
Improving the Accuracy, Adaptability, and
Interpretability of SSD Failure Prediction Models

Chandranil Chakraborttii
University of California Santa Cruz

cchakrab@ucsc.edu

Heiner Litz
University of California Santa Cruz

hlitz@ucsc.edu

ABSTRACT
Flash-based solid state drives represent an important storage
tier in today’s hyperscale data centers. Although solid state
drives (SSDs) are relatively reliable, data center operators
are interested in predicting future drive failures to admin-
ister drive replacement, data migration, and drive acquisi-
tion strategies. We analyze telemetry data from over 30,000
SSDs running live applications in Google’s datacenters over
a span of six years, for predicting and explaining SSD fail-
ures using machine learning techniques. We propose the use
of 1-class isolation forest and autoencoder-based anomaly
detection techniques for predicting previously unseen SSD
failure types with high accuracy. We show that ignoring the
minority class for training can improve the performance by
up to 9.5% and if adaptability to dynamic environments is
required, by up to 13%. Furthermore, this paper proposes to
utilize 1-class autoencoders to enable model interpretability.
In particular, our autoencoder-based approach enables rea-
soning about the causes that lead to SSD failures. Common to
all approaches, we deploy a set of powerful feature selection
techniques that improve the model performance by up to
1.3× and reduce training times by up to 1.8×.
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1 INTRODUCTION
NAND flash based solid state drives (SSDs) represent an im-
portant storage tier in data centers holding most of today’s
warm and hot data. Although SSDs are less cost-efficient
than hard drives (HDDs), they provide several advantages
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over disks including orders of magnitude higher bandwidth
(a million I/O operations per second), lower average read
latency (less than 100𝜇s), and lower energy consumption. As
SSDs are built from semiconductors lacking mechanical com-
ponents such as spinning disks, they are also more reliable
and less prone to failures compared to HDDs. The number
of SSDs shipped each year has increased steadily by 42.5%
over the last decade [1], now exceeding exabytes of stor-
age capacity every year. SSD manufacturers have employed
three main techniques to increase the storage density over
the past years including planar scaling, 3D integration, and
multi-level cells. While beneficial for the storage density,
these mechanisms have reduced the endurance, retention,
and reliability of SSDs [52], [13], [76], requiring increasingly
sophisticated encoding and fault tolerance mechanisms. Nev-
ertheless, even with advanced fault tolerance techniques
and low failure rates, large Hyperscale data centers utilizing
100,000’s of SSDs suffer from multiple device failures daily.
Data center operators are interested in predicting SSD device
failures for two main reasons. First, even with RAID [6] and
replication [25] techniques in place, device failures induce
transient recovery and repair overheads affecting the cost
and tail latency of storage systems. Second, predicting near-
term failure trends helps to inform the device acquisition
process enabling to save costs and avoid capacity bottlenecks.
As a result, it is important to predict both the short-term
individual device failures as well as near-term failure trends.
Prior studies on predicting storage device failures [62],

[53], [10], [75] focused primarily on traditional hard disks,
however, due to the fundamentally different architecture of
SSDs, prior techniques and findings are not readily applica-
ble to SSDs. Research that has particularly focused on SSDs
[8], [14], [19], [37] generally concentrated on understanding
specific errors and issues within SSDs, limited to a controlled
laboratory environment. Most studies that analyzed SSDs
in the field focused on understanding correlations among
specific workloads, their induced number of writes and bit
errors, as well as their effect on the reliability of SSDs [21]
[68], [23]. Alter [5] and Schroeder [69] analyzed authentic
SSD logs collected in the Google cloud to leverage machine
learning (ML) techniques for predicting the likelihood of
SSD failures. While most related to our work, their proposed
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models either fall short on determining failed drives, or pro-
duce a large number of false positives, thereby lowering the
performance of the prediction models. In particular, these
two prior works suffer from the following main challenges.
First, as they utilize black-box ML techniques, they are un-
aware of the underlying failure reasons rendering it difficult
to determine the failure types that these models can predict.
Second, the models in prior work struggle with dynamic en-
vironments that suffer from previously unseen failures that
have not been included in the training set. These two chal-
lenges are especially relevant for the SSD failure detection
problem which suffers from a high class imbalance. In partic-
ular, the number of healthy drive observations is generally
orders of magnitude larger than the number of failed drive
observations, thus posing a problem for many ML models.

To address these challenges, we propose to utilize 1-class
ML models that are trained only on the majority class. By
ignoring the minority class for training, our 1-class models
avoid overfitting to an incomplete set of failure types, thereby
improving the overall prediction performance by up to 9.5%
in terms of ROC AUC score. The benefit of our proposed
technique becomes even more evident when we reduce the
types of failures included in the training set of the baselines
approaches, showing 13% to 33% improvements using our
proposed 1-class approaches over prior work. Furthermore,
we introduce a new learning technique for SSD failure de-
tection, 1-class autoencoder, which enables interpretability
of the trained models while providing high prediction ac-
curacy. In particular, 1-class autoencoders provide insights
into what features and their combinations are most relevant
to flagging a particular type of device failure. This enables
categorization of failed drives based on their failure type,
thus informing about specific procedures (e.g., repair, swap,
etc.) that need be applied to resolve the failure.
For analysis and evaluation of our proposed techniques,

we leverage a cloud-scale dataset from Google that has al-
ready been used in prior work [5, 70]. This dataset contains
40 million observations from over 30,000 drives over a pe-
riod of six years. For each observation, the dataset contains
21 different SSD telemetry parameters including SMART
(Self-Monitoring, Analysis and Reporting Technology) pa-
rameters, the amount of read and written data, error codes,
as well as the information about blocks that became non-
operational over time. We determine the best performing ML
approaches for predicting SSD failures and then explore opti-
mization techniques, including feature selection and data nor-
malization, to address the challenges of large feature spaces
and highly imbalanced datasets. With these optimizations in
place, our best approach outperforms all prior approaches
by at least 9.5% ROC AUC score.

Figure 1: PCA with all 21 Features

2 BACKGROUND
This section provides a brief introduction to flash device
technology and its implication on the reliability of SSDs.
We show that predicting device failures is a challenging,
multi-dimensional data problem that requires development
of sophisticated machine learning techniques.
Contemporary SSDs are semiconductor devices that per-

sistently store the data in NAND flash arrays consisting of
floating gate transistors [38]. The charge within the floating
gate can only be altered by applying a high voltage (20V),
forcing the electrons to tunnel [28] through a highly resis-
tive isolation material, thereby slowing degrading the stor-
age capability and causing transistor wear-out. Furthermore,
modern NAND drives leverage different voltage levels for
storing multiple bits of information in a single transistor.
Sensing the correct cell value on a read becomes increasingly
difficult after writing the cell frequently, gracefully degrad-
ing the ability to read out data successfully. Unfortunately,
due to manufacturing and device variability, the number of
writes required to trigger a device failure is difficult to pre-
dict. As manufacturers want to increase their yields, many
sold SSDs already contain a number of non-functioning bad
blocks. Hence, the number of healthy blocks even differs
among new devices, thus affecting their overall lifetime. The
garbage collection and wear-levelling procedures performed
by SSDs, internally, further impede the ability of detecting
device failures. These tasks introduce extra writes, trans-
parent to the user, which are highly application-specific. In
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particular, the write patterns (random vs. sequential) and
read-write ratios affect the lifetime of a device considerably.
In summary, the reasons leading to a particular device failure
are highly application and device specific, rendering failure
prediction by using a simple universal technique impossible.
This is further motivated by Figure 1 showing a principle
component analysis (PCA) for the 21 device-internal SSD
features utilized in this study. As can be seen in this figure,
several of the failed drives (outliers) cannot be easily sepa-
rated from the the healthy drives (inliers), motivating the
need for more sophisticated machine learning techniques.

3 1-CLASS FAILURE PREDICTION
Prior work on SSD failure prediction suffers from three short-
comings: (i) the limited overall accuracy of predicting fail-
ures, (ii) the inability of reliably predicting previously unseen
failure types, and (iii) the lack of interpretability of predic-
tions. To address these challenges, we provide the following
contributions. First, we provide a comprehensive analysis
of machine learning techniques to predict SSD failures with
the highest recall and accuracy for both the majority and
minority classes. We optimize our approaches by addressing
the challenges of imbalanced data sets and feature explosion.
Second, we show how 1-class predictive models can be used
to predict previously unseen failures in a dynamic data cen-
ter environment. Third, we propose 1-class autoencoder, an
approach to interpret the predictions of our model, to enable
understanding of the most important reasons for failures.

3.1 Accurate Prediction of SSD Failures
Our dataset contains 40 million observations from over
30,000 drives from Google data centers covering a time span
of six years where each SSD observation contains the values
of 21 distinct features. These features include SMART data,
the amount of data read and written from the device, the
emitted error codes, as well as the information about grown
bad blocks which became non-operational over time due to
wear-out. Predicting device failures from this data poses two
challenging problems. First, due to the large feature space,
machine learning models suffer from the curse of dimension-
ality, as the training and inference times of machine learning
algorithms grow, often exponentially, with the number of
features. Secondly, the data from which our models need
to infer failures, suffers from a significant class imbalance
problem, as there exists a significantly greater number of
healthy drive observations than failed drive observations.

3.1.1 Feature Selection. To address the curse of dimension-
ality introduced by large number of feature, we developed
a feature selection mechanism [22, 39, 40, 43] for improv-
ing SSD failure prediction. The goal is to select the smallest
number of distinguishing features from this dataset to enable

the highest accuracy and recall for detecting SSD failures.
In contrast to prior work on finding anomalous behavior
in cloud systems [79], we performed an extensive study of
eight different filtering mechanisms to rank different fea-
tures in the order of their importance for failure prediction.
We observed that, except for the top 9 features selected, the
order of the importance of features computed by the different
feature selection algorithms varied substantially and, in fact,
utilizing any one feature selection mechanism individually
can lead to high variation in model performance. To address
this challenge, we developed an approach to effectively com-
bine the rankings of different feature selection algorithms,
subsequently leading to the best model performance both in
terms of training time and accuracy, as shown in Section 5.

3.1.2 Class Imbalance. A major challenge in anomaly de-
tection is to deal with the inherent class imbalance problem.
Among the over 30,000 drives that we examined, about 4,000
SSDs failed at some point in time, however, for the most
of its lifetime, every SSD behaves like a healthy drive. This
resulted in a training dataset containing over 40 million data
points for healthy drives (majority class) while only 15,000
data points for failed drives (minority class). Distinguishing
between healthy and failed drive observations is further ag-
gravated by the fact that some of the drives were put back
into service after repair and then failed again, requiring to
be treated as separate failure observations.

Since the size of the majority class is three orders of mag-
nitude larger than the size of the minority class, recognizing
instances of the minority class during classification is chal-
lenging, since many of the ML algorithms are designed to be
biased toward the majority class. The data points at which
the minority instances are positioned among the majority
instances in an imbalanced scheme contributes to the in-
crease in misclassification rate, thus commonly referred to
as data difficult factors [18]. These factors include, but are not
limited to, small disjuncts, class overlap, borderline, noise,
outliers, and rare instances [27].

Prior research [5], [79], [32], [54] used techniques includ-
ing Random Forest [5, 46], Neural Networks [34], k-Nearest
Neighbours (k-NN) [47], and 2-Class Support Vector Ma-
chines (SVM) [9] for predicting storage device failures. We
observe that these approaches cannot cope well with the
high class-imbalance and overfit to the failure types con-
tained in the training dataset. In Section 5 we show that our
proposed 1-class predictive models outperform prior works
by up to 9.5% and reduce training times by up to 1.8×. We
also evaluate our proposed feature selection techniques and
perform a sensitivity study on how far ahead the models can
predict the failures.
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3.2 Predicting unseen failures
As outlined in Section 2, flash devices suffer from a variety of
different failures induced by write amplification, grown bad
blocks, controller errors, and backup battery issues. As some
of the failures are workload-dependent and SSD technologies
change, that is, the move from TLC to QLC cells, it is difficult
to collect data about every failure type. Hence, it is unlikely
that any training dataset would cover all types of device
failures that may occur in the future.

We observed that previous approaches to detect SSD fail-
ures generally fail to predict unseen failure types that have
not been experienced by the model during training. In this
work, we propose to improve the adaptivity of the predictive
models by training them only on the majority class instances.
By utilizing only healthy drives as training data, the models
can learn a strong representation of healthy drives, with-
out overfitting to a limited set of known or previously seen
failure types.
We introduce two mechanisms to enable this approach

including 1-class isolation forest and 1-class autoencoders
[73]. The generic isolation forest [50] is a popular algorithm
for performing anomaly detection based on Random For-
est. The algorithm leverages the fact that anomalous data
points generally satisfy fewer conditions than normal data
points. Hence, an anomaly score can be computed by count-
ing whether the number of conditions required to separate
a given data point is below a certain threshold. We also ex-
plored different contamination factors (the fraction of anoma-
lous data points) to inform the model about this additional
information. Utilizing these optimizations, we show in Sec-
tion 5 that anomalous drives can be determined with a high
recall of 0.99, even though the model had never seen a failed
drive during training.
Furthermore, to the best of our knowledge, this is the

first work to use 1-class autoencoders for predicting SSD
failures. We designed an 1-class autoencoder based model
that generates a compressed knowledge representation of
the original input of healthy drive observations as well as a
trained decoder which, in return, tries to generate healthy
drive observations from the compressed representation. We
remove all failed drive observations from the dataset for
training the autoencoder model, in order to enable the model
to learn a compressed representation of what a healthy SSD
should look like. Reconstruction error [66] is used to inter-
pret the decisions emitted by this model. Figure 2 shows the
internal design of autoencoders. We first encode and then
decode a particular sample of SSD using the autoencoder
model. If the input and output are similar, the input likely
corresponds to a healthy drive, whereas, if the input and out-
put suffer from a large reconstruction error, then the sample
is flagged as an anomaly (failed drive).

Original Input     Latent Representation Reconstructed Output

Encoder Decoder

Figure 2: Autoencoder Design

As we show in Section 5, training on only the healthy
drives provides the following benefits. First, the training is
not limited by learning from a few samples in the minority
classes. Second, the training examples from healthy drives
are easier and cheaper to record, which improves the scal-
ability of our approach. Third, ignoring the minority class
during training improves the ability of the model to predict
previously unseen failures.

3.3 Interpreting SSD Failures
Understanding the reasons for an SSD drive failure is of pri-
mary concern for manufacturers and data center operators
to improve the reliability and to inform about the required
maintenance and repair procedures. This enables them to
choose appropriate drives for a particular workload, provid-
ing the best reliability as well as enabling fast re-servicing
of drives. Providing an understanding of SSD failures also
helps with increasing the transparency of our predictions
and avoids running full diagnostic tests to determine the
causes of a failure.

We leverage our neural network based 1-class autoencoder
approach to enable this capability by creating a compressed
lower-dimensional representation of healthy drive observa-
tions as explained in the previous section. We then use this
representation to select anomalous observations that do not
conform to the representation, thereby generating an output
that differs significantly from representation of healthy ob-
servations. The observations that produce a reconstruction
error greater than a chosen threshold are flagged as failures.
We then categorize these generated outputs by separating
them into buckets, each one representing the error while
reconstructing the input for each feature. The features that
produce a larger than average error for a particular drive
are then marked as significant and reported. We show in
Section 5 how interpreting this data provides insights into
why the model predicted a particular device as a failed drive.

4 METHODOLOGY
Our dataset contains SSD Telemetry data from over 30,000
drives over a period of 6 years collected from Google data-
centers. In total the dataset contains 40 million observations
with 21 different telemetry parameters. Around 4,000 drives
failed during this period leading to 15,000 observations clas-
sified as failed from the total of 40 million observations.
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The dataset contained information on four different SSD
models (MLC A, B, C and D) and contained no information
on specific vendors. Our feature selection process (see Sec-
tion 5.4.2) did not select the model as a significant feature and
hence we excluded it during training process. Of the drives
that failed, approximately 90% of the drives failed only once
while the rest failed up to four times. For our work, we la-
bel each failure as a separate case. Drive replacement times,
upon failure varied widely ranging from under a week (80%
of the cases), to over three months (10% of the cases).
Around 30% of the drives that failed during the data col-

lection process were replaced while the rest were removed,
and hence no longer appeared in the dataset. As a result, we
obtained approximately 300 observations for each healthy
drive and 4 to 140 observations for each failed drive. The en-
tire list of metrics of features present in the dataset is shown
in Table 1.

Traditionally, the drive replacement policy at cloud service
providers uses a rule-based approach [31]. Whenever certain
parameters such as UECC error count, reserve block count,
etc., reach a certain value, the drive is replaced. However, this
approach suffers from two shortcomings. First, these rules
do not comprehensively predict all the failures, and hence
the drives fail unexpectedly in certain cases, resulting in data
loss and application crashes. Second, these rule sets have
also been shown to be overly conservative, leading to many
cases where drives are replaced even though they were still
operating normally. The aggregate number of drive failures
per week is also beneficial for cloud providers as they can
order replacements in advance. These issues motivated us
to develop a more flexible and accurate approach based on
machine learning techniques.

4.1 Data Preprocessing
The data collected contained features in string, date time, and
integer format. We ensured that all the data collected was
transformed into numeric format so that it can be processed
by the machine learning models. String values, such as Drive
model name, were converted into categorical features, and
date and time were converted into UNIX timestamps. We
treated each data point as an independent observation and
normalized all the non-categorical data values to be between
0 and 1. We created separate datasets, identified by the pa-
rameter 𝑁 , by selecting daily observations before a predicted
failure occurred. For instance, 𝑁 = 3 contains all observa-
tions for each drive 3 days before the drive either failed or
was still functional. We leverage this data in order to find out
how far ahead our proposed models can predict the failures.

4.2 Feature Selection
One of our primary goals was to select the most distinguish-
ing features that are highly correlated to the failures for
training. We used three different feature selection methods,
Filter [67], Embedded [45], and Wrapper [71] techniques,
and implemented eight different algorithms including Pear-
son ranking [60], Spearman ranking [77], Chi square test
[56], Analysis of Variance (ANOVA) [35], Recursive Feature
Elimination [29], Extra Trees [51], Lasso Regularization [81],
Elastic Net [82], and Ridge Regression [30], for selecting
the most important features contributing to failures for our
dataset.

4.2.1 Filter Methods. Filter methods for feature selection
use statistical measures to provide scores for each feature.
The features were then ranked by this score and only the top
significantly correlated features were selected. Specifically,
we used Pearson correlation, Spearman correlation, Elastic
Net, and Kendall Tau ranking algorithms to rank the features.

4.2.2 Wrapper Methods. Wrapper methods select different
combinations of features and then evaluate them to pick
the most relevant features. A prediction model is typically
used to evaluate the combinations and assign scores based on
model accuracy.We used different search processes including
Random Forest, Recursive Feature Elimination with Extra
Trees classifiers and Logistic Regression to select the top
features.

4.2.3 EmbeddedMethods. Embeddedmethods pick themost
relevant features that contribute to the accuracy of the model
during the creation and training of the model. LASSO (L1),
Elastic Net, and Ridge Regression (L2) are the most com-
monly used regularization methods. These methods opti-
mize the learning procedure by training models with lower
complexity, where features with non-zero coefficients are
selected for training the model, thus serving as methods for
feature selection. The three methods above provide feature
rankings which were then merged into a single list, giving
equal importance to each method. As we show in Section 5,
the elaborate feature selection process improves both the
training time and the prediction accuracy significantly over
the baseline that utilizes all 21 features. The resulting set of
top features is shown in Table 2. We validated the feature
selected with domain experts, who confirmed that there is
a strong correlation between the features that were picked
by the feature selection algorithms and actual parameters
which indicate wear out and failures in SSDs.

4.3 1-Class ML Models
For training the 1-class models, autoencoder and isolation
forest, we used the H2O library [20] and split the dataset
into training and test set. The training set contains data from
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Features Datatype Description
drive id string Unique ID assigned to each drive
model string Drive model type
timestamp int Time (in us) since the drive was first put in use
read count int Number of read operations in the drive’s lifetime
write count int Number of write operations in the drive’s lifetime
erase count int Number of erase operations in the drive’s lifetime
status read only boolean Status flag indicating if the drive is operating in read only mode
cumulative p/e cycle int Number of times a memory cell is erased and reprogrammed
factory bad block count int Number of non-operational data blocks upon drive purchase
cumulative bad block count int Number of blocks which became non-operational during the drive’s lifetime
status dead boolean Status flag indicating if the drive is currently failed
correctable error count int Number of uncorrectable ECC errors during read
erase error int Number of erase operations that resulted in an error
final read error int Number of read operations that resulted in an error, even upon retry
final write error int Number of write operations that resulted in an error, even upon retry
meta error int Number of errors while accessing the drive’s internal metadata
read errror int Number of read operations that resulted in error, but succeeded upon retry
response error int Number of bad responses from the drive
timeout error int Number of operations that timed out without completion
uncorrectable error (UECC) int Number of uncorrectable ECC errors encountered during read operations
write error int Number of write operations that resulted in error, but succeeded upon retry

Table 1: All 21 features collected

Final Selected Top Features
correctable error count
cumulative bad block count
cumulative p/e cycle
erase count
final read error
read count
factory bad block count
write count
status read only
Table 2: Top features selected

90% of the healthy drives but does not contain any samples
of failed drives. For 1-class isolation forest, we use 250 trees,
with a 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ of 20 to get a good representation of a
healthy drive from the input data. Increasing the tree size
and𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ beyond these values decreased precision of
the model, indicating overfitting. We also experimentally
explored the best value for the contamination factor hyper-
parameter. The initial hyperparameter values were based
on domain knowledge and we performed extensive param-
eter sweeping and tuning (also for the baselines) to come
up with the final hyperparameter values and models. While
our training set has zero contamination (no failed drives),
we need to inform the model about the contamination factor

during inference so that the model can adjust the threshold
to select between failed and healthy drives. The empirically
determined contamination factor depends on the number of
days the model needs to predict ahead and ranges between
0.016 and 0.002.
The 1-class autoencoder model utilizes 4 hidden layers

comprising of 50, 25, 25 and 50 neurons respectively. The
neurons utilize a 𝑡𝑎𝑛ℎ activation function. We utilize the
Adam optimizer [80] and train the model for 100 epochs.
We use early stopping with a patience value of 5 ensuring
that the training of the model stops when the loss does not
decrease after 5 consecutive epochs. Increasing the number
of hidden layers beyond 4 increases the training time sig-
nificantly without providing performance benefits. We use
10-fold cross validation to evaluate all models.

4.4 Deployed System
The processed dataset containing only the top selected fea-
tures is subsequently used for training the different ML mod-
els. In a datacenter we envision our SSD failure prediction
technique to be implemented as shown in the block diagram
in Figure 3. The telemetry traces are collected periodically
from all SSDs in the datacenter and sent to the preprocess-
ing pipeline transforming all input data into numeric values
while filtering out incomplete and noisy values. Following
data preprocessing, feature selection is performed to extract
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the most important features from the data set. The prepro-
cessed data is then either utilized for training or inference.
For inference, device anomalies are reported and classified ac-
cording to our 1-class autoencoder approach. SSDs can then
be manually analyzed by a technician or replaced directly.
As an alternative, a scrubber can be leveraged to validate the
model predictions by performing a low level analysis of the
SSD, finding grown bad sectors and other drive issues.

 
Data center 
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data collector 
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SSD Failure 
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Figure 3: Block diagram of the Deployed System

5 RESULTS
In this section, we compare the performance of our proposed
1-class isolation forest and 1-class AutoEncoder techniques to
three baselines used in prior work. In particular, we compare
against, Random Forest, 2-Class SVM, and Neural Networks
(NN) as those have been used in prior work on SSD failure
detection [5]. For the baselines, whenever available, we use
the same model architecture and hyperparameters as pro-
posed in prior work [5]. For the hyperparameters that we
could not find in prior work, we performed a design space
exploration and report the best numbers that we could find.
For SSD failure prediction, the primary goal is to predict

all SSD failures since the cost of not capturing (mispredict-
ing) a drive that is going to fail is higher than classifying
a healthy drive as a failure which can be refuted by scrub-
bing [55]. Nevertheless, as performing scrubbing induces a
performance overhead, achieving both high recall for failed
devices and high accuracy for healthy devices is important as
well. To satisfy these requirements, for all the experiments,
we chose a high enough threshold to capture failures with a
minimum recall value of 0.99 and then try to predict these
failures with the fewest number of false positives.

For imbalanced datasets, traditional metrics (accuracy, pre-
cision, recall and fscore) alone can be deficient in measuring
the performance of the classifier. Since the dataset is im-
balanced, overfitting to the majority class (predicting all
observations as the majority class) can skew performance
and still reflect good overall precision, recall and fscore. The
receiver operating characteristic curve, or ROC curve [11],
is a graphical plot that illustrates the diagnostic ability of
a binary classifier system as its discrimination threshold is
varied. The ROC curve is created by plotting the true posi-
tive rate (TPR) against the false positive rate (FPR) at various

threshold values. The true-positive rate is also known as sen-
sitivity, recall or probability of detection in machine learning
[65]. The false-positive rate is also known as probability of
false alarm [24] and can be calculated as (1 - specificity). The
area under the curve (ROC AUC) [26] is calculated to give a
single score for a classifier model across all threshold values.
This is inline with prior work that utilizes the ROC AUC
metric for evaluating anomaly detection models [5].

To evaluate the five ML techniques we first label all 40 mil-
lion observations in the dataset to separate between healthy
and failed drive observations. We then perform a 90% - 10%
split of the dataset into training set and evaluation set. For
training the 1-class models we remove all failed drive obser-
vations from the training set, however, the evaluation set is
identical between our proposed 1-class techniques and the
three baselines. We use 10-fold cross validation for evaluat-
ing all approaches.
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Figure 4: ROC AUC Score comparison of the five eval-
uated Machine Learning Techniques

5.1 Accurate Prediction of SSD Failures
Figure 4 illustrates the comparative performance of different
ML techniques for predicting SSD failures one day ahead.
Among the baselines, Random Forest performs best, pro-
viding a ROC AUC score of 0.85. Both our 1-class models
outperform the best baseline. In particular, 1-class isolation
forest achieves a ROC AUC score of 0.91, representing a 7%
improvement over the best baseline while 1-class AutoEn-
coder, outperforms Random Forest by 9.5%.

ROC AUC determines the ability of a model to distinguish
between classes (failed vs. healthy in our application). To
achieve good performance, models need to achieve both
high recall and precision for both failed and healthy classes.
Figure 5 explores these metrics for the five approaches in
more detail for N=1.



SoCC ’20, October 19–21, 2020, Virtual Event, USA Chandranil Chakraborttii and Heiner Litz

0

0.2

0.4

0.6

0.8

1

F H F H F H F H F H

Random Forest Neural Network SVM Isolation Forest Autoencoder

Pe
rf
o
rm

an
ce

Precision Recall Fscore

Figure 5: Accuracy, Precision, Recall and Fscore for the five evaluated Machine Learning Techniques

It shows that Random Forest performs equally well than
our proposed 1-class Models in terms of Precision and Recall
on the majority class of healthy (H) drives, however, per-
forms considerably worse on predicting the minority class of
failed (F) drives. For the minority class, 1-class AutoEncoders
improve precision by 6% over Random Forest as well as by
68% and 72% over the Neural Network and SVM baselines
respectively.
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Figure 6: Predicting unseen failures

5.2 Adaptivity to Unseen Failures
In the previous section we showed that our proposed 1-class
models are capable of outperforming the 2-classmodels by up
to 72% under the best case scenario for the baselines in terms

of precision (31% in terms of ROC AUC score), where 90% of
all failures types are contained in the training set. We now
evaluate the model’s ability in adapting to new datacenter
environments, induced, for instance, by new workloads or
new hardware. Therefore, in Figure 6, we sweep the number
of failed drive observations included in the training set from
10% to 100%, simulating dynamic environments where new
failure types emerge over time.

Figure 6 shows the ROC AUC score for the three baselines
and our proposed 1-class techniques with a variable percent-
age of failed drives included in the training set. Note that
our 1-class techniques do not include any failed drives in the
training set and hence we plot their performance as a straight
line. The baselines’ performance, however, depends signif-
icantly on the number of minority samples in the training
set. For instance, if only 50% of the failed drive observations
are included in the training set, our proposed 1-class Autoen-
coder technique outperforms Random Forest by 13% and NN
and SVM by 33%. This shows that particularly in dynamic
environments, our 1-class techniques are a better choice than
the techniques utilized in prior works.

5.3 Interpreting SSD Failures
This work proposes 1-class Autoencoders for interpreting
SSD failures. In particular, our technique exposes the reasons
determined by our model to flag a particular device failure.
This is achieved by utilizing the reconstruction error gener-
ated by the model while reproducing the output using the
trained representation of a healthy drive. The failed drives
do not conform to the representation, thereby, generating
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an output which differs significantly from the actual obser-
vations producing a large reconstruction error. We study the
reconstruction error per feature to generate the failure rea-
sons. The features which contribute more than the average
error per feature to the reconstruction error, is defined as a
significant reason.

Figure 7 shows how often a feature was flagged as a signif-
icant failure reason by the autoencoder model, aggregated
for all observations from failed drives. The y-axis displays
all features utilized by the model, representing a potential
failure reason while the x-axis shows the failed drive number.
For each drive, we report the failure reason by means of a
scatterplot. From Figure 7, we can see that many failed drives
show a higher than normal number of 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒_𝑒𝑟𝑟𝑜𝑟𝑠
counting the number of failed reads that could be corrected
leveraging error correcting codes (ECC). This indicates that
a high number of uncorrectable errors frequently leads to
failures, however, it is also only a significant feature in ap-
proximately 35% of the drives.
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑏𝑎𝑑_𝑏𝑙𝑜𝑐𝑘 represents another important rea-

son determined by the model indicating SSD failures as it
shows frequent anomalies, however, again only in less than
30% of the cases. In summary, this analysis shows that there
exist particularly relevant features that indicate device fail-
ures in many cases, however, only the combination of several
features enables accurate failure prediction. We also note
that, cumulative UEC (Uncorrectable error count) which has
been researched extensively [15, 36, 64] for SSD failure cor-
relation contributed to less than 1% of the failures according
to our Autoencoder based model.

5.4 Sensitivity Studies
In the following we provide two additional sensitivity studies.
In the first, we evaluate the ability of our models to predict
failures multiple days in advance. Predicting further ahead is
beneficial for logistical reasons and acquisition purposes. In
the second study, we evaluate the effect of feature selection
on the five approaches.

5.4.1 Predicting ahead in Time. To optimize drive mainte-
nance and the acquisition of new spare drives, it is preferable
to predict drive failures further ahead in time. While the pre-
vious sections have focused on predicting one day ahead,
Figure 8 evaluated ROC AUC performance on predicting
multiple days (N) ahead. As expected, for all five models,
prediction performance degrades when predicting further
ahead. So while for 1-class Autoencoders performance de-
grades considerably, 1-class isolation forest can maintain
the performance better. In particular, for 𝑁 = 4, the 1-class
isolation forest model becomes the best performing tech-
nique outperforming the Random Forest baseline by 6% and
SVM and NN by 11% and 13% correspondingly in terms of
RUC-AUC score.

5.4.2 Feature Selection. As mentioned above we used fea-
ture selection algorithms for selecting the most important
features contributing to failures in our dataset. Tables 1 and
2 list the features before and after feature selection. Figure 9
demonstrates the potential benefit of using feature selection
by comparing the model performance (in terms of ROC AUC
score improvement) with the original 21 features against the
performance of the model trained with only 9 features. As
can be seen, all techniques benefit from feature selection,
for instance, Random Forest’s absolute ROC AUC score im-
proves by 3.7% when utilizing feature selection, while 1-class
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Figure 8: ROC AUC score when predicting up to 4 days ahead
.

Autoencoder’s ROC AUC performance increases by 3.3%.
Feature selection also reduces the number of features used
for training the models resulting in up to 41% (for autoen-
coder models) reduction in training times as can be seen
from Table 3.

6 DISCUSSION
We discuss our proposed 1-class models below.

6.1 1-Class Isolation Forest
Anomaly detection approaches leveraging isolation forests
are generally trained on both the majority and minority class.
Perhaps surprisingly, we found that isolation forests trained
only on the minority class performed exceptionally well,
particularly for detecting unseen failures outperforming the
performance of baseline approaches (Random Forest, 2 class
SVM and Neural Network based models). 2-class models use
data from both classes to learn a representation for each class.
Since the number of samples for failed drives in our case
is significantly lower than good working SSDs, the model
has less samples to learn from and hence is more likely to
misclassify previously unseen failed SSDs. 1-class models,
in contrast, learn a representation of a good working SSD
and are more likely to classify previously unseen anomalies
correctly (1-class models do not suffer from overfitting to
the limit training set of failed SSDs).

Our approach does not require training on all different fail-
ure types to detect failures and hence both generalizes and
scales well when provided with new healthy observations.
The approach outperforms autoencoders when predicting
more than two days ahead and is faster to train requiring

fewer training samples. Nevertheless, it was not able to out-
perform autoencoders (for N=1 and N=2) due to a higher
false positive rate (anomalies as reported by the model which
are not actual failures). We plan to use second level super-
vised binary classification in the future to teach the model
about the known failures to eliminate more false positives
during evaluation.

6.2 1-Class Autoencoder
To our knowledge, this is the first application of a deep learn-
ing based 1-class autoencoder for predicting SSD failures. We
used the data from healthy drives to create an encoded rep-
resentation of a healthy drive. Upon providing the test data
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Figure 9: Impact of Feature Selection Techniques



Improving the Accuracy, Adaptability, and Interpretability of SSD Failure Prediction Models SoCC ’20, October 19–21, 2020, Virtual Event, USA

points to the encoded representation, we recorded the differ-
ence between the observed and generated output. Since the
anomalous data points do not fit the encoding well, they tend
to have higher error values. As in 1-class isolation forests, the
autoencoder does not need to train on the minority dataset.
autoencoders performed best while predicting failures up to
2 days ahead, achieving highest accuracy, precision and ROC
AUC score with a recall of 0.99. It performed worse than 1-
class isolation forests when predicting ahead 3 or more days
achieving lower precision, however, autoencoders enable
interpretation of the model predictions. In particular, we can
learn why the model flagged an observation as a failure to
inform the repair and maintenance procedure.

ML Technique Features Training Time (sec)

Random Forest 9 695.4
21 1095.6

Neural Network 9 1496.87
21 2550.87

SVM 9 1156.6
21 1885.6

Isolation forest 9 499,57
21 686.54

Autoencoder 9 1750.57
21 2781.89

Table 3: Model training time (N = 1)

7 RELATEDWORK
Earlier work on analyzing and predicting failures in storage
systems focused on spinning disk drives [10, 32, 32, 53, 55,
59, 62, 68, 75, 78, 78]. However, due to the fundamentally
different storage technologies these prior results are not
applicable to flash based SSDs [17]. Furthermore, these prior
studies were performed on a much smaller number of disk
drives and hence were incompatible with ML techniques that
require large training data sets.
Several studies have focused on providing statistics on

long term failure trends [5, 10, 10, 52, 74]. Meza [57] has
explored SSD failure prediction based on a single feature (un-
correctable bit-error rate) whereas our approach analyses a
much more comprehensive set of 21 features. Schroeder [69]
used supervised ML techniques (2-Class SVM and Random
Forest) to predict sector failures. Alter [5] studied correla-
tions between different workload conditions to study infant-
mortality of SSDs within Google’s data centers. We con-
tribute over these works by proposing 1-class models improv-
ing prediction accuracy, providing adaptivity to previously
unseen failures, and enabling interpretability of predictions.

Anomaly detection techniques using both traditional
machine learning [61] and deep learning techniques [63]
have been successfully applied in various fields of research.
Adewumi [2] provide a detailed review of deep learning-
based techniques for fraud detection. A broad survey of deep
anomaly detection (DAD) methods for cyber-intrusion detec-
tion is presented by Kwon [44]. An overview of DAD tech-
niques for the Internet of Things (IoT) and big-data anom-
aly detection is introduced by Mohammadi and Mehdi [58].
Sensor networks anomaly detection has been reviewed by
Ball [7]. The state-of-the-art deep learning based techniques
for video anomaly detection along with various categories
have been presented in Kiran [41]. Other applications of
anomaly detection include predicting failures in cloud sys-
tems [72], the medical domain [48], and self-driving vehi-
cles [4] [3]. Zhang [79] introduced ATAD, a method of de-
tecting anomalies in cloud systems, by training the model on
one dataset and using transfer learning to use the model for
another dataset. Our work contrasts in using a combination
of several feature selection techniques to select the most rele-
vant features for training themodel for generating failure rea-
sons. In addition to anomaly detection applications, machine
learning has been applied to improve the performance and
efficiency of storage systems and SSDs [12, 16, 33, 42, 49].

8 CONCLUSION
This paper provides a comprehensive analysis of machine
learning techniques to predict SSD failures in the cloud.
Therefore, we collect SSD telemetry information from over
30,000 drives over a period of six years fromGoogle’s datacen-
ters. We observe that prior works on SSD failure prediction
suffers from the inability to predict previously unseen failure
types motivating us to explore 1-class machine learning mod-
els such as 1-class isolation forest and 1-class autoencoder.
We show that our approaches outperform prior work by 9.5%
ROC-AUC score by significantly improving on the prediction
accuracy for failed drives. For dynamic environments, where
only a subset of the different drive failure types are part of
the training set, our 1-class techniques improve over the
baselines by 13%. Finally, we show that 1-class autoencoders
enable interpretability of model predictions by exposing the
reasons determined by the model for predicting a failure.
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