

[27] Tribuvan Kumar Prakash and Lu Peng. 2008. Performance char-
acterization of spec cpu2006 benchmarks on intel core 2 duo
processor. ISAST Transactions on Computer Software Engi-
neering (2008).

[28] Muhammad Yasir Qadri, Nadia N Qadri, Martin Fleury, and
Klaus D McDonald-Maier. 2015. Software-Controlled Instruction
Prefetch Buffering for Low-End Processors. Journal of Circuits,
Systems and Computers (2015).

[29] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch
directed instruction prefetching. In Microarchitecture (MICRO).

[30] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and
Robert Hundt. 2010. Google-wide profiling: A continuous profiling
infrastructure for data centers. IEEE Micro (2010).

[31] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: fast and
accurate microarchitectural simulation of thousand-core systems.
In Computer Architecture (ISCA).

[32] Tom Way and Lori Pollock. 2002. Evaluation of a region-based
partial inlining algorithm for an ILP optimizing compiler. In
Parallel and Distributed Processing Techniques and Applications
(PDPTA).

[33] Ahmad Yasin. 2014. A Top-Down method for performance analysis
and counters architecture. (2014).

	Abstract
	1 Introduction
	2 AsmDB
	3 Where are the misses coming from?
	3.1 Miss working sets
	3.2 Miss-causing instructions

	4 Code bloat and fragmentation
	4.1 Code bloat
	4.2 Intra-function fragmentation
	4.3 Intra-cacheline fragmentation
	4.4 Memcmp and the perils of micro-optimization

	5 Software Prefetching For Code
	5.1 Requirements
	5.2 Software prefetch challenges
	5.3 Ensuring timeliness
	5.4 Prefetch injection procedure
	5.5 Evaluation methodology
	5.6 Prefetching results

	6 Related work
	7 Conclusion
	Acknowledgments
	References

