HICAMP Bitmap: Space-Efficient Updatable Bitmap Index
for In-Memory Databases

Bo Wang
Stanford University
bowang@stanford.edu

ABSTRACT

Bitmap represents an efficient indexing structure for query-
ing large amounts of data and is widely deployed in data-
warehouse applications. While the size of a bitmap scales
linearly with the number of rows in a table, due to its sparse-
ness, it can be greatly reduced via compression based on run-
length encoding. However, updating a compressed bitmap
is expensive due to the encoding and decoding overheads, in
particular, as re-compression can change the compressed se-
quence length and data layout. Due to this problem, bitmap
indices only perform well for read-only workloads.

In this paper, we propose a bitmap index structure which
is both space-efficient and allows fast updates, by building
on top of a smart memory model called HICAMP. As a con-
sequence, our approach enables bitmap indices for workloads
that exhibit high update ratios as in OLTP workloads. We
also present a new multi-bit bitmap design which addresses
the candidate checking problem. In our experiments, the HI-
CAMP bitmap index demonstrates 3~12x reduction in size
over B-tree and 8~30x over other commonly used indexing
structures such as Red-Black tree, while supporting efficient
updates simultaneously.

1. INTRODUCTION

Database systems use indices to quickly locate data with-
out having to search every row in a table. B-tree is the
most popular data structure in operational databases, espe-
cially for OLTP workloads which feature many concurrent,
short, but latency-sensitive transactions. The popularity of
tree-based indexing methods in OLTP stems from the fact
that its search and update complexities are both logarith-
mic, and that the search and update ratios are similar in
OLTP workloads[21]. However, the B-tree index is large
and hence consumes precious memory capacity that could
otherwise be used for data buffering. In today’s increas-
ingly popular in-memory databases, memory consumption
represents a primary concern when trying to fit in the full
data set. Some recent in-memory databases like SAP HANA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

DaMoN’14, June 22 - 27 2014, Snowbird, UT, USA

Copyright 2014 ACM 978-1-4503-2971-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2619228.2619235

Heiner Litz
_ Stanford University
heiner.litz@stanford.edu

David R. Cheriton
Stanford University
cheriton@cs.stanford.edu

greatly reduce the use of indices to decrease memory con-
sumption and eliminate effort in index maintenance, which
in turn offers higher overall performance [6].

The bitmap index represents an alternative space-efficient
indexing structure well-suited for read-heavy environments,
such as OLAP databases, that require high performance
searching and set operations on read-only or read-mostly
data. Bitmap indices provide better performance for search-
ing than for updating. This property fits the search-to-
update ratio in OLAP workloads [21]. A basic bitmap index
utilizes one bitmap per distinct value of an attribute. Inside
each bitmap, the n-th bit is set to non-zero if and only if
the n-th record equals to the attribute value this bitmap
corresponds to. Without compression, a basic bitmap index
requires N X V bits to index an attribute with N records
and V distinct values, i.e. its cardinality. This size is pro-
hibitively large, especially if there exist many distinct values.
To reduce the large space used by raw bitmap indices and
to make it practical, various bitmap compression algorithms
have been proposed [24, 1, 4]. These algorithms leverage
the sparsity of bitmaps and apply run-length encoding to
suppress long sequences of consecutive zero (or non-zero)
bits.

As the size of a compressed bitmap index is much smaller
than that of a B-tree, it is desirable to adopt bitmap in-
dices, especially for in-memory databases. However, bitmap
indices are not update-friendly for the following reasons.
Firstly, because of the non-uniform length of compressed
bit sequences, it requires a sequential scan from the begin-
ning to locate the exact position of the bit to be updated.
Secondly, changing the bit requires decoding the compressed
sequence, updating the bit, and then re-encoding the new se-
quence. This process is time-consuming, especially when the
new sequence is of a different length. Therefore, compressed
bitmap indices are ill-suited for OLTP workloads.

Another issue faced by the bitmap index is high cardinal-
ity of some attributes because the number of bitmaps inside
a basic bitmap index equals to the cardinality of the at-
tribute. To avoid a large number of sparse bitmaps in the
case of high cardinality, binning is applied to partition the
attribute value space into bins. The basic idea of binning
is to build one bitmap for a sequence of consecutive val-
ues named a bin rather than for each distinct value. This
method disassociates the number of bitmaps from the at-
tribute cardinality and enables to control the index width.
Besides, attributes in a continuous value space can be in-
dexed with bitmap indices in the same way as discrete-
valued attributes. However, indexing multiple values with a

single bitmap introduces false positives on lookups. In par-
ticular, a bit in the bitmap is set when the corresponding
record matches any one of the attribute values in that bin.
To verify a match in this case, a candidate check needs to
be performed by reading the record value from the corre-
sponding column. The match is a true positive only if the
record value equals to the lookup value. As bitmap indices
are stored separately, each candidate check needs to look
into the data area of the column. In disk-based databases,
candidate checking is expensive as scanning a bitmap may
trigger paging in and out multiple data pages. In in-memory
databases, candidate checking becomes cheaper, however, it
can still incur cache misses and cache pollution.

In this paper, we propose a new bitmap index which simul-
taneously achieves small memory consumption, fast lookups,

and efficient updates by leveraging the Hierarchical Immutable

Content-Addressable Memory Processor (HICAMP) [3]. HI-
CAMP introduces a new memory system that stores data in
the form of directed acyclic graphs (DAGs). It also provides
fine-grained memory deduplication. Designing a bitmap in-
dex utilizing these underlying hardware features enables us
to minimize the size of a bitmap without applying run-length
encoding and to maintain a regular data layout for efficient
updates. HICAMP bitmaps can be scanned fast by exploit-
ing the knowledge of the DAG structure. To reduce can-
didate checks introduced by bitmap binning, we devise a
multi-bit bitmap format that mitigates the issue of high car-
dinality without sacrificing lookup performance.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the HICAMP architecture and introduces its
hardware features. Section 3 presents our new bitmap index
structures. Compaction evaluations are presented in Section
4. Section 5 reviews related work before Section 6 concludes
the paper and discusses future work.

2. HICAMP MEMORY SYSTEM

The advantages of our bitmap index is achieved by taking
advantage of the underlying hardware. In this section, we
briefly describe the data organization and deduplication as
a primer to understand how HICAMP bitmap indices work.
Details of HICAMP architecture can be found in [3].

Data stored in HICAMP memory are divided into content-
unique lines of a fixed size, e.g. 64 bytes. Each line is
immutable and only stored once in the whole memory sys-
tem. Multiple occurrences of the same line reference the
same physical memory location by a physical line id (PLID).
Memory lines are reference counted. Whenever the reference
count of a line reaches zero, the line is reclaimed. An object
in HICAMP memory is structured as a DAG, called a seg-
ment, storing data in its leaf nodes. The internal nodes store
the PLIDs pointing to leaf nodes and other internal nodes.
A node in the DAG is a memory line. We will use these two
terms interchangeably. Figure 1 shows an example of a bit
array stored in HICAMP memory as a DAG. For simplicity,
the figure shows a line as containing only 8 bits or 2 PLIDs.
In a real system, a 64-byte memory line is capable of storing
512 bits or 16 PLIDs. The three unique non-zero lines in this
bitmap are stored as the three leaves in the figure. Repeti-
tive occurrences of the leaf 0001 0000 are deduplicated with
the same PLID P,. All-zero lines are denoted with the zero
PLID. Zero-valued PLIDs imply zero-valued subtrees.

It is worthwhile to note that the deduplication is per-
formed hierarchically. When one or more objects share a

P | P P, | Ps

[1010]0101] [0001 [0000] [1000 [0000]

[1010 0101 0001 0000 0000 ..0000 1010 0101 0001 0000 0001 0000 1000 0000]
Pa 16 0's Pa

Figure 1: Storing a bitmap as a DAG on HICAMP

sub-DAG of the same data, these sub-DAGs are referred by
the same PLID of the sub-DAG root. Only one copy of leaves
and internal nodes are stored in the memory. For example,
in Figure 1, the sequence 1010 0101 0001 0000 occurs twice
and spans two leaves. Rather than using two PLIDs (P,
P,) referencing the two leaves respectively, using a PLID Py
referencing the parent node of these two leaves is sufficient.

Furthermore, HICAMP compacts the path over internal
nodes with only a single child reducing the number of inter-
nal nodes. Figure 2 shows an example for the case that an
internal node contains only two PLIDs.

flag for path compaction unused pa;h stop bit
AT YT

[P, 70071010 |

pus S S W
_.rght o\ %
______ left . _____.i

right :

Figure 2: Path Compaction

HICAMP memory seamlessly integrates with conventional
memory. The virtual address space of a process consists of
a conventional partition and a HICAMP partition. Accesses
to virtual addresses in the HICAMP partition are directed
to the HICAMP memory controller, which looks up the seg-
ment IDs and calculates the leaf offsets based on the vir-
tual addresses. This lookup operation is handled by a hard-
ware component called iterator register. The iterator regis-
ter translates a store operation into a lookup to locate the
corresponding leaf to be changed and a lookup-by-content to
the content-unique line, then recursively replaces the PLIDs
until the root of the DAG.

As the name suggests, iterator registers provide an effi-
cient means to iterate through a data collection sequentially
avoiding unnecessary DAG traversals. The path information
from the root node to the currently referenced leaf node is
cached in the iterator register for efficient access to adjacent
leaves. In addition to path caching, iterator registers im-
prove performance by prefetching the next elements to avoid
memory stalls. This is particularly helpful in HICAMP be-
cause the logically contiguous leaf elements may be physi-
cally scattered in memory.

3. HICAMP BITMAP INDEX

The memory structure described in Section 2 enables ef-
ficient mapping from database indices to a compacted for-
mat while maintaining good manipulability. In this section,
we first discuss the standard bitmap on HICAMP and then
present our multi-bit bitmap to handle attributes with high
cardinality without sacrificing the lookup performance.

3.1 Standard Bitmap Index

The standard bitmap index on HICAMP has a straight-
forward format. Each bitmap is stored as a HICAMP DAG.
On the top-level, a hash table maps the lookup value to the
corresponding bitmap. This hash table itself is also imple-
mented as a HICAMP DAG as illustrated in Figure 3. The
lookup value is used as the offset into the DAG. The value
stored at the corresponding leaf is a reference to the specific
bitmap.

’,
e

DAG for bitmap lookup
, . ’ \\/
’ S

DAG for bitmap 1 DAG for bitmap 2 DAG for bitmap 4
Figure 3: Top-level Structure of HICAMP Bitmap
Index

Standard bitmaps are compacted on HICAMP in two ways.
Firstly, taking advantage of the fact that most bitmaps are
sparse, i.e. many data lines of bitmaps are zero lines, HI-
CAMP memory references them with the zero PLID hierar-
chically. Thus, long sequences of consecutive zero bits take
little memory space. Secondly, non-zero lines with identical
contents are stored only once and referenced by the same
PLID. It only takes 4 bytes to store a PLID in an internal
line, which translates to 1/16 overhead comparing to the
64-byte line deduplicated. Lines in very sparse bitmaps of-
ten contain only a single non-zero bit. Because a 64-byte
line has only 512 bits, only 512 content-unique lines, i.e.
32KB in space, are needed to cover all possible patterns.
For lines with two non-zero bits, there are a few more per-
mutations, but similarly it only requires less than 8MB of
memory. With these two mechanisms, sparse bitmaps can
be stored at high compaction ratio.

One of the most common operations on index is scanning.
For example, to determine all records of a lookup value, the
corresponding bitmap is scanned. Procedure next_set_bit()
shows a fast scanning algorithm on HICAMP bitmaps. Each
time next_set_bit () is called, the index to the next non-
zero bit is returned in logarithmic time. next_set_bit()
takes three parameters - the current word, the current word
offset in the DAG, and the bit offset in the current word.
To find the next set bit, bits before the current bit offset in
the current word are cleared with bit masks in constant time
(i.e. clear_least_sig_bits()). If the current word is then
zero, the next non-zero word in the DAG is looked up (i.e.
next_non_zero_word()). next_non_zero_word() walks the

DAG and skips consecutive zeros. This walk takes O(log n)
steps, where n is the size of the bitmap. Using bit masks
and shift, the first non-zero bit in the word can be found in
constant time [22] (i.e. first_set_bit()). Combining the
word-level offset and bit-level offset, we obtain the position
of the next non-zero bit. Predicates are supported by pass-
ing the value in the column for checking in case of a binned
bitmap index (Section 3.2).

proc next_set_bit(cur_word, word_off set, bit_offset) =
while word_offset < num_words do
cur_word := clear_least_sig_bits(cur_word, bit_off set)
if cur_word =0
word_off set ;== next_non_zero_word(word_off set)
cur_word := word_value(word_off set)
fi
bit_off set := first_set_bit(cur_word)
index := word_offset x 64 + bit_offset
bit_offset := bit_offset + 1
pred_test := evaluate_predicate(index)
if pred_test = true
return index
fi
end

HICAMP DAG allows the scan operation to only access
non-zero data lines in a bitmap. Even though data lines of a
bitmap may scatter non-continuously in the physical mem-
ory, iterator register hardware can prefetch logically adja-
cent lines without CPU intervention thanks to its awareness
of the DAG structure.

In contrast to software compressed bitmaps, HICAMP
bitmaps support efficient updates. Software compression al-
gorithms employ run-length encoding, which makes updates
prohibitive costly. Typically an auxiliary delta structure is
maintained to record all changes and the bitmap is rebuilt
in batch periodically [19]. HICAMP bitmaps adopt fine-
grain deduplication rather than variable-length compression.
Thus, in HICAMP bitmaps, the bit to update can be directly
located by translating the position to a particular leaf in the
DAG and the offset within that leaf. Due to the similarity,
the update complexity of HICAMP bitmaps is comparable
to that of B-tree, in particular in O(log n) complexity.

3.2 Multi-bit Bitmap Index

Standard bitmap indices are efficient when the cardinality
is relatively small. However, if the cardinality is large, a
large number of bitmaps need to be stored in the bitmap
index. The overhead of metadata may surpass the space
savings from deduplication. Additionally, when performing
range queries, many bitmaps need to be opened and each
one just contains a small number of non-zeros. Handling
too many DAGs concurrently can lead to iterator register
thrashing and degrade the iteration performance. Moreover,
when the attribute value space is continuous rather than
discrete, standard bitmap indices cannot be directly applied.
Binning can solve the high cardinality problem and enable
indexing on continuous attributes. However, it introduces
the need for candidate checking which affects the lookup
performance.

To reduce the overhead of candidate checking, we intro-
duce a multi-bit bitmap format. In a multi-bit bitmap, a
fixed number of bits, e.g. 4 bits, are used to encode a single

record. In comparison, a standard bitmap uses only one bit
per record. Rather than only denoting the existence, every
n bits can encode a signature of 2" — 1 distinct values, while
n clear bits represent the absence of a record. The signature
is used to reduce the need for candidate checking. To encode
a record of value x in a n-bit bitmap index, we firstly deter-
mine the bin of this record by dividing x by the bin width
b, assuming b < 2™ — 1. Then, the signature of the record,
e.g. modulo of = by the bin width b, is stored in the n bits
at the position corresponding to this record inside that bin.
To lookup records of value z, we can directly scan bin z/b
for the signature x%b.

Figure 4 shows an example in a 4-bit bitmap index, i.e.
n = 4. In this case, every 4 bits encode a record. A signature
can have up to 2* — 1 = 15 distinct values. Let bin width
b also be 15, then value 50 will be hashed to bin #3 with a
signature of 50%15 = 5, i.e. (0101)2 in binary. To look up
records of value 50, we scan bin #3 for signature (0101)a.
There is no need to check the original column when a non-
zero element is encountered in a bin.

data array
binrange | 50 [10 [15] 20 [35 [31] 4 | 46 |
—

e —m—— = —— - —_—r—-———

bin[0] 1~15 100001101011111100001000010000101000000"
bin[1] 16~30 10000 0000 0000
bin[2] 31~45 1000000000000 000001010001 00000000
bin[3] 46 ~60 0101100000000 000000001 0000100001000 !

Figure 4: Example of a 4-bit bitmap index

Generalizing the above format, we can set the bin width
larger than 2™ — 1 in a n-bit bitmap index. In this case,
more than one distinct attribute values are mapped to the
same signature within a bin. For example, if the bin width is
m x (2" — 1), m distinct attribute values are mapped to one
signature. We call these m attribute values a value group.
More formally, a value group is a fixed number of consecu-
tive values that share the same signature within a bin. For
instance, in Figure 5, n = 4 and bin width equals to 120,
every 4-bit signature represents 120/(2* — 1) = 8 distinct
values, i.e. m = 8. In this case, candidate checking is still
needed because we are not sure which one of the two values
this signature stands for. However, the need for candidate
checking is limited to non-zero elements of the target signa-
ture, i.e. elements in the same value group as the lookup
value, rather than every non-zero element in the bitmap as
in a standard bitmap index with binning. Therefore, the
number of candidate checks reduces to 1/2" on average.

signature value group represented value
e —P— —A—
(0000)2: non-exist

)
. 0001)2: 0~7 — 121~128
bin[1] 121~240 " (9910),: 8~15 — 129~136
bin2] 241 ~360 \ (00112 16~23 — 137~144

bin range
—h—
bin[0] 1~120

bin[3] 361 ~ 480 (1111)2:112~119 — 233 ~240

Figure 5: 4-bit bitmap with value group (m = 8)

It is worth noting that multi-bit bitmaps can be large
without deduplication, as a flat n-bit bitmap takes n — 1
times more memory than a standard bitmap. Most of the
extra space is consumed by storing zeros due to the abundant
sparsity in a bitmap index. However, on HICAMP most of
these zero sequences are deduplicated. Moreover, saving a
record with multiple bits reduces the number of records on
the same memory line, which in some circumstances may
increase the probability of finding duplicate lines.

Multi-bit bitmaps also make binning favorable to both
equality queries and range queries. Conventionally, appro-
priate binning can improve the performance of range queries
since fewer bitmaps need to be scanned, which can amortize
the cost of candidate checks on boundaries of the range.
However, candidate checks slows down equality queries be-
cause every hit in the bitmap requires a candidate check.
Multi-bit bitmaps solve the candidate checking bottleneck
and thus make binning a good fit for both types of queries.

4. EVALUATION
4.1 Methodology

To evaluate the memory consumption of our HICAMP
bitmap index, we build a HICAMP simulator on top of ZSim
[17]). ZSim is a fast, multithreaded, cycle-accurate simula-
tor using dynamic binary instrumentation [15]. Unlike con-
ventional cycle-driven or event-driven models, ZSim adopts
an instruction-driven timing model for faster simulations.
While the test binary is executed, ZSim instruments every
load and store and redirects accesses to HICAMP memory
addresses to our HICAMP memory model. In the HICAMP
model, we simulate the DAG structure and the deduplica-
tion mechanism. The number of memory lines allocated for
data and DSG structure are recorded. To enable efficient
scan on bitmaps, we added new instructions to lookup the
next (or previous) non-zero word and half-word. These in-
structions utilize the DAG to efficiently skip all zero words.

4.2 Compaction Results

4.2.1 TPC-H

We evaluate the size of the HICAMP bitmap index using
data generated by TPC-H DBGen [5] which mimics real-
world datasets. We pick four numeric columns with different
cardinalities for testing. Each column consists of 50 millions
of records. We compare the HICAMP bitmap index against
the following baselines: B+tree (STX B+tree [2]), AVL tree
(STL AVL Map [16]), red-black tree (STL library), skip list
(CS::SkipList [18]). Additionally, we use FastBit [23], the
official implementation of word-aligned hybrid code (WAH),
as the software compression algorithm.

Table 1 reports the memory consumption for each of the
indexing structures on the TPC-H datasets. We report the
average number of bytes required to index one record. The
HICAMP bitmap index is over an order of magnitude smaller
than B+tree in the cases where the cardinality is small. For
larger cardinalities, the number of bytes per record in all
tree-based indices and skip list stay roughly the same. The
reason therefore is, that these data structures store their
records in associative structures indexed by a key. Thus the
total space is determined by the number of records, the num-
ber of keys and the internal indexing cost of internal nodes
and pointers. Both AVL tree and red-black tree are binary

Cardinality | Column name](?;111‘];%6) ai{%e; 4) AVL Tree | Red-Black Tree | Skip List | WAH I]éIIItCHgll\)/IP
7 | line number 25 24 64 64 53 0.9 1.7
50 quantity 25 24 64 64 53 4.4 1.2
2526 ship date 25 24 64 64 53 | 1.7e-3 0.09
100000 | supplier key 23 19 64 64 53 6.8 12.7%
1 unit: bytes/record ¥ indexed with 8-bit bitmaps
Table 1: Memory consumption on TPC-H
search trees, i.e. each node can have at most two children Cardinality | B+Tree | AVL/RB | Skiplist | WAH | Multibit
nodes. Therefore, many internal nodes are needed to in- unif 10 25 64 53 1.2 2.0
dex a large dataset. However, nodes in B+tree have higher un%f 100 25 64 53 5.7 7.0
fanouts, leading to smaller number of bytes per records com- unif 1000 25 64 53 74 8.0
pared to the AVL tree and red-black tree. Z}pf 10 25 64 o3 0.9 1.9
Bitmap indices perform poorly when cardinality is large. Z}pf 100 25 64 53 1.2 3.0
In the case of 100,000 unique values, 70 bytes are required zipf 1000 25 64 53 1.3 2.4

to index a single record. This is because 100,000 bitmaps
need to be constructed to build the index, even though each
bitmap is very sparse. On average, only 500 out of the 50
millions bits are non-zeros. However, there is also a per-
bitmap memory overhead for metadata storage. The space
cost on internal nodes is not negligible neither. Additionally,
the hashmap used to look up a bitmap, is much denser and
contains more non-zero lines, thus requiring more space. To
mitigate the high cardinality issue, binning is applied. Due
to the sparsity of the data, we use a bin width of 100, re-
spectively every 100 consecutive unique values are mapped
to a bitmap. With binning, the number of bytes per record
reduces to 4.3 bytes, just 1/5 of that of B+tree.

Although binning can greatly reduce the memory over-
head of bitmap indices, it requires costly candidate check-
ing. When scanning a bitmap with a bin width of 100, 99%
of the hits are false positives assuming uniform data distri-
bution. For every hit, we have to check the data record to
filter out false positives. Candidate checks hurt performance
and incur additional memory references. A solution to this
issue is to use multi-bit bitmaps. When indexing the col-
umn with 100,000 unique values on 8-bit bitmaps, it takes
12.7 bytes per record. Though the 8-bit bitmaps require 3x
the memory capacity compared to binning with bin width
of 100, no candidate checking is required when iterating on
the index. Moreover, the multi-bit bitmap is still up to 50%
more space-efficient than B-+tree.

HICAMP bitmaps have a similar memory consumption
comparing with WAH in most cases. In the high cardinality
case, HICAMP bitmaps require slightly more memory, up
to 1.87x space. However, HICAMP bitmaps also support
efficient updates. The small amount of space overhead is
worthwhile.

In the third test case (ship date), the memory consump-
tion of both WAH and HICAMP bitmaps are very small.
This is because the ship date is sorted in ascending order.
Thus, in bitmap representation, a large number of consec-
utive bits are either zero or non-zero. This spatial prop-
erty is greatly beneficial for bitmap compaction. In WAH,
this is represented by a bit for value and a number for the
run-length. In HICAMP, all copies of these all-zero and all-
non-zero lines are saved only once. Because of hierarchical
deduplication, the internal nodes can also be deduplicated,
thus significantly reducing the size of the index.

Table 2: Memory consumption on uniform/zipf dist.

4.2.2 Uniform and Zipf Distribution

In this section, we evaluate the size of multi-bit bitmap
on data generated under uniform and zipf distribution. This
provides more general comparison beyond TPC-H and the
asymptotic size of the multi-bit bitmap index. In most en-
terprise databases, the number of distinct values per column
is small. According to a study on real enterperise databases
[10], 80~90% of columns have fewer than 1024 distinct val-
ues. Thus, test data was generated with cardinalities from
10 to 1,000. The number of bits per record is chosen accord-
ing to the cardinality: 2-bit bitmap is used for the cardinal-
ity of 10, 4-bit for 100, and 8-bit for 1,000.

Table 2 shows the memory consumption of various index-
ing formats on uniform and zipf distributions. The zipf dis-
tribution represents many datasets following power law in
the real world. Zipf distributed data exhibits a large num-
ber of records with a small number of unique values. There-
fore, a small number of bitmaps are dense while the rest
are very sparse. This situation is a good fit for HICAMP
deduplication due to the abundance of zero lines. There-
fore, the memory consumption in the case of zipf is smaller
than that of a uniform distribution. The HICAMP multi-bit
bitmap is 3~12x smaller than B+tree, 8~30x smaller than
AVL tree, red-black tree and skip list. The size of bitmap
index changes with the cardinality, while the size of the tree-
based indexing structures remain almost unchanged. WAH
encoding can achieve a slightly smaller size, close to that of
the HICAMP multi-bit bitmap.

S. RELATED WORK

One of the early bitmap compression algorithms is the
byte-aligned bitmap compression (BBC) [1]. BBC is based
on the idea of run-length encoding that represents consecu-
tive identical bits by the bit values and the run-length. The
bitmap is encoded or decoded one byte at a time. Bitwise
logical operations can be performed on compressed bitmaps
directly. Word-aligned hybrid code (WAH) [24] compresses
bitmaps in a word-aligned fashion, which reduces the decod-
ing frequency and exhibits better performance. Despite high
compression ratios and fast bit-wise operations, these coding
schemes are not update-friendly. Thus, bitmap indices are

mostly used in read-only applications like data warehousing.

Another bitmap-based indexing method is column im-
prints [19], which partitions the value domain into a small
number of bins and uses only one bitmap to record whether
a value may appear in a cache line. A bit is set if at least one
value in the cache-line falls into the corresponding bin. This
structure also adopts run-length encoding, thus requiring a
delta structure to record changes.

B+trees are commonly used for update-intensive work-
loads. The B-link tree [11] represents the most common
structure for concurrent updates. The B-link tree avoids
all read latches by linking tree blocks at each level together
with a next pointer, which greatly improves concurrency.
However, write latches are still required as a tree block is
modified. Foster B-tree [7] provides optimized latching and
improves the update rates without compromising read per-
formance. The recently proposed Bw-tree [14] achieves a
latch-free approach with the compare and swap (CAS) in-
struction for all state changes, including structure modifi-
cation operations. However, the implementation of a seri-
alizable latch-free data structure is non-trivial and requires
tens of thousands of lines of C++ code. In comparison, con-
currency control on HICAMP bitmap index is much simpler
because it operates on a snapshot with a flat data repre-
sentation. Much of the conflict resolution is handled by the
memory controller. Because of no structure modifications in
bitmap index, the performance is more predictable.

The advent of in-memory databases inspires new tree-
based indexing structures [8, 9, 12]. Fast Architecture Sen-
sitive Tree (FAST) [8] is an architecture sensitive binary
search tree which minimizes cache miss and adopts SIMD
instructions for data-level parallelism. However, FAST does
not support online update. KISS-tree [9] and Adaptive Radix
Tree (ART) [12] are in-memory radix trees supporting ef-
ficient searching and updating. ART adapts the fanout
parameter locally for better trade-off between tree height
and space efficiency. ART has a software path compres-
sion sharing the similar idea as HICAMP’s hardware path
compaction. Cache awareness is the new main optimization
target. An advantage of the HICAMP bitmap index is the
DAG-structure-aware hardware prefetching, which solves the
cache miss problem in most pointer-chasing structures.

Novel memory systems create new opportunities in database

design. Pelley et.al. [20] reconsidered OLTP durability
management to optimize recovery performance and forward-
processing throughput with non-volatile RAMs. Litz et. al.
[13] proposed new memory features to support multiversion
concurrency control in hardware and accelerate transaction
processing.

6. CONCLUSION AND FUTURE WORK

In this paper, we have shown that fine-grained data dedu-
plication and the DAG structure of HICAMP memory en-
able efficient updates on a bitmap index while maintaining
a high compaction ratio. The fine-grained deduplication re-
duces the size of the data structure as well as memory foot-
prints. The experiments show that the size of a bitmap index
can be an order of magnitude smaller than B+tree. Utilizing
the DAG structure, our HICAMP bitmap index exploits the
sparsity of indices enabling efficient scan operations. The
HICAMP bitmap exhibits a similar size as software com-
pressed bitmaps but supports efficient updates. Addition-
ally, the HICAMP bitmap supports random lookup to locate

the bit to be updated in complexity O(log n). These prop-
erties enable bitmap indices for OLTP workloads.

To address the problem of candidate checking, we designed
a multi-bit bitmap which encodes a record with multiple
bits and decreases the need for candidate checks. In the
experiment, multi-bit bitmap demonstrates 3~30x smaller
in size than tree-based indices under both uniform and zipf
distributions.

Lastly, this work demonstrates how hardware innovation
enables break the conflict between space cost and data ma-
nipulation plagued by compression. In-memory databases
need online data structures that have small memory con-
sumption and support efficient updates simultaneously.

In the next step, we plan to evaluate concurrent transac-
tional bitmap index update on HICAMP. Besides deduplica-
tion and DAG structure, HICAMP also provides a copy-on-
write mechanism which efficiently enables light-weight snap-
shot isolation. Writes to a leaf are not updated in place but
on a new local version of the leaf, which merges into the
global version at commit time. We would like to imple-
ment transactional update on bitmap index and compare
it against concurrent tree-based indexing structures. Be-
sides, we are building a columnar in-memory database on
HICAMP memory to handle both OLTP and OLAP work-
loads. We are interested in integrating the bitmap index
into the database to evaluate its performance on both types
of workloads.

7. ACKNOWLEDGEMENT

The authors would like to thank Michael Chan for his care-
ful review and valuable feedback on the draft. The authors
are grateful to Amin Firoozshahian and Alex Solomatnikov
of HICAMP Systems, Inc. for providing the HICAMP mem-
ory model simulator.

8. REFERENCES

[1] G. Antoshenkov. Byte-aligned bitmap compression.
Technical report, Oracle Corp. U.S. Patent number
5,363,098.

[2] T. Bingmann. STX B+Tree.
https://panthema.net /2007 /stx-btree/, 2013.

[3] D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P.
Stevenson, and O. Azizi. Hicamp: Architectural
support for efficient concurrency-safe shared
structured data access. SIGARCH Comput. Archit.
News, 40(1):287-300, Mar. 2012.

[4] A. Colantonio and R. D. Pietro. Concise: Compressed
'n’ composable integer set. CoRR, 2010.

[5] T. P. P. Council. TPC-H Specification.
http://www.tpc.org/tpch/spec/tpch2.16.0.pdf, 2013.

[6] F. Farber, N. May, W. Lehner, P. Grofle, I. Miiller,
H. Rauhe, and J. Dees. The SAP HANA Database —
an architecture overview. IEEE Data Eng. Bull.,
35(1):28-33, 2012.

[7] G. Graefe, H. Kimura, and H. Kuno. Foster b-trees.
ACM Trans. Database Syst., 37(3):17:1-17:29, 2012.

[8] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. FAST: fast architecture sensitive tree search
on modern cpus and gpus. In International Conference
on Management of Data. ACM, 2010.

[9]

[10]

[11]

[12]

[14]

T. Kissinger, B. Schlegel, D. Habich, and W. Lehner.
KISS-Tree: Smart latch-free in-memory indexing on
modern architectures. In International Workshop on
Data Management on New Hardware. ACM, 2012.

J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast
updates on read-optimized databases using multi-core
cpus. Proc. VLDB Endow., 5(1):61-72, Sept. 2011.

P. L. Lehman and s. B. Yao. Efficient locking for
concurrent operations on b-trees. ACM Trans.
Database Syst., 6(4):650-670, Dec. 1981.

V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory
databases. In International Conference on Data
Engineering. IEEE, 2013.

H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and
J. P. Stevenson. SI-TM: Reducing transactional
memory abort rates through snapshot isolation. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 383-398, New
York, NY, USA, 2014. ACM.

D. B. Lomet, S. Sengupta, and J. J. Levandoski. The
Bw-Tree: A b-tree for new hardware platforms. In
Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE
’13, pages 302—-313, Washington, DC, USA, 2013.
IEEE Computer Society.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

24]

K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation.
SIGPLAN Not., 40(6):190-200, June 2005.

D. Osmari. STL AVL Map.
http://stlavimap.sourceforge.net/, 2008.

D. Sanchez and C. Kozyrakis. Zsim: Fast and accurate
microarchitectural simulation of thousand-core
systems. SIGARCH Comput. Archit. News,
41(3):475-486, June 2013.

C. Saulnier. CS::SkipList C++ Generic Template
Container Library. http://csskiplist.sourceforge.net/.
L. Sidirourgos and M. Kersten. Column imprints: a
secondary index structure. In Proceedings of the 2013
international conference on Management of Data,
pages 893-904. ACM, 2013.

B. T. G. B. B. Steven Pelley, Thomas F. Wenisch.
Storage management in the NVRAM era. Proceedings
of the VLDB Endowment, 7:121-132, Oct. 2013.

K. Stockinger and K. Wu. Bitmap indices for data
warehouses. Data Warehouses and OLAP: Concepts,
Architectures and Solutions, 5:157-178, 2007.

H. S. Warren. Hacker’s Delight. Addison-Wesley,
Boston, MA, USA, 2002.

K. Wu. Fastbit: an efficient indexing technology for
accelerating data-intensive science. In Journal of
Physics: Conference Series, volume 16, page 556. IOP
Publishing, 2005.

K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with efficient compression. ACM
Trans. Database Syst., 31(1):1-38, Mar. 2006.

