
RPG2: Robust Profile-Guided
Runtime Prefetch Generation

Yuxuan Zhang
zyuxuan@seas.upenn.edu
University of Pennsylvania

Nathan Sobotka
nsobotka@seas.upenn.edu
University of Pennsylvania

Soyoon Park
soyoon@seas.upenn.edu
University of Pennsylvania

Saba Jamilan
sjamilan@ucsc.edu

University of California, Santa Cruz

Tanvir Ahmed Khan
tk3070@columbia.edu
Columbia University

Baris Kasikci
baris@cs.washington.edu

University of Washington & Google

Gilles A Pokam
gilles.a.pokam@intel.com

Intel

Heiner Litz
hlitz@ucsc.edu

University of California, Santa Cruz

Joseph Devietti
devietti@cis.upenn.edu

University of Pennsylvania

Abstract
Data cache prefetching is a well-established optimization
to overcome the limits of the cache hierarchy and keep the
processor pipeline fed with data. In principle, accurate, well-
timed prefetches can sidestep the majority of cache misses
and dramatically improve performance. In practice, how-
ever, it is challenging to identify which data to prefetch and
when to do so. In particular, data can be easily requested
too early, causing eviction of useful data from the cache, or
requested too late, failing to avoid cache misses. Competi-
tion for limited off-chip memory bandwidth must also be
balanced between prefetches and a program’s regular “de-
mand” accesses. Due to these challenges, prefetching can
both help and hurt performance, and the outcome can de-
pend on program structure, decisions about what to prefetch
and when to do it, and, as we demonstrate in a series of
experiments, program input, processor microarchitecture,
and their interaction as well.
To try to meet these challenges, we have designed the

RPG2 system for online prefetch injection and tuning. RPG2

is a pure-software system that operates on running C/C++
programs, profiling them, injecting prefetch instructions,
and then tuning those prefetches to maximize performance.
Across dozens of inputs, we find that RPG2 can provide
speedups of up to 2.15×, comparable to the best profile-
guided prefetching compilers, but can also respond when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

prefetching ends up being harmful and roll back to the orig-
inal code – something that static compilers cannot. RPG2

improves prefetching robustness by preserving its perfor-
mance benefits, while avoiding slowdowns.
ACM Reference Format:
Yuxuan Zhang, Nathan Sobotka, Soyoon Park, Saba Jamilan, Tanvir
Ahmed Khan, Baris Kasikci, Gilles A Pokam, Heiner Litz, and Joseph
Devietti. 2024. RPG2: Robust Profile-Guided Runtime Prefetch Gen-
eration. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
As modern applications scale to ever-larger datasets, the
pressure on the memory hierarchy to provide data to the
processor pipeline efficiently continues to grow. In particular,
data center applications can spend most of their cycles on
cache misses, waiting for data to be fetched from main mem-
ory [30]. Modern processor techniques such as out-of-order
scheduling can frequently hide the latency of L1 misses but
struggle with misses in deeper levels of the cache hierarchy.

Data prefetching is a popular strategy to improve the per-
formance of the memory system by proactively bringing
unrequested lines into the cache in anticipation (and hope-
fully avoidance) of future misses. The ability to predict and
efficiently prefetch data depends on the workload’s mem-
ory access patterns [6], which often include stride accesses
(a[i]), indirect memory accesses (a[b[i]]), and random
accesses (pointer-chasing). While numerous academic pro-
posals exist [10, 13, 18–20, 22, 23, 25, 26, 29, 33, 37, 39, 41,
46, 47, 49, 53, 56, 58, 59, 65, 68] to prefetch these diverse ac-
cess patterns, few have been implemented in real hardware.
In particular, we have found that modern processors such
as Intel Cascade Lake can prefetch stride accesses well but
still struggle to prefetch indirect memory accesses efficiently.
To address the challenge of prefetching complex access pat-
terns, CPU vendors have introduced software prefetch in-
structions that can be utilized via compiler intrinsics such as

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

0 20 40 60 80 100
prefetch distance

1.0

1.2

1.4

1.6

1.8

sp
ee

du
p

(h
ig

he
r i

s
be

tte
r)

sssp on Haswell

RO-edges
amazon0601
gowalla
NotreDame

Figure 1. The sssp benchmark from CRONO [2] has very
different optimal prefetch distances (shaded regions) with
different inputs.

__builtin_prefetch() in gcc and clang. As software developers
are generally aware of the memory access patterns exhibited
by their code, these powerful instructions can theoretically
prefetch any pattern.
Unfortunately, these software prefetch instructions are

also challenging to use efficiently. First, the developer needs
to extract the prefetch kernel for computing the address that
should be prefetched. Second, the prefetch instruction (and
its kernel) must be inserted into the correct code location
to enable timely prefetches. In particular, the time between
the prefetch and the usage of a data item must match the
time needed to load data from the main memory which rep-
resents an almost impossible-to-resolve task for developers
due to out-of-order execution and the complex memory hier-
archies employed by modern CPUs. Finally, the timeliness of
a prefetch depends not only on the source code of an appli-
cation but also on its inputs. For instance, the average vertex
degree of a graph may affect the time between (indirect)
memory accesses. While many automatic compiler passes
exist to insert prefetching as well [3, 4, 12, 15, 21, 28, 34],
they struggle with this same set of challenges.
In this work, we shed light on the scope of the data pre-

fetching challenge via a large-scale study of program behav-
ior across dozens of inputs, much more than have been con-
sidered in previous work. This study reveals that prefetching
can be very sensitive to both microarchitecture and pro-
gram input, making it very challenging to perform effective
software prefetching via static compiler instrumentation.

For example, consider Figure 1, which shows the speedup
obtainable from prefetching in the sssp benchmark from the
CRONO suite [2], running on a 16-core Haswell machine.
The x-axis shows the prefetch distance: essentially, howmany
loop iterations ahead we prefetch for. Each line illustrates, for
a different input from the Stanford Network Analysis Plat-
form (SNAP) [38], the speedup over a no-prefetch baseline

when prefetching for 1 to 100 iterations ahead. The best per-
forming range of prefetch distances is shaded, which reveals
that all inputs show substantially different behaviors: RO-
edges (the top line) performs best with a distance of 20-34,
while gowalla is best with 1-2 (which would fare poorly on
RO-edges). The prefetch distance, however, must be baked
into the instructions that perform prefetching (typically as a
displacement in x86 addressing), and any single choice for
these sssp inputs may work well in some cases but can leave
a lot of performance on the table in others.

In response to this finding, we propose the pure-software
RPG2 system for dynamic prefetch insertion and tuning.
RPG2 profiles a running C/C++ program, adds prefetch in-
structions as indicated by the profile, and tunes prefetch
distance online using the program’s real-time performance
to guide adjustments. RPG2 is, to our knowledge, the first
system to enable dynamic software prefetching. RPG2 can
adapt prefetching to program inputs while the program runs,
avoiding the pitfalls of ahead-of-time profiling and static
compiler optimization. RPG2 can also disable prefetching if
it causes slowdown, as we see in many cases, and restore
baseline performance. Like other compiler-based prefetch-
ing optimizations [3, 28, 34], RPG2 targets programs with
1-2 small hot loops, each containing a small number of load
instructions that are potentially prefetchable. Unlike prior
work, RPG2 builds on the BOLT [50, 51] binary optimization
tool and thus does not need access to source code: RPG2 op-
erates on a program binary and the process launched from it.
Prefetching is a well-known “double-edged sword” that can
as easily lift as lower performance. RPG2 provides a safer
framework for data cache prefetching that makes that sword
much easier to wield.

2 Background
In this section, we describe the main elements of effective
memory prefetching, some of the performance challenges
that prefetching can present, and current compiler tech-
niques for automatic prefetching.

2.1 Prefetching Basics
A data prefetch is used to proactively request data that are
used by a subsequent demand memory request; we use the
“demand” qualifier to distinguish requests that are part of the
semantics of the program from prefetch requests that are
logically NOPs. We typically care only about demand loads,
as the latency of store misses can be hidden in most cases
via out-of-order execution and a hardware store buffer.

The success of a prefetch is determined by three qualities:
its accuracy, coverage, and timeliness. Accuracy means that
there exists a future demand load to the same address as
the prefetch; prefetches (since they are NOPs) may also be
issued speculatively for addresses that may or may not match
a future demand load. Any prefetch for an address that is

2

0 20 40 60 80 100
prefetch distance

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(h
ig

he
r i

s
be

tte
r)

pr

wiki-topcats Cascade Lake
tvshow-edges Haswell
wiki-topcats Haswell
tvshow-edges Cascade Lake

Figure 2. The pr benchmark fromCRONO [2] sees a speedup
or a slowdown with prefetching, depending on the microar-
chitecture.

0 20 40 60 80 100
prefetch distance

0.4

0.6

0.8

1.0

sp
ee

du
p

(h
ig

he
r i

s
be

tte
r)

bfs

amazon0505 Cascade Lake
amazon0505 Haswell
RO-edges Haswell
RO-edges Cascade Lake

Figure 3. The bfs benchmark from CRONO [2] often (but
not always) suffers significant performance slowdown with
prefetching.

never used later wastes memory bandwidth and pollutes the
on-chip caches. Coverage refers to the fraction of cache
misses that are prefetched – higher coverage leads to more
misses being transformed into cache hits. Finally, timeliness
refers to the requirement that a prefetch occur far enough in
advance of the demand load to bring the load’s data into the
L1 cache from wherever it currently resides (which may be
DRAM, hundreds of cycles away). Furthermore, it also must
not occur too far in advance of the demand load, as in that
case, it may be evicted from the cache before the demand
load occurs. As a result, prefetches are most effective within
a certain window.

Figure 1 shows these timeliness windows visually in terms
of the prefetch distance, a measure of how far ahead in the
execution we are prefetching. The typical unit of time for
prefetch distance is a loop iteration. In Figure 1, the timeli-
ness windows are the width of each shaded region, which
show the best-performing ranges of prefetch distances. Some-
times these windows are quite narrow, as for the gowalla
input, where prefetching too far ahead quickly triggers in-
terference. Timeliness can be tuned by varying the number
of instructions between the execution of the prefetch and
demand load. However, as modern CPUs support variable

clock frequencies, execute at different instructions per cycle
(IPC), and deploy out-of-order execution, no analytical ap-
proach to determine the optimal prefetch injection site or
prefetch distance exists.

Furthermore, the three prefetch properties are hard to im-
prove simultaneously: higher coverage often leads to lower
accuracy, and improving timeliness may require sacrificing
coverage or accuracy. This interplay makes it challenging to
diagnose performance problems with prefetching. Modern
hardware performance monitoring mechanisms offer few in-
sights, making it hard to knowwhether prefetching is always
bad for a given program/input, or merely misconfigured.

2.2 Performance Pitfalls
In addition to the challenges of input-dependent prefetch
distances, whichwe showed in Figure 1, our studywith SNAP
[38] inputs has also revealed that prefetching’s performance
can be microarchitecture-dependent. Figure 2 shows results
for two different inputs with the pr benchmark from CRONO
[2], where on an Intel Cascade Lake machine (dashed lines),
the wiki-topcats input (light blue lines) experiences a nearly
2x speedup with prefetching, across a wide range of prefetch
distances (x-axis). The tvshow-edges input (dark green lines),
however, experiences a mild slowdown with prefetching.
The story is reversed on an Intel Haswell machine (solid
lines) where tvshow-edges sees a moderate speedup with
prefetching and wiki-topcats sees a moderate slowdown
with prefetching. Unless the program is re-profiled and re-
compiled for each machine, some performance will be left
on the table.
We also found a significant number of situations where

prefetching hurts performance. Figure 3 shows for the bfs
benchmark from CRONO not only the machine-dependent
behavior of prefetching (where the amazon0505 input in light
blue benefits from prefetching on Cascade Lake but not on
Haswell) but also significant machine-dependent slowdowns
of 50-70% for the RO-edges input (dark green lines).

2.3 Current Approaches to Software Prefetching
There exists a large body of work on software prefetching,
including automatic compiler approaches that analyze only
static code [4, 12, 15, 21] or additionally leverage profiling
information [3, 28, 34] to insert prefetch instructions with-
out programmer intervention. All of these schemes need to
balance accuracy, coverage, and timeliness by adjusting the
placement of prefetch instructions and the chosen prefetch
distance. Ultimately, these schemes produce a single binary
that contains one fixed set of prefetch instructions. While
it is possible to re-profile and produce additional binaries
tuned for different inputs or microarchitectures, there is a
significant operational burden for doing so. Profiling can
be very time-consuming: the recent APT-GET [28] system
for profile-guided static recompilation-based prefetch inser-
tion can spend several minutes profiling and compiling a

3

top:
 ld [r0+r1]➔r2
 ld [r3+r2]➔r4
 add r1,#1➔r1
 cmp r1,#100
 bnz top

identify
 frequent
 LLC misses

running

1. Profile (§3.1) 2. Build new binary (§3.2) 3. Insert code (§3.3) 4. Tune (§3.4-3.5)

 ld [r0+r1]➔r2
 ld [r3+r2]➔r4
 ...
 bnz newtop

newtop:
 push r5
 add r1,#20➔r5
 cmp r5,#100
 bgte cleanup
 ld [r0+r5]➔r5
 pf [r3+r5]
cleanup:
 pop r5

phases

target process

backwards
slice (§3.2.2)

pr
ef

et
ch

 k
er

ne
l

paused
newtop:
 push r2
 add r1,#32➔r2
 cmp r2,#100
 bgte cleanup
 ld [r0+r2]➔r2
 pf [r3+r2]
cleanup:
 ...

Figure 4. RPG2 proceeds through four phases when optimizing a target process.

benchmark, though admittedly no attempt has been made to
optimize this offline processing. Even once a set of binaries
has been produced, they must be stored and organized for
future retrieval, and something must decide which binary to
use at program launch time. Given the variability we have
seen across inputs and machines, it seems very challenging
to predict the gain or loss from prefetching a priori.

Ultimately, prefetching is an unreliable optimization with
benefits that are benchmark-, input- and microarchitecture-
dependent. Its fragility makes developers rightfully wary, as
prefetching can cause significant harm by evicting useful
data from the cache and stealing memory bandwidth from
demand loads. While additional research into better static
prefetching schemes can surely help, in this paper, we in-
stead embrace prefetching’s mercurial nature and build the
RPG2 runtime framework for adding, tuning, and remov-
ing prefetch instructions while a program is running. We
describe how RPG2 works next.

3 Design of RPG2
We first give an overview of RPG2 by describing at a high
level how it optimizes the example code in Figure 4 by insert-
ing prefetch instructions. Subsequent sections then examine
in detail each of RPG2’s main phases.

RPG2’s first phase starts by profiling a running process to
discover where last-level cache (LLC) misses are occurring
and also to establish the baseline IPC for the running applica-
tion. RPG2 uses Intel’s Precise Event-Based Sampling (PEBS)
hardware performance monitoring feature for this task, as
it can track the instruction PCs that trigger LLC misses. In
Figure 4, an example program in pseudo-assembly has a load
into r4 that is identified as a frequent source of LLC misses.
RPG2’s second phase builds on Meta’s Binary Optimiza-

tion and Layout Tool (BOLT) [50], which lifts an executable
into a low-level IR format, performs optimizations, and then
produces a new BOLTed executable. BOLT ships with a va-
riety of code layout and peephole optimizations. Thanks to
BOLT, RPG2 does not need access to the application source
code and only requires the program binary that launched
the target process we wish to optimize. Our new BOLT pass

investigates the example code and sees a loop it can optimize,
with r1 as the loop induction variable. The LLC-miss-causing
load is an indirect load, whose data address depends on the
value returned in r2 by the previous load – indirect loads
are RPG2’s main optimization target, though it can target
direct loads as well as we discuss in § 3.2. As a result, RPG2’s
inserted prefetching code, which we call a prefetch kernel and
is shaded in Figure 4, must replicate this indirect structure.
Moreover, this prefetch kernel must also ultimately act as a
NOP, leaving the semantics of the original code unchanged.
Figure 4 shows the resulting prefetch kernel for our ex-

ample program. While we discuss this kernel in much more
detail in § 3.2.3, we provide a brief overview here: first, we
compute the address we want to access, which is 20 itera-
tions ahead. Because this may be beyond the bounds of the
original loop, we must insert a bounds check to guard the
demand load that we insert – otherwise, a program crash
could arise from accessing unmapped virtual memory. Fi-
nally, we add the prefetch instruction for the indirect load
and run the original loop body.

Having produced a new binary with prefetch code added,
RPG2 now enters its third phase: injecting the prefetch code
into the running process and transferring control to it. RPG2

adds code at function granularity, writing a new version of
the optimized function into the address space. This requires
a short pause of the target process to add the optimized func-
tion’s code and to patch any references to the old function
that exist in program counters, call sites, or stack return
addresses to refer to the new function instead.
The target process now resumes, and RPG2 enters its

fourth phase: tuning the prefetch distance. RPG2 performs
a bounded search, from a randomized starting point, over
a set of possible distances and examines how IPC responds.
Each adjustment of the prefetch distance requires a brief
pause of the target process to edit the few bytes represent-
ing the prefetch distance as an offset in the machine code.
For example, in Figure 4, RPG2 changes the initial prefetch
distance of 20 to 32 by adjusting the immediate value of the
add instruction. After the search completes, RPG2 re-enables
the best-performing prefetch distance. If the search does not

4

discover any prefetch distance that outperforms the original
IPC, RPG2 steers execution back to the original code instead.
As Figure 4 shows, most of RPG2’s work happens concur-
rently with the execution of the target process to minimize
performance interference.

In the remainder of this section, we describe in detail each
major phase of RPG2’s operation, starting with profiling.

3.1 Phase 1: Profiling
RPG2 employs Linux’s perf utility to profile the execution of a
running process. To identify candidate loads for prefetching,
RPG2 uses perf’s Processor Event-Based Sampling (PEBS)
event MEM_LOAD_RETIRED.L3_MISS/ppp to identify LLC
misses. PEBS samples LLC misses at a specified rate and
stores a PEBS record in memory for each sampled miss. This
PEBS record contains information about the miss includ-
ing its data address and PC. RPG2 filters PEBS records by
only considering as prefetch candidates the instructions that
cause at least 10% of the misses within their respective func-
tion. For an online scheme like RPG2, there exists a trade-off
between collecting additional profiling data to make bet-
ter optimization decisions and implementing optimizations
quickly to accelerate as much of the program execution as
possible. By default, RPG2 samples 2 seconds of execution;
we examine the impact of this sampling period in § 4.

3.2 Phase 2: Code Analysis & Generation
RPG2 adds a new InjectPrefetchPass pass to BOLT to add
prefetch kernels to a given binary. The binary code analysis
and transformation in InjectPrefetchPass begins by identify-
ing different code patterns that are amenable to prefetching.

3.2.1 Prefetch Categories. RPG2 can prefetch both indi-
rect memory access and direct memory access. The prefetch-
able memory accesses are grouped into three categories
shown in Table 1 where a[] and b[] are two arrays, i is
the induction variable for the outer loop, j the induction
variable for the inner loop, d the prefetch distance, and 𝑓 ()
represents the data dependency chain from the load of b[]
to the demand load that needs to be prefetched.

demand access prefetch description
a[j] a[j+d] direct access using inner loop induction var
a[𝑓 (b[j])] a[𝑓 (b[j+d])] indirect access using inner loop induction var
a[𝑓 (b[i])+j] a[𝑓 (b[i+d])+j] indirect access using inner and outer loop

induction vars

Table 1. Memory access categories that RPG2 supports

RPG2 currently only supports loads that fall into these
three categories, but we have found these patterns general
enough to match many code patterns, like dense arrays and
stencils (category 1) and sparse arrays (categories 2 and 3).
Indirect loads, represent a frequent source of LLC misses
that cannot be covered efficiently by hardware prefetchers.

prefetch kernel

top:
 ld [r0+r1]➔r2
 ld [r3+r2]➔r4
 add r1,#1➔r1
 cmp r1,#100
 bnz top

original code
newtop:
 push r5 save reg
 add r1,#20➔r5 pf distance
 cmp r5,#100 bounds
 bgte cleanup check
 ld [r0+r5]➔r5 do
 pf [r3+r5] prefetch
cleanup:
 pop r5 restore reg
 ld [r0+r1]➔r2
 ld [r3+r2]➔r4 original
 add r1,#1➔r1 code
 cmp r1,#100
 bnz newtop

optimized code

backwards
slice

pf dist + bounds check

do prefetch
cleanup

orig loop body

Figure 5.Annotated example of RPG2 code transformations.

We leave prefetching of additional memory access patterns
(e.g., pure pointer-based data structures without arrays) for
future work.

RPG2’s prefetch strategy for the first two load types in Ta-
ble 1 is straightforward. At every iteration i, RPG2 prefetches
the data to be used for iteration i+d where d is the prefetch
distance (measured in loop iterations). For a[j] (direct) ac-
cesses, line-level spatial locality and hardware prefetchers
typically work well, though if RPG2 sees significant LLC
misses (likely due to a sub-optimal choice of the prefetch
distance by the hardware prefetcher) then it can improve
performance further even for this simple access pattern.
For indirect memory accesses in the a[𝑓 (b[i])+j] cate-

gory, RPG2’s strategy is to prefetch the data feeding a future
iteration’s indirect load a[𝑓 (b[i+d])] instead of prefetching
a future iteration of the inner loop with a[𝑓 (b[i])+j+d].
While we experimented with both, we found that the former
approach performs better since it attacks a more difficult
access pattern.
In order to identify which prefetch category a load falls

into, RPG2 starts by analyzing the two innermost loops
within each loop nest and identifying their loop induction
variables. RPG2 places its prefetch kernel in the loop header,
which runs at the beginning of each loop iteration. A key
decision is whether to place the kernel in the header of the
inner loop or (if there is one) the outer. The decision depends
on what data are used by the prefetch operation, which we
discuss next.

3.2.2 Backwards Slicing. To prefetch for indirect mem-
ory accesses, RPG2 must check whether the memory address
is prefetchable and, if so, compute the address for prefetching.
Our detection algorithm computes the backward slice [62]
starting at the demand load that causes the most LLC misses
in the function. The slice extends until it reaches an instruc-
tion whose source registers are either loop invariant or loop
induction variables. Figure 5 zooms in on the example code
from Figure 4: ld [r3+r2]→r4 is the demand load where
we begin computing a backward slice, which encompasses

5

only ld [r0+r1]→r2 since r0 and r3 are loop-invariant
and r1 is the loop induction variable.

RPG2 analyzes the backwards slice to see which category
(Table 1) it matches, using the presence of indirect loads and
loop induction variables as key indicators. If a slice does not
match one of the supported categories, RPG2 cannot cur-
rently optimize it. For loads like a[𝑓 (b[i])+j], the prefetch
kernel will be inserted in the outer loop since, as was men-
tioned in § 3.2.1, this performs better. Otherwise, the prefetch
kernel is added to the inner loop.
RPG2’s slice computation can traverse dependencies via

stack memory at fixed offsets from the stack pointer where
there is no intervening stack pointer manipulation, however,
dependencies via non-stack memory or that involve condi-
tional control flow (such as multiple reaching definitions)
are currently unsupported. These cases did not arise in our
evaluation benchmarks. Some of these cases (such as con-
ditional dependencies) could be supported with additional
engineering effort; BOLT already provides dominator and
reaching definition analyses as a starting point.

3.2.3 CodeGeneration. Oncewe have generated the back-
ward slice, we can create the code for prefetching, referred
to as a prefetch kernel. Our correctness criterion is that the
prefetch kernel behaves like a NOP. Prefetch instructions
themselves are natural NOPs, however, the kernel also con-
tains supporting code needed to enable the prefetch, e.g.,
instructions in the backward slice must be run as real in-
structions to compute the correct prefetch address.

As our example code in Figure 5 falls into the a[𝑓 (b[j])]
category, our prefetch kernel requires a scratch register to
assist with the address computation, which we obtain by
spilling a register (here r5) to the stack. The kernel then uses
the prefetch distance to compute the element b[j], which is
being prefetched, and additionally needs to perform a bounds
check to ensure that b[j] refers to a mapped, accessible ad-
dress. We copy the bounds check condition from the original
loop latch, inverting the condition (from bnz to bgte) since
we are checking whether to skip the prefetch and adjust for
the prefetch distance. The demand load of a[] that we wish
to prefetch for is converted to a prefetch instruction. If the
bounds check succeeds, the backward slice (which includes
the prefetch) is executed. Afterwards, we run cleanup code
to restore the scratch register we commandeered and then
run the original loop body.
These code transformations are implemented in the In-

jectPrefetchPass BOLT pass, which produces a new BOLTed
binary containing the new code with the prefetch kernel.

3.3 Phase 3: Runtime Code Insertion
With our optimized code in hand, we must insert this new
code into the target process’s address space. This requires

PC
f0

before

g0

h0

call f0
call f0

after

PC
f0
g0

h0

call f1
call f1

f1

Figure 6. The PC register and code memory of the target
process before and after, RPG2’s code replacement.

overcoming several challenges. Consider that the unopti-
mized original loop resides within a function 𝑓0. If we over-
write 𝑓0 with the optimized function directly in memory, we
must consider that PCs are shifted due to the insertion of
the prefetch kernel, and hence branch targets must be ad-
justed. Furthermore, if the optimized function 𝑓1, containing
the prefetch kernel, is larger, it may no longer fit within the
space allocated to 𝑓0. To sidestep these issues, RPG2 instead
places 𝑓1 at a new location in the address space, leaving 𝑓0 in-
tact in its original spot. This adds the benefit of automatically
preserving all code pointers to 𝑓0, no matter how exotic they
are, including function pointers, setjmp buffers, etc. Also, in
the event that prefetching causes a performance regression,
which sometimes happens, we can steer the execution back
to 𝑓0 to restore the original performance.

Inspired by Google’s XRay [9] function call tracing system,
we also initially considered ahead-of-time compiler support
to add regions of NOPs to code where prefetches were likely
to prove useful, allowing these NOPs to be quickly overwrit-
ten with a prefetch kernel at runtime. However, these NOPs
inside hot loops had a noticeable runtime cost of up to 5%
in some cases, causing us to prefer our current pay-as-you-
go approach, which has zero ongoing runtime costs when
prefetching is disabled.
RPG2 leverages Linux’s ptrace API to perform the actual

code insertion. ptrace allows RPG2 to pause or resume the
target process and update its register and memory contents.
While ptrace is powerful, it is also somewhat slow, so to
accelerate code insertion, we have also developed a library
libpg2 that is loaded into the address space of the target pro-
cess when it launches via Linux’s LD_PRELOADmechanism.
Because libpg2 runs inside the address space of the target
process, it can edit target process memory directly with low
overhead; in contrast, ptrace would require a series of sys-
tem calls to accomplish the same. Nevertheless, ptrace is still
required for some operations, such as pausing and resuming
process execution and changing register values.
libpg2 does nothing until code injection is triggered via

ptrace. To begin code injection, RPG2 uses ptrace to pause
the target process, moves the PC to the relevant function
within libpg2, bumps the stack pointer to avoid clobbering

6

the red zone of the target process, and then resumes the
process to let libpg2 run. mmap is then used to allocate new
memory and copy the 𝑓1 code into it.

3.3.1 On-Stack Replacement. Our task now becomes to
redirect execution to 𝑓1. Figure 6 illustrates how this works.
Direct calls to 𝑓0 from other functions are patched to refer
to 𝑓1 instead. Much more challenging is translating thread
PCs which refer to 𝑓0: these are cases where execution is
in the middle of an invocation of 𝑓0. While it is tempting
to simply wait until a function call boundary – optimizing
the next invocation of 𝑓0 instead of trying to optimize the
currently-running one – we have found that such waiting is
a non-starter for our workloads since they often spend most
of their execution within a single function invocation which
contains a hot loop that must be optimized. Waiting would
thus be a huge missed optimization opportunity.
The problem of moving between different versions of a

function at runtime is known in the managed languages lit-
erature as on-stack replacement [24] (OSR), and many sophis-
ticated language VMs use it to switch to a more optimized
version of a running function, or to deoptimize a function
when the memory layout of a class changes. While OSR is
commonplace in managed languages, RPG2 is the only sys-
tem we are aware of to support it for unmanaged languages
like C/C++, as mapping both code and data across function
versions is complex, and there is essentially no existing com-
piler support. Even the recent Ocolos [69] system, which
provides online code layout optimization for unmanaged
languages, does not support OSR.

RPG2 is able to support OSR for two reasons. First, RPG2

prefetch kernels are designed with OSR in mind. As they
have a logical NOP structure, it is relatively easy to slot them
into an existing function without changing semantics. In
initial versions of RPG2 we tried to leverage prior prefetching
compilers like APT-GET [28] that operate at the compiler IR
level. However, we discovered that adding a prefetch kernel
at the IR level triggers myriad small changes in the resulting
machine code. For example, a program variable 𝑣 would
be allocated to different registers in 𝑓0 versus 𝑓1 (or stack-
allocated in one and register-allocated in the other); moving
execution to 𝑓1 then requires understanding how variables
are mapped to data, which is not transparent in existing
unmanaged compilers. Inspired by these challenges, RPG2’s
code transformations instead incur zero data layout changes.
The second reason RPG2 can support OSR is that, even

though RPG2 necessarily makes code layout changes, BOLT
provides a handy BOLT Address Translation Table (BATT)
that maps PCs between an original function and the version
modified by BOLT passes. The BATT is embedded in an
ELF section in binaries produced by BOLT. BOLT uses the
BATT to support re-optimizing a binary that it has optimized
before; RPG2 uses the BATT to map PCs from 𝑓0 to 𝑓1 during
OSR. Once code insertion completes, libpg2 raises a SIGSTOP

signal to send a notification via ptrace. Upon receiving the
SIGSTOP, RPG2 moves the stack pointer back to the original
value and updates thread PCs to point to their corresponding
instructions in the 𝑓1 code. Then RPG2 resumes the target
process, which from now on executes 𝑓1 instead of 𝑓0 code.

3.4 Phase 4: Monitoring And Tuning
After the prefetch kernel has been inserted, RPG2 determines
the optimal prefetch distance via binary search. In particular,
RPG2 changes the program code to implement a new prefetch
distance and thenmonitors the resulting performance impact.
Prefetch distance adjustments require rewriting just a few
bytes of program code (and accompanying system calls to
enable code edits and disable them again afterward) and
are performed via libpg2. RPG2 monitors performance by
measuring IPC via perf stat.
The prefetch distance search algorithm has three stages.

In the first stage, RPG2 decides the direction for searching.
Starting from a random number 𝑟 drawn from the interval
[1, 100] as the initial prefetch distance, RPG2 takes three
measurements of the IPC of 𝑟 − 5, 𝑟 , and 𝑟 + 5 to determine a
gradient that identifies the direction towards higher IPC. We
empirically determined that most optimal prefetch distances
are smaller than 100, so we chose it as an upper bound for
the initial prefetch distance. In the second stage, RPG2 sam-
ples coarsely in the identified direction to find a region of
promising prefetch distances.

In stage 2, RPG2 keeps on doubling the jump size to com-
pute the new prefetch distance in the chosen direction, so
long as RPG2 sees increasing IPC. Prefetch distances are
capped to be within [1,200]; if the algorithm attempts to
step outside this range, the search terminates, and the best
prefetch distance is chosen from among the measurements
taken so far. Otherwise, once RPG2 finds an IPC decrease, it
sets the 𝑛th prefetch distance and the𝑛−1th prefetch distance
as the upper and lower bounds of the interval for the third
stage, which is binary search within this interval to identify
a local optimum.

If a program has multiple prefetch locations, the prefetch
distance can, in principle, be tuned separately for each loca-
tion. As we show in Figure 13, there is sometimes a benefit
to such asymmetric prefetch distances, though our search
algorithm scales exponentially in the number of prefetch
locations. For efficiency, RPG2 currently restricts all prefetch
locations to have the same distance.
After RPG2 determines the best prefetch distance 𝑑 , it

pauses the target process one final time to install 𝑑 and then
detaches from the process to run without ongoing overheads
except for those of the prefetch kernel itself.

3.4.1 Rolling Back Prefetches. In some cases, inserting
prefetches can harm program performance, irrespective of
the prefetch distance. In such cases, after the prefetch dis-
tance search completes, RPG2 rolls back to the original 𝑓0

7

code, which remains in the address space (Figure 6). When
RPG2 decides to roll back, it pauses the target process to undo
its previous changes: reverting changes to direct call sites
and program counters. The BATT is crucial for translating
𝑓1 locations into their corresponding 𝑓0 locations. However,
there is one additional corner case to consider. If a thread is
currently inside the prefetch kernel, there will be no BATT
entry because there is no corresponding 𝑓0 location. So, RPG2

instead single-steps the target process via ptrace until the
PC hits an address that is stored in the BATT, which can
then be translated into an 𝑓0 location.

4 Evaluation
Our evaluation has five main parts. After explaining our
experimental setup, we show RPG2’s performance compared
to a range of baselines. Next, we examine how accurate
RPG2’s prefetch distance search is, how much profiling data
it needs toworkwell, and how long key RPG2 operations take.
Then, we measure RPG2’s behavior at the microarchitectural
level by measuring the impact on LLC MPKI (misses per
kilo-instruction) and instruction count. Finally, we expand
on the data in Figures 1-3 to demonstrate additional facets
to the prefetching challenge.

4.1 Experimental Setup
We run our experiments on an Intel Xeon Gold 6230R Cas-
cade Lake and an Intel Xeon(R) CPU E5-2618L v3 Haswell
server. The Cascade Lake server has two sockets with 26
cores and 52 threads per socket, all running at 2.1GHz. Each
core has a 32 KiB L1i, a 32 KiB L1d, a 1 MiB L2, and access
to a shared 36 MiB L3 and 384GiB of RAM. The Haswell
server has 2 sockets with 8 cores and 16 threads per socket,
all running at 2.3GHz. Each core has a 32 KiB L1i, a 32 KiB
L1d, a 256 KiB L2, and access to a shared 20 MiB L3 cache
and 128GiB of RAM. All available hardware prefetchers are
enabled on both machines. Both machines run Linux version
5.40. Our BOLT is built based on commit 56ff67ccd907 from
BOLT’s GitHub repository [1]. We use Clang version 10.0
to compile all workloads. We use BAT-dump from LLVM’s
GitHub repository on commit 2b88298c2ab2.
We use the CRONO [2] benchmark suite’s BFS, PR, BC,

and SSSP benchmarks. For inputs, we use both real-world
graph data sets from the Stanford Network Analysis Platform
(SNAP) [38] and synthetic inputs from APT-GET [28]. We
run the IS, CG, and randAccess benchmarks and inputs from
Ainsworth and Jones [3], and call these the “AJ” benchmarks.
In this work, we focus on graph workloads as they frequently
exhibit indirect memory access patterns that RPG2 optimizes.

All benchmarks are compiled with their default optimiza-
tion level -O3 and with the linker flag -Wl,–emit-relocs,
which enables BOLT’s function relocation. We extend the
runtime of the measured workloads by adding iterations so

that they last at least 1 minute. To avoid profiling the initial-
ization phase of a workload, which can be very different from
the main application phase, we modify each benchmark to
signal the end of its initialization phase. Future work could
leverage program phase detection techniques [16, 57] to do
this automatically. We run each benchmark+input combi-
nation until we find 5 successful results. If none of the first
5 runs can activate RPG2, we just record the execution re-
ported by the original binary. RPG2 collects LLC misses via
PEBS for 2 seconds at the maximum supported sampling
frequency of 25,750 samples/sec on Haswell and 12,500 on
Cascade Lake. During the tuning phase, RPG2 measures IPC
for 0.3 seconds.

4.1.1 Baselines. Weaccurately gauge RPG2’s performance,
we compare it to the following alternative schemes.
• APT-GET , the latest profile-guided static compiler for
automatic prefetch injection [28]. APT-GET profiles a ran-
domly chosen input and the resulting binary is run on the
remaining inputs. This configuration captures a real-world
use case where it is not feasible to build a new binary for
each individual input. APT-GET data is missing for sssp,
bfs, and randacc as APT-GET would not reliably generate
prefetch instructions for these benchmarks after we ex-
tended their running time, and our consultation with the
authors was not able to resolve these issues.

• manual prefetching by the benchmark developers. This
configuration is only available for the AJ benchmarks.

• the active-only subset of RPG2 runs when it gathers
enough profiling data to enable optimization (which does
not always occur, as we explore later in § 4.3). The main
RPG2 bars, in contrast, also include runs where RPG2 starts
but does not receive enough profiling information to jus-
tify enabling prefetching.

• an offline version of RPG2 where a binary is produced
for each input using the manually chosen best prefetch
distance. This scheme represents in some ways an upper
bound on RPG2’s performance, as the best prefetch dis-
tance is always chosen, sidestepping any shortcomings
in the prefetch distance search algorithm, and the opti-
mized code is running the entire time, avoiding the delay
of RPG2’s online profiling, code generation, code injec-
tion, and prefetch tuning. However, prefetching is always
enabled in this configuration, so for benchmarks where
prefetching is harmful, this offline scheme may experience
a net slowdown.

4.2 Performance
Figure 7 shows how RPG2 performs on our Cascade Lake
and Haswell machines. All results are normalized to the
original, non-prefetch code. For the CRONO benchmarks
(left graphs), pr, bfs and sssp’s results are averaged across
71 inputs from SNAP [38] on Cascade Lake and 67 inputs

8

pr all
(71)

pr
speedup

(54)

pr
slowdown

(11)

sssp all
(71)

sssp
speedup

(54)

sssp
slowdown

(11)

bfs all
(71)

bfs
speedup

(2)

bfs
slowdown

(42)

bc all
(7)

bc
speedup

(4)

bc
slowdown

(3)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
ee

du
p

ov
er

 o
rig

in
al

CRONO Cascade Lake

RPG2
active-only

offline
APT-GET

cg is randacc
0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
ee

du
p

ov
er

 o
rig

in
al

AJ Cascade Lake

RPG2
active-only
offline

APT-GET
manual

pr all
(67)

pr
speedup

(51)

pr
slowdown

(16)

sssp all
(67)

sssp
speedup

(46)

sssp
slowdown

(21)

bfs all
(67)

bfs
speedup

(8)

bfs
slowdown

(31)

bc all
(7)

bc
speedup

(6)

bc
slowdown

(1)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
ee

du
p

ov
er

 o
rig

in
al

CRONO Haswell

RPG2
active-only

offline
APT-GET

cg is randacc
0.4

0.6

0.8

1.0

1.2

1.4

1.6

sp
ee

du
p

ov
er

 o
rig

in
al

AJ Haswell

RPG2
active-only
offline

APT-GET
manual

Figure 7. RPG2 and baseline performance on Cascade Lake (top) and Haswell (bottom).

on Haswell, as some of the largest inputs exceeded our 10-
minute timeout on the older machine. The bc benchmark
does not support the graph formats used in SNAP and only
runs on a smaller number of synthetic graphs drawn from
the APT-GET [28] evaluation. The graphs on the right side
show the AJ benchmarks, where we use the single inputs
used in [3]. Error bars show the standard deviation, which is
often large for the CRONO benchmarks where we aggregate
data from many distinct inputs due to space reasons. The
runtime variance on each particular input, however, is low.
For the CRONO benchmarks, given the large number

of inputs, we show three groups of bars. The first group
(all) shows speedup averaged across all inputs. The second
speedup group shows results averaged across the subset of
inputs where RPG2 outperforms the original code. The final
slowdown group includes only inputs where RPG2 detects a
performance regression and rolls back to the original code. In
some cases RPG2 neither improves over the original perfor-
mance nor rolls back, so the all group includes some inputs
that are in neither the speedup group nor the slowdown
group. The number of inputs in each group is shown in
parentheses below each group name on the x-axis.

We break out the speedup and slowdown groups to high-
light the gap between cases where prefetching helps and
hurts: this discrepancy is easily lost when averaging perfor-
mance but can be important in settings where predictable
tail latency is required. Considering the speedup group first,
RPG2’s performance gains are on par with what is achievable
via a state-of-the-art static approach like APT-GET or offline.

A greater separation appears in the slowdown groups, where
RPG2 does a better job of preserving the original’s perfor-
mance than APT-GET or offline. This is especially noticeable
in the pr slowdown group as well as with bfs, where all ex-
cept from a few inputs suffer a slowdown from prefetching.
RPG2 offers higher average performance and much lower
standard deviation in these cases.

The gap between RPG2 and the active-only bars arises be-
cause of the noise intrinsic to online profiling, where some-
times there are an insufficient number of sampled LLCmisses
to activate RPG2’s optimization phases. The gap between
active-only and offline shows the price of RPG2’s online
phases, which incur a delay before the optimized code can
begin to execute. With longer-running programs, these costs
can be more effectively amortized.
The results also show some immediate opportunities for

improvement. For example, we noticed that sssp running
the as20000102 input on Cascade Lake suffers a significant
slowdown with prefetching, but RPG2 fails to roll back to the
original code. This is due to insufficient profiling: a low-IPC
program phase during the profiling period, followed by a
higher-IPC phase, causes RPG2 to incorrectly attribute the
IPC improvement to prefetching instead of the phase tran-
sition. Without prefetching, IPC would be higher still. This
case indicates that IPC alone is not always a good perfor-
mance indicator. There is also a sizeable gap between RPG2

and optimal and manual for the randacc benchmark. We
found this benchmark, which randomly jumps around an ar-
ray with indirect accesses, exhibits a very peculiar behavior

9

0 10 20 30 40 50 60
absolute distance from optimal prefetch distance

0

5

10

15

20

fre
qu

en
cy

Figure 8. How close RPG2 gets to the optimal prefetch dis-
tance, for inputs with a single optimal distance.

0.5s 1s 2s 4s
duration of profiling phase

0%

20%

40%

60%

80%

100%

always

mixed

never

Figure 9. The impact of profiling phase duration on RPG2’s
optimization activation.

where prefetch distances that are multiples of 8 perform very
well, and all other distances perform much worse. RPG2’s
prefetch search assumes the search space is relatively smooth
and, therefore, sometimes misses these special distances.

4.3 RPG2 Characterization
In this section, we explore different aspects of RPG2’s oper-
ation, starting with its ability to find the optimal prefetch
distance for a given input. Figure 8 shows, for just the 120
inputs across all our benchmarks that exhibit a clear single,
optimal prefetch distance 𝑑 , how far away RPG2’s search
result was from 𝑑 in absolute terms. The single optimal dis-
tance makes it easy to measure how well RPG2 is doing. The
results are summarized as a histogram, so the leftmost bar
shows that, for 22 inputs, RPG2 was within 3 of the correct
distance and within 10 for just over half of the inputs. Being
closer to the optimal distance is generally better, but the
performance gain from additional proximity is not always
very high. Overall, Figure 8 shows that RPG2’s prefetch dis-
tance search (§ 3.4) does well most of the time. The biggest
impediment to improving the search results is noisy IPCmea-
surements, which sometimes give a misleading view of the
search space, causing the search to terminate prematurely.

In Figure 9, we evaluate RPG2’s sensitivity to the duration
of its initial profiling phase (§ 3.1), for the pr benchmark

0 3 6 9 12 15
elapsed time (seconds)

0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56

IP
C

higgs-retweet_network

0 3 6 9 12 15
elapsed time (seconds)

1.875
1.900
1.925
1.950
1.975
2.000
2.025
2.050

IP
C

prefetch active

soc-sign-bitcoinalpha-edit

Figure 10. RPG2’s impact on IPC over time.

on Cascade Lake. While RPG2 profiles for 2 seconds by de-
fault, we also measured the effect of profiling for shorter and
longer periods. Each bar shows, across all runs of each pr
input, how often RPG2’s optimization phases (code genera-
tion, injection and tuning) were always, sometimes (“mixed”)
or never activated. As the profiling phase increases, RPG2

optimizations are activated more often, though the influence
is mild. Longer profiling also diminishes, per Amdahl’s Law,
the time that optimizations can accelerate execution. We
have found two seconds to be a reasonable trade-off in prac-
tice, but longer-running benchmarks could amortize longer
profiling for further improved performance.

4.3.1 RPG2 Latencies. The left side of Figure 10 shows a
“live” view of RPG2 in action, with IPC measured every 300
milliseconds for an execution of pr with the higgs-retweet-
network input on our Haswell machine. The process has an
initial IPC of about 0.44, which dips slightly around the 6-
second mark as RPG2 enters code injection and tuning. After
tuning, RPG2 settles on 62 as the prefetch distance which
boosts IPC by over 25%.

The right graph in Figure 10 shows a similar view for the
soc-sign-bitcoinalpha-edit input with pr on Cascade Lake,
where RPG2 discovers that prefetching harms performance
instead. Prefetching remains active for a few seconds (the
shaded region) while the prefetch distance search attempts
to find a beneficial distance, before rolling back at around the
8-second mark, restoring the original code’s performance.
Table 2 examines in more detail the latency of key steps

within RPG2’s execution. Each cell shows an average across
all inputs for the given benchmark. The first row shows
RPG2’s overall execution time, from when profiling begins
until RPG2 detaches having completed prefetch distance tun-
ing. For most of this time, the target process can continue
running in parallel. The next row shows that BOLT takes
about 30 milliseconds to generate a binary containing the
prefetch kernel (§ 3.2.3), which also occurs in the background.

The last three rows show the latency of RPG2’s stop-the-
world operations where the target process must be paused:
initial code insertion (§ 3.3) takes 3-4ms, a single prefetch
distance edit takes 1.1-1.4ms and 11-12 distances are explored
during RPG2’s prefetch distance search. These low latencies
contribute to RPG2’s mild impact on performance during
code insertion and tuning, as reflected in Figure 10.

10

20 15 10 5 0
change in LLC MPKI

0.9

1.0

1.1

1.2

1.3

1.4

sp
ee

du
p

Figure 11. The relationship between speedup and LLCMPKI
for pr on Cascade Lake.

benchmark pr sssp bfs bc is randacc cg
RPG2 exec (s) 7.6 7.9 7.8 8.5 8.6 7.9 8.8
BOLT (ms) 30.3 28.4 28.6 29.1 27.2 32.0 26.4

code insert (ms) 3.9 3.3 3.1 3.4 3.3 3.0 2.9
1x pd edit (ms) 1.2 1.1 1.4 1.4 1.2 1.1 1.1

pd edits 11.1 11.3 11.5 12.7 11.4 8.8 12.0
Table 2. Average latency of RPG2 operations.

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
dynamic instruction count, normalized to original

0

2

4

6

8

10

12

fre
qu

en
cy

Figure 12. RPG2’s impact on dynamic instruction count for
pr on Cascade Lake.

4.4 Performance Counter Validation
To validate that RPG2’s speedup comes from reducing cache
misses via prefetching, we measured LLC MPKI via perf stat
for all of pr’s inputs on Cascade Lake and show the results
in Figure 11. Speedup is shown on the y-axis. While RPG2

reduces LLC MPKI, the relationship between the amount of
LLC MPKI reduction and speedup is not especially strong.
We initially experimented with using LLC MPKI, instead
of IPC, as our performance metric during the tuning phase
but were unable to find good prefetch distances, as different
distances had little impact on MPKI despite a large impact on
performance.We believe that a reduction inmisses elsewhere
in the hierarchy, as well as changes in DRAM bandwidth
consumption, can explain the rest of the change in speedup.
We also measure RPG2’s impact on the dynamic instruc-

tion count for the extra instructions needed to run the prefetch
kernel. We measured dynamic instruction count, normalized

Cascade Lake Haswell
type pr sssp bfs bc pr sssp bfs bc

single optimal 26 25 1 2 18 23 0 1
range optimal 2 7 1 3 7 9 0 0
asymptotic 15 13 2 2 18 14 1 6
both bad 11 10 52 0 11 10 52 0

Haswell bad - - - - 1 1 5 0
Cascade bad 2 2 5 0 - - - -

noisy 4 3 1 0 7 2 4 1
other 2 2 0 2 0 3 0 1

Table 3. The influence of prefetch distance on performance.

to the original no-prefetch execution, for all inputs of pr
on Cascade Lake. Depending on the size of a program’s
prefetchable data structures (which is input-dependent) and
the chosen prefetch distance, varying number of prefetches
will be in-bounds and thus executed, affecting the dynamic
instruction count. Figure 12 is a histogram showing how
frequently we observed a particular increase in instruction
count. Overall, half of the inputs see an increase beneath
15%, and the worst-case was a 37% increase. RPG2’s speedup
results already include (and overcome) the overhead of these
extra instructions.

4.5 Prefetch Distance Sensitivity
To better quantify the challenge of doing prefetchingwell, we
used the offline configuration to measure the performance
of all prefetch distances in the range [1,100]. While a subset
of these results were presented earlier in Figures 1-3, we
give a more comprehensive view in Table 3. For each (bench-
mark,input) pair, wemanually examined its prefetch distance
versus runtime data and classified it into one of eight types:
single optimal where there is a clear single prefetch distance
that performs best, range optimal where a bounded range of
distances all perform equivalently, asymptotic where perfor-
mance saturates as distance increases (e.g., all of the curves in
Figure 2), both bad where prefetching hurts performance on
both machines, Haswell bad and Cascade bad where prefetch-
ing is harmful on one machine but beneficial on the other,
noisy where the behavior is too erratic to be cleanly classi-
fied, and other for all remaining cases. Table 3 quantifies the
challenge of identifying good prefetch distances – generally,
fewer than half of inputs exhibit the asymptotic shape that
makes it especially easy to find a good prefetch distance.
For single and range optimal cases, some kind of prefetch
distance search is necessary. The behavior of inputs is also
not especially stable across machines, e.g., 27 pr inputs are
single optimal on Cascade Lake, but only 17 are on Haswell.
This input- and microarchitecture-variability makes it hard
to prefetch well in the absence of dynamic feedback.
While most of our benchmarks present only a single de-

mand load that can be accelerated via prefetching, sssp has
11

lo
ad

1
pr

ef
et

ch
 d

ist
an

ce

20
40

60
80

100
load0 prefetch distance

20 40 60 80 100

sp
ee

du
p

(h
ig

he
r i

s
be

tte
r)

1.12
1.14
1.16
1.18
1.20
1.22
1.24

Figure 13. The relationship betweenmultiple loads’ prefetch
distances and performance for sssp running the p2p-
Gnutella05 input on Cascade Lake.

two such loads. The prefetch distance for each prefetch can
thus be set differently. We found a variety of behaviors for
sssp across different inputs. Sometimes using a “symmetric”
configuration with the same distance for both prefetches
(which is RPG2’s behavior) was optimal; sometimes symmet-
ric performed the worst, but all asymmetric configurations
performed equally well. Figure 13 shows another interest-
ing asymmetric case where performance depends largely
on load0’s distance (x-axis), though getting load1’s distance
right is worth a few additional percentage points of speedup
as well. Efficiently searching the space of prefetch distances
with multiple loads may present an interesting direction for
future work.

5 Related Work
As the gap between processor and memory speeds is the
underlying cause of many performance problems in today’s
computer systems, researchers have proposed a myriad of
hardware, compiler, and operating systems techniques to
improve data locality. We discuss the most closely related
work in software prefetching, hardware prefetching, and in
dynamic program optimization.

Software prefetching mechanisms. The most related
work to RPG2 are compiler-based approaches to software
prefetch injection [4, 12, 15, 17, 21, 32, 40, 43–45, 54, 55, 60,
63, 64, 67]. These systems analyze source code to identify
patterns that are amenable to prefetching and can automat-
ically add software prefetch instructions accordingly, and
can suggest new source code patterns that RPG2 can support
(§ 3.2). Some of these schemes [3, 28, 34] can leverage pro-
filing information to make more informed decisions about

what and how to prefetch. However, once a binary is pro-
duced, the prefetch location and distance within it are fixed,
which prevents adapting to runtime conditions as RPG2 can.

Hardware prefetchingmechanisms. Hardware prefetch-
ing techniques include a wide-range of prefetchers [18–20,
22, 25, 26, 29, 37, 41, 46, 47, 49, 53, 56, 58, 59, 68] that can
capture a variety of patterns, including indirect prefetch-
ers [61, 65] and criticality-aware prefetchers [39, 52]. Modern
processors adopt a combination of these hardware prefetch-
ers [5, 27, 31, 36, 48], while also relying on software prefetch-
ing techniques to cover other complex memory access pat-
terns [3, 28, 34]. RPG2 is complementary to existing hardware
techniques, and all hardware prefetchers were enabled for
our experiments.

Programmable hardware prefetching mechanisms.
Others have proposed hybrid hardware-software approaches
to prefetching [8, 24, 35, 61, 66], where the hardware prefetch-
er can be programmed by software. If such prefetchers one
day appear in commercial processors, they would be an ideal
complement to RPG2 that could provide low-overhead ways
to implement prefetch kernels, avoiding some of the software
costs that RPG2 incurs to support on-stack replacement.

Dynamic software optimizations. While we are not
aware of any other dynamic prefetch injection systems for
unmanaged languages, there are related systems for dynamic
code optimization. OCOLOS [69] performs code layout op-
timizations at runtime for unmanaged code and also uses
BOLT [50], though it does not support on-stack replace-
ment. HP’s Dynamo system [7] performs optimizations on
unmanaged code at runtime, though it does not insert data
prefetches. DynamoRIO [11] and Intel’s Pin [42] are dynamic
binary instrumentation platforms that can be used to imple-
ment optimizations though that is not their primary focus.
LiteInst [14] is another instrumentation platform focused on
low-overhead trampolines to instrumentation code, though
with a higher runtime cost (and lower fixed cost) than our
current approach. It would be interesting to consider using
LiteInst to quickly insert prefetches and judge their efficacy,
only resorting to BOLT once we are confident that prefetch-
ing is beneficial.

6 Conclusion
In this paper, we have described the RPG2 system to add,
monitor and adjust prefetching online while a program is
running. We showed that prefetching can be highly sensitive
to program input and microarchitecture and that RPG2 can
adapt the prefetching configuration to the current environ-
ment. RPG2 is especially effective at adding guardrails around
the performance cliffs that prefetching can expose by auto-
matically restoring the speed of the original no-prefetching
baseline within a few seconds if we happen to fall from one
of these cliffs.

12

Acknowledgments
We thank the anonymous reviewers for their insightful sug-
gestions and feedback. We thank Pranoti Dhamal for help on
earlier versions of this work. This work was supported by
generous gifts from Intel Labs, the Intel TSA project, Google,
NSF/Intel joint grant #2011168, NSF #1942754, NSF #2346057,
NSF #1841545, and the PRISM Research Center, a JUMP Cen-
ter cosponsored by SRC and DARPA. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies.

References
[1] BOLT: Binary Optimization and Layout Tool, 2019. https://github.

com/facebookarchive/BOLT.
[2] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. Crono:

A benchmark suite for multithreaded graph algorithms executing
on futuristic multicores. In 2015 IEEE International Symposium on
Workload Characterization, pages 44–55, 2015.

[3] Sam Ainsworth and Timothy M. Jones. Software prefetching for
indirect memory accesses. In 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 305–317, 2017.

[4] Hassan Al-Sukhni, Ian Bratt, and Daniel A. Connors. Compiler-
directed content-aware prefetching for dynamic data structures. In
Proceedings of the 12th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’03, page 91, USA, 2003. IEEE
Computer Society.

[5] Erika S Alcorta, Mahesh Madhav, Scott Tetrick, Neeraja J Yadwadkar,
and Andreas Gerstlauer. Lightweight ml-based runtime prefetcher
selection on many-core platforms. arXiv preprint arXiv:2307.08635,
2023.

[6] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. Classifying memory access patterns for prefetching. In
Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages
513–526, 2020.

[7] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo:
A transparent dynamic optimization system. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation, PLDI ’00, page 1–12, New York, NY, USA, 2000.
Association for Computing Machinery.

[8] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie,
Li Zhao, Xiaowei Jiang, and Yuan Xie. Analysis and optimization of
the memory hierarchy for graph processing workloads. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 373–386, 2019.

[9] Dean Michael Berris, Alistair Veitch, Nevin Heintze, Eric Anderson,
and Ning Wang. XRay: A Function Call Tracing System, 2016. https:
//research.google/pubs/pub45287/.

[10] Peter Braun and Heiner Litz. Understanding memory access patterns
for prefetching. In International Workshop on AI-assisted Design for
Architecture (AIDArc), held in conjunction with ISCA, 2019.

[11] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’03, page 265–275,
USA, 2003. IEEE Computer Society.

[12] David Callahan, Ken Kennedy, andAllan Porterfield. Software prefetch-
ing. In Proceedings of the Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS IV, page 40–52, New York, NY, USA, 1991. Association for
Computing Machinery.

[13] Chandranil Chakraborttii and Heiner Litz. Learning i/o access pat-
terns to improve prefetching in ssds. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages
427–443. Springer, 2020.

[14] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R.
Newton. Instruction punning: Lightweight instrumentation for x86-64.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, page 320–332, New
York, NY, USA, 2017. Association for Computing Machinery.

[15] William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen-mei W.
Hwu. Data access microarchitectures for superscalar processors with
compiler-assisted data prefetching. In Proceedings of the 24th Annual
International Symposium on Microarchitecture, MICRO 24, page 69–73,
New York, NY, USA, 1991. Association for Computing Machinery.

[16] Meng-Chieh Chiu, Benjamin Marlin, and Eliot Moss. Real-time
program-specific phase change detection for java programs. In Pro-
ceedings of the 13th International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and
Tools, PPPJ ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

[17] Jamison Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen.
Pointer cache assisted prefetching. In 35th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings.,
pages 62–73, 2002.

[18] Jamison D. Collins, HongWang, DeanM. Tullsen, Christopher Hughes,
Yong-Fong Lee, Dan Lavery, and John P. Shen. Speculative precom-
putation: long-range prefetching of delinquent loads. In Proceedings
28th Annual International Symposium on Computer Architecture, pages
14–25, 2001.

[19] Fredrik Dahlgren and Per Stenstrom. Effectiveness of hardware-based
stride and sequential prefetching in shared-memory multiprocessors.
In Proceedings of 1995 1st IEEE Symposium on High Performance Com-
puter Architecture, pages 68–77, 1995.

[20] James Dundas and Trevor Mudge. Improving data cache performance
by pre-executing instructions under a cache miss. In Proceedings of the
11th International Conference on Supercomputing, ICS ’97, page 68–75,
New York, NY, USA, 1997. Association for Computing Machinery.

[21] Edward H. Gornish, Elana D. Granston, and Alexander V. Veiden-
baum. Compiler-directed data prefetching in multiprocessors with
memory hierarchies. In Proceedings of the 4th International Conference
on Supercomputing, ICS ’90, page 354–368, New York, NY, USA, 1990.
Association for Computing Machinery.

[22] Milad Hashemi, Onur Mutlu, and Yale N. Patt. Continuous runahead:
Transparent hardware acceleration for memory intensive workloads.
In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–12, 2016.

[23] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz,
Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ranganathan.
Learning memory access patterns. In International Conference on
Machine Learning, pages 1919–1928. PMLR, 2018.

[24] Urs Hölzle and David Ungar. A third-generation self implementation:
Reconciling responsiveness with performance. In Proceedings of the
Ninth Annual Conference on Object-Oriented Programming Systems,
Language, and Applications, OOPSLA ’94, page 229–243, New York,
NY, USA, 1994. Association for Computing Machinery.

[25] Ibrahim Hur and Calvin Lin. Memory prefetching using adaptive
stream detection. In 2006 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’06), pages 397–408, 2006.

13

https://github.com/facebookarchive/BOLT
https://github.com/facebookarchive/BOLT
https://research.google/pubs/pub45287/
https://research.google/pubs/pub45287/

[26] Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access map pattern matching
for data cache prefetch. In Proceedings of the 23rd International Confer-
ence on Supercomputing, ICS ’09, page 499–500, New York, NY, USA,
2009. Association for Computing Machinery.

[27] Majid Jalili and Mattan Erez. Managing prefetchers with deep rein-
forcement learning. IEEE Computer Architecture Letters, 21(2):105–108,
2022.

[28] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and
Heiner Litz. Apt-get: Profile-guided timely software prefetching. In
Proceedings of the Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 747–764, New York, NY, USA, 2022. Association
for Computing Machinery.

[29] Doug Joseph and Dirk Grunwald. Prefetching using markov predic-
tors. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, ISCA ’97, page 252–263, New York, NY, USA,
1997. Association for Computing Machinery.

[30] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling
a warehouse-scale computer. In 2015 ACM/IEEE 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 158–169,
2015.

[31] Hui Kang and Jennifer L. Wong. To Hardware Prefetch or Not to
Prefetch? A Virtualized Environment Study and Core Binding Ap-
proach. In Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’13, page 357–368, NewYork, NY, USA, 2013. Association
for Computing Machinery.

[32] Muneeb Khan, Andreas Sandberg, and Erik Hagersten. A case for
resource efficient prefetching in multicores. In 2014 43rd International
Conference on Parallel Processing, pages 101–110, 2014.

[33] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K
Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney,
Gilles A Pokam, Heiner Litz, and Baris Kasikci. Twig: Profile-guided
btb prefetching for data center applications. InMICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 816–
829, 2021.

[34] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and
Baris Kasikci. Dmon: Efficient detection and correction of data locality
problems using selective profiling. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21), pages 163–
181. USENIX Association, July 2021.

[35] Tanvir AhmedKhan, Akshitha Sriraman, JosephDevietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. I-spy: Context-driven conditional
instruction prefetching with coalescing. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 146–159.
IEEE, 2020.

[36] Sushant Kondguli and Michael Huang. Division of labor: A more
effective approach to prefetching. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 83–
95. IEEE, 2018.

[37] Jaejin Lee, Changhee Jung, Daeseob Lim, and Yan Solihin. Prefetching
with helper threads for loosely coupled multiprocessor systems. IEEE
Transactions on Parallel and Distributed Systems, 20(9):1309–1324, 2009.

[38] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network
dataset collection., 2014. https://snap.stanford.edu/data/.

[39] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. Crisp:
critical slice prefetching. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 300–313, 2022.

[40] Jiwei Lu, Howard Chen, Rao Fu, Wei-Chung Hsu, Bobbie Othmer, Pen-
Chung Yew, and Dong-Yuan Chen. The performance of runtime data
cache prefetching in a dynamic optimization system. In Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., pages 180–190, 2003.

[41] Jiwei Lu, A. Das, Wei-Chung Hsu, Khoa Nguyen, and S.G. Abraham.
Dynamic helper threaded prefetching on the sun ultrasparc/spl reg/
cmp processor. In 38th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’05), pages 12 pp.–104, 2005.

[42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05,
page 190–200, New York, NY, USA, 2005. Association for Computing
Machinery.

[43] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for
recursive data structures. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VII, page 222–233, New York, NY, USA,
1996. Association for Computing Machinery.

[44] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P. Geoffrey
Lowney, and Robert Cohn. Profile-guided post-link stride prefetching.
In Proceedings of the 16th International Conference on Supercomputing,
ICS ’02, page 167–178, New York, NY, USA, 2002. Association for
Computing Machinery.

[45] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and eval-
uation of a compiler algorithm for prefetching. In Proceedings of the
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS V, page 62–73, New York,
NY, USA, 1992. Association for Computing Machinery.

[46] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Techniques for effi-
cient processing in runahead execution engines. In 32nd International
Symposium on Computer Architecture (ISCA’05), pages 370–381, 2005.

[47] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead
execution: an alternative to very large instruction windows for out-
of-order processors. In The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.,
pages 129–140, 2003.

[48] Carlos Navarro, Josué Feliu, Salvador Petit, Maria E Gomez, and Julio
Sahuquillo. Bandwidth-aware dynamic prefetch configuration for
ibm power8. IEEE Transactions on Parallel and Distributed Systems,
31(8):1970–1982, 2020.

[49] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global
history buffer. In 10th International Symposium on High Performance
Computer Architecture (HPCA’04), pages 96–96, 2004.

[50] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
Bolt: A practical binary optimizer for data centers and beyond. In 2019
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pages 2–14, 2019.

[51] Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni.
Lightning bolt: Powerful, fast, and scalable binary optimization. In
Proceedings of the 30th ACM SIGPLAN International Conference on
Compiler Construction, CC 2021, page 119–130, New York, NY, USA,
2021. Association for Computing Machinery.

[52] Biswabandan Panda. Clip: Load criticality based data prefetching
for bandwidth-constrained many-core systems. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’23), 2023.

[53] Tanausu Ramirez, Alex Pajuelo, Oliverio J. Santana, and Mateo Valero.
Runahead threads to improve smt performance. In 2008 IEEE 14th
International Symposium on High Performance Computer Architecture,
pages 149–158, 2008.

[54] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence
based prefetching for linked data structures. In Proceedings of the
Eighth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS VIII, page 115–126,
New York, NY, USA, 1998. Association for Computing Machinery.

14

https://snap.stanford.edu/data/

[55] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for
linked data structures. In Proceedings of the 26th Annual International
Symposium on Computer Architecture, ISCA ’99, page 111–121, USA,
1999. IEEE Computer Society.

[56] Suleyman Sair, Timothy Sherwood, and Brad Calder. A decoupled
predictor-directed stream prefetching architecture. IEEE Transactions
on Computers, 52(03):260–276, mar 2003.

[57] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In Pro-
ceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS X, page
45–57, New York, NY, USA, 2002. Association for Computing Machin-
ery.

[58] Alan Jay Smith. Sequential program prefetching in memory hierar-
chies. Computer, 11(12):7–21, 1978.

[59] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-level mem-
ory thread for correlation prefetching. In Proceedings 29th Annual
International Symposium on Computer Architecture, pages 171–182,
2002.

[60] Seung Woo Son, Mahmut Kandemir, Mustafa Karakoy, and Dhruva
Chakrabarti. A compiler-directed data prefetching scheme for chip
multiprocessors. In Proceedings of the 14th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’09,
page 209–218, New York, NY, USA, 2009. Association for Computing
Machinery.

[61] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk,
Christos Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen
Sun, et al. Prodigy: Improving the memory latency of data-indirect
irregular workloads using hardware-software co-design. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 654–667. IEEE, 2021.

[62] Mark Weiser. Program slicing. IEEE Transactions on Software Engi-
neering, SE-10(4):352–357, 1984.

[63] Michael Joseph Wolfe, Carter Shanklin, and Leda Ortega. High Perfor-
mance Compilers for Parallel Computing. Addison-Wesley Longman
Publishing Co., Inc., USA, 1995.

[64] Youfeng Wu. Efficient discovery of regular stride patterns in irregular
programs and its use in compiler prefetching. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, PLDI ’02, page 210–221, New York, NY, USA, 2002.
Association for Computing Machinery.

[65] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas
Devadas. Imp: Indirect memory prefetcher. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 178–190, 2015.

[66] Chao Zhang, Yuan Zeng, John Shalf, and Xiaochen Guo. Rnr: A
software-assisted record-and-replay hardware prefetcher. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 609–621. IEEE, 2020.

[67] Weifeng Zhang, Brad Calder, and Dean M. Tullsen. A self-repairing
prefetcher in an event-driven dynamic optimization framework. In In-
ternational Symposium on Code Generation and Optimization (CGO’06),
pages 12 pp.–64, 2006.

[68] Weifeng Zhang, Dean M. Tullsen, and Brad Calder. Accelerating and
adapting precomputation threads for effcient prefetching. In 2007
IEEE 13th International Symposium on High Performance Computer
Architecture, pages 85–95, 2007.

[69] Yuxuan Zhang, Tanvir Ahmed Khan, Gilles Pokam, Baris Kasikci,
Heiner Litz, and Joseph Devietti. Ocolos: Online code layout optimiza-
tions. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 530–545, 2022.

15

	Abstract
	1 Introduction
	2 Background
	2.1 Prefetching Basics
	2.2 Performance Pitfalls
	2.3 Current Approaches to Software Prefetching

	3 Design of RPG2
	3.1 Phase 1: Profiling
	3.2 Phase 2: Code Analysis & Generation
	3.3 Phase 3: Runtime Code Insertion
	3.4 Phase 4: Monitoring And Tuning

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance
	4.3 RPG2 Characterization
	4.4 Performance Counter Validation
	4.5 Prefetch Distance Sensitivity

	5 Related Work
	6 Conclusion
	References

